
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

174

Manuscript received March 5, 2009
Manuscript revised March 20, 2009

A Service-Oriented Component-Based Middleware Architecture
for Wireless Sensor Networks

Kavi Kumar Khedo† and R.K. Subramanian††,

Faculty of Engineering, University of Mauritius, Reduit, Muairitus

Summary
The use of sensor networks in different spheres of the modern
society is emerging as a new trend. However, the integration and
coordination of heterogeneous sensors is still a challenge,
especially when the target application scenario is susceptible to
constant changes. To enable a wider adoption of sensor network
technologies, we must address a variety of constraints inherent in
sensor network operation and provide a significantly rich level of
abstraction to application users supported by efficient and robust
optimization techniques. In this paper, we propose, MiSense, a
service-oriented component-based middleware layer in order to
support distributed sensor applications with various performance
requirements. MiSense reduces complexity by imposing a
structure on top of the component model in the form of
composability restrictions and by offering well-defined, service-
specific interfaces to the rest of the system. MiSense breaks up
the middleware design into fine, self-contained and richly
interacting components in order to resolve the tension between
the optimization requirements for specific scenarios and the need
for flexibility and reusability for developing energy efficient
wireless sensor networks applications.
Key words:
Sensor networks, Middleware, Service-oriented approach,
Communication model, Cluster-based routing.

1. Introduction

Wireless sensor networks have the potential to be
tremendously beneficial to the modern society. Currently,
wireless sensor networks are beginning to be deployed at
an accelerated pace [1]. Embedded sensing will enable
new scientific exploration, lead to better engineering,
improve productivity, and enhance security. Research in
sensor networks has made dramatic progress in the past
decade, bringing these possibilities closer to reality [2].
However, the integration and coordination of
heterogeneous sensors is still a challenge, especially when
the target application scenario is susceptible to constant
changes. Such systems must adapt themselves in order to
fulfill requirements that can also change during the system
runtime. Moreover, the changes that occur in such
scenarios require services located at different places
during the system runtime. Due to the dynamicity of this
context, system adaptations must take place very quickly,
requiring that decisions for adaptation are taken

autonomously by the system without waiting for human
operator’s directions.
 Any design for sensor networks is subject to tight
constraints in terms of energy, processing power and
memory. These constraints frequently drive developers to
pursue vertically integrated solutions that are highly-
optimized for specific scenarios [13]. Literature in this
area presents a wide range of protocols and subsystems
[15] that make widely differing assumptions about the rest
of the system and how its parts should interact. The extent
to which these parts can be combined to build usable
systems is quite limited.
 In order to produce running systems, research groups
have produced vertically integrated designs in which their
own set of components are specifically designed to work
together, but are unable to interoperate with the work of
others. This inherent incompatibility greatly reduces the
synergy possible between research efforts and impedes
progress. Thus, current solutions highly optimized for
specific scenarios but lack flexibility. Moreover, there is
tension between the need for flexibility and the efficiency
costs of abstractions. It can therefore be concluded that
the factor currently limiting research progress in sensor
networks today is not any specific technical challenge
(though many remain, and deserve much further study) but
is instead the lack of an overall sensor network
architecture.
 In this paper, we are proposing, MiSense, a
component-based service-oriented middleware
architecture with a set of generic services that provides an
abstraction layer between applications and the underlying
network infrastructure. We have identified the essential
services and their conceptual relationships for an overall
sensor network architecture. Such a decomposition would
make it possible to compose components in a manner that
promotes interoperability, transcends generations of
technology, and allows innovation. The middleware
architecture promotes a content-based publish/subscribe
communication model and proposes dynamic
reconfiguration through reflective methods.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

175

2. Related Works

Middleware development in the growing and promising
field of sensor networks is a major challenge in order to
facilitate the programmer task and bridge the gap between
the applications and the hardware. However, most of the
current projects [4, 7, 8, 9, 11, 17] on sensor middleware
are at an early stage, focusing on developing algorithms
and components for data aggregation, localization, service
discovery, routing, and synchronization. These projects,
however, often lack attention for integrating these
algorithms and components into a generic middleware
architecture, and for helping application developers to
compose a system that exactly matches their requirements.
Consequently, developing and deploying end-to-end
applications for sensor networks in a realistic business
context remains highly complex.
 Traditional distributed programming abstractions like
Remote Procedure Calls (RPC), or the Distributed Object
Model (DOM) have traditionally simplified and enabled
the implementation of complex distributed systems.
Unfortunately, these abstractions and middleware
architectures cannot be simply applied to sensor networks
due to the new characteristics and peculiarities of the latter.
Existing approaches have to be revisited or new
approaches have to be developed to meet the requirement
of sensor networks. Research into middleware and
programming environments has become a more important
issue recently as researchers have realized that sensor
networks are difficult to use, program, and manage [6, 12,
14, 16]. It is argued that this difficulty has artificially
impeded the adoption of the technology outside of the
computer science community. In response to this, a wide
variety of different systems that make different
assumptions and tradeoffs have been proposed. These
systems range from very low level mechanisms to high
level concepts that abstract the notion of programming.
 Moreover, sensor network applications are becoming
more complex due to the use of different kinds of mobile
and sophisticated sensors, which provide advanced
functionalities and are deployed in dynamic scenarios
where context-awareness is needed. To support those
emerging applications, an adaptable underlying
infrastructure is necessary. Current state-of-the-art
middleware for sensor networks present important non-
negligible drawbacks that make them useless in the
context of such new emerging applications, because: (i)
the assumption that the network is composed only by a
homogeneous set of basic or very constrained low-end
sensors; (ii) the lack of intelligence in such network
compromises the adaptability required to deal with
changing operation conditions, e.g. lack of QoS
management and control [18].

 According to its particular assumptions, each of the
proposed middleware solutions for wireless sensor
networks draws on selected aspects of traditional
middleware for distributed systems, such as distributed
databases or publish/subscribe systems. Most solutions fit
into one of the following categories:
• database-inspired approaches, which use SQL-like

queries;
• tuple space approaches, which build on the tuple

space abstraction made popular by Linda [22];
• event-based approaches, which use event correlation

to aggregate sensor data; and
• service discovery based approaches, which use

service discovery protocols to locate sensors that can
meet applications’ data requirements.

 SINA (System Information Networking Architecture)
[5] models the network as massively distributed objects.
SINA is cluster-based middleware, and its kernel is based
on a spreadsheet database for querying and monitoring.
Each logical datasheet comprises of cells, and each cell
represents a sensor node attribute (in the form of a single
value, such as power level and location, or multiple values,
such as temperature changes history). Each cell is unique,
and each sensor node maintains the whole datasheet. The
sensor network as whole is a collection of datasheets. The
spreadsheet approach is the abstraction that allows
information management to meet application changes and
needs.
 Besides cluster based middleware, much research has
focused on query based systems. Systems such as TinyDB
[8] and Cougar [19] view the sensor network as an online,
distributed database. Instead of explicitly programming
nodes on the network, users simply access data by using a
declarative query language similar to SQL. The query is
then propagated to the relevant nodes identified by the
query and a reply is sent back to the user. Since SQL
provides support for simple reduction functions such as
average, minimum, and maximum, such systems are able
to efficiently aggregate data by employing a spanning tree
routing structure.
 Another class of middleware approaches is inspired
by mobile code and mobile agents [20]. There, the sensor
network is tasked by injecting a program into the sensor
network. This program can collect local sensor data, can
statefully migrate or copy itself to other nodes, and can
communicate with such remote copies. SensorWare [21] is
a middleware implementation of this class. Yet another
approach to sensor network middleware is based on the
notion of events. There, the application specifies interest
in certain state changes of the real world. Upon detecting
such an event, a sensor node sends a so-called event
notification towards interested applications. The
application can also specify certain patterns of events,
such that the application is only notified if occurred events

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

176

match this pattern. DSWare [9] is a representative of this
class of middleware. DsWare is a database-like
abstraction approach tailored to sensor networks on the
basis of event detection.
 Mires [10] proposes an adaptation of a message-
oriented middleware for traditional fixed distributed
systems. Mires provides an asynchronous communication
model that is suitable for WSN applications, which are
event driven in most cases, and has more advantages over
the traditional request-reply model. It adopts a
component-based programming model using active
messages to implement its publish-subscribe-based
communication infrastructure. Maté [3] is an architecture
for constructing application specific virtual machines that
executes on top TinyOS. Using this architecture,
developers can easily change instruction sets, execution
events, and virtual machine subsystems. Maté provides a
simple programming interface to sensor nodes. For
example, a sense-and-send program can be written with
six instructions.
 Another middleware, Impala [4] designed for use in
the ZebraNet project, considers the application itself
exploiting mobile code techniques to change the
functionality of the middleware executing at a remote
sensor. The key to energy efficiency for Impala is for the
sensor node applications to be as modular as possible,
enabling small updates that require little power during
transmission. Unlike Impala and Maté, MiLAN
(Middleware Linking Applications and Networks) [7] has
an architecture that reaches the network protocol. MiLAN
is intended to sit on top of multiple physical networks. It
acts as a layer that allows network-specific plug-in to
convert MiLAN commands to protocol-specific ones that
are passed through the usual network protocol stack.
Therefore, MiLAN can continuously adapt to the specific
features of whichever network is being used in the
communication. MiLAN uses graph theory and presents a
mechanism to select the best nodes in a sensor network.
 In this section, we presented concrete middleware
approaches for sensor networks with different underlying
programming paradigms (e.g., database approach, agent-
based approach, event-based approach). These paradigms
are not new, but require significant adaptation for use in
sensor networks. The approaches differ with respect to
ease of use, expressiveness, scalability, and overhead.
Most of the projects we have mentioned are at an early
stage, focusing on developing algorithms and components
of WSN middleware. One primordial issue is to provide
energy-efficiency requirements while providing a high-
level abstraction that addresses sensor node heterogeneity.
Another crucial challenge is developing an easy-to-use,
expressive programming interface while meeting different
sensor network application challenges.

3. MiSense: A Service-Oriented Component-
Based Middleware Layer

MiSense promotes a service-oriented middleware
component framework that can reduce complexity by
imposing structure on top of the component model in the
form of composability restrictions and by offering well-
defined, service-specific interfaces to the rest of the
system. MiSense aims at fixing the service interface at a
level of abstraction that will maximize the gains in
productivity, while keeping those parts of the architecture
with significant impact on the performance flexible
enough to be able to benefit from domain-specific
optimization. MiSense provides a well-defined content-
based publish/subscribe service, but allows the application
designer to adapt the service by making orthogonal
choices about the communication components for
subscription and notification delivery, the supported data
attributes, and a set of service extension components.
 The middleware is divided in three parts or layers
indicating that they are partly using each other in a
specific order. Figure 1 below presents an overview of the
layers of the proposed middleware, and a description of
each layer is provided.
 The bottom layer of the MiSense middleware is called
the Communication Layer. It provides a well-defined
content-based publish/subscribe service, MiPSCom, that
allows the application designer to adapt the service by
making orthogonal choices about the communication
protocol components for subscription and notification
delivery. A major design goal of the content-based
publish/subscribe communication model is to separate out
those service sub-tasks which are expected to have large
impact on the resource usage. This decomposition strives
to give an application designer a simple and flexible
means to select protocol components and data attributes
according to his needs, and to give him more fine-grained
control over the publish/subscribe service through the
concept of extension components.
 The resource management layer coordinates the
resource sharing based on application needs passed
through the upper layers. Services provided by upper
layers may need some resource sharing support, which is
encapsulated in the communication layer. As an
application uses such a service, the corresponding layer
asks for the communication layer to manage the access
control to the required resources. Indeed, the resource
management layer commands the allocation and
adaptation of resources, such that the QoS requirements
specified by the applications can be met. Resource
allocation focuses on generating an initial solution when
the cluster is formed, while resource adaptation controls
the runtime behaviour of the cluster. Both of these steps
need to solve the problem of determining the scheduling

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

177

of applications onto corresponding resources and the
adjustment of system knobs. The primary responsibility of
the RML is to provide the means for registering sensor and
actuator networks to the middleware and tracking their

resource usage levels, (i.e., residual device energy and
available network bandwidth).

Fig. 1 The MiSense overall architecture

 The intermediate layer is called Common Services
Layer, which provides services that are common to
different kinds of applications, such as data aggregation,
event detection, topology management and routing. The
set of generic services provided by the MiSense
middleware offers flexibility in the design of WSN
applications since it provides accepted standards for
representing and packaging data, describing the
functionality of services, and facilitating the search for

available services which can be invoked to meet
application requirements [5]. The MiSense middleware
services are capable of maintaining acceptable
performance levels as the network grows. Sensor network
topology is subject to frequent changes owing to factors
such as malfunctioning, device failure, moving obstacles,
mobility, and interference. The MiSense middleware aims
at supporting sensor networks' robust operation despite
these dynamics by adapting to the changing network

M
iS

en
se

 M
id

d
le

w
a

re

WSN Applications

Domain Layer (Programming Interface)

OS (TinyOS)

Sensors

Communication Layer
(MiPSCom: Content-Based Publish/Subscribe Communication Model)

Common Services Layer

MiSense Core Services

Routing
(MiCRA) Aggregation

Event
Detection Servicesn

MiSense Service Extensions

Resource Management Layer

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

178

environment. Refined and optimised services can be
plugged into the framework through the MiSense Service
Extensions component without modification of existing
code.
 The top layer is called Domain Layer and has the goal
to support domain specific needs, such as data fusion
support and specific data semantic support to allow the
production of application-related information from raw
data processing. Fuzzy classifiers, special kinds of
mathematical filters and functions that can be reused by
applications of the same domain will be found in this layer.
The programming interface provides a set of functions that
will allow the user to control and program the sensor
network as a whole network with different functional
characteristics without worrying about the detailed
placement of computation and communication. This style
of programming will allow the programmer to be more
productive and will allow unique optimizations to be made
to prolong the lifetime of the sensor network application.

4. MiSense Services

We have developed a suite of middleware services which
support the features of our architecture. The middleware
provides a layer of network abstraction, shielding the
application developer from the low-level complexities of
sensor network operation such as resource management
and communication. It gracefully handles the
decomposition of desired application behaviour to produce
node-level executable code for an object-centric, service-
oriented WSN application.
 The proposed middleware has been designed using a
service-oriented approach [23]. For an external point of
view, applications are service requestors and sink nodes
are service providers. Sink nodes release the descriptions
of the services provided by the WSN and offer access to
these services. From an internal point of view, sinks are
the service requestors and sensor nodes are the service
providers. Sensors send the descriptions of their services
to sink nodes, which keep a repository of the service
descriptors of each type of existing sensor in the network.
 The generic middleware services in MiSense include
data aggregation, event detection, and topology
management. We also propose a hierarchical cluster-based
routing scheme named MiCRA, which is suitable for
different types of sensor networks applications such as
habitat and environmental monitoring applications. The
proposed routing scheme is based on the fact that the
energy consumed to send a message to a distant node is far
greater than the energy needed for a short range
transmission. The main aim of MiCRA is to efficiently
maintain the energy consumption of sensor nodes by
involving them in multi-hop communication within a
particular cluster and by performing data aggregation and

fusion in order to decrease the number of transmitted
messages to the sink. MiCRA uses two important
parameters in order to prolong the lifetime of the sensor
network. The first parameter is the “residual energy” of
nodes which is used to probabilistically select an initial set
of cluster heads and the second one is the intra-cluster
“communication cost” which is used to break “ties”. A tie
in this context means that a node falls within the “range”
of more than one cluster head, including the situation
when two tentative cluster heads fall within the same
range. MiCRA consists of electing 2 levels of cluster-
heads (CHs). The first level election uses the same
CHprob equation as in the HEED algorithm [24], whereas
the second level election is different from the first one
where only the first level CH participate and their CHprob
is calculated according to the following equation:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −×=

NumNodes
eClusterSiz

E
EresidualCH ob 1

maxPr

 In the 2nd level CH election, the 2nd level CHs have
an unequal topology, where the 2nd level CHs which are
near the base station have less members associated with it
compared to those that are far away. The advantage
derived from such topology is that it prevents second level
cluster heads from depleting fast due to heavy relay and
intra cluster traffic. In such case, a 1st level CH will join
the 2nd level CH with highest residual energy. To achieve
such a topology, each node decreases its competition
radius as it nears the BS hence resulting in an unequal
topology. The main objective of MiCRA is that it is more
efficient for the relaying of packets to the base station. In
this new scheme, fewer nodes are involved for
transmitting packets to the base station compared to
HEED thus reducing the overall consumption of energy in
the network and thus helping in prolonging the network
lifetime.
 The competition radius (Rcomp) is a function of a node
distance to the base station is given by:

)(0

minmax

max ,1 comp
i

comp R
dd

BSsddcR ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−=

0
compR is the maximum competition radius which is

predefined.
dmax and dmin denote the maximum and minimum distance
between sensor nodes and the base station.
d(si ,BS) is the distance between a node si and the base
station.
c is a constant coefficient between 0 and 1.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

179

MiCRA Algorithm Design

I. Initialise
(a) Calculate communication range of node using
formula (6):

)(0

minmax

max ,1 comp
i

comp R
dd

BSsddcR ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−=

(b) For each node within communication range
 Add node id of each neighbour found in
an array (Snbr)
(c) Calculate cost of each node based on residual
energy of node
(d) For each neighbour found in Snbr array
 Send cost
(e) Calculate cluster head probability based on
formula (2)

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −×=

NumNodes
eClusterSiz

E
EresidualCH ob 1

maxPr

(f) Set “Is_Final_CH” attribute to False

5. MiSense Communication Model

The communication layer is based on an enhanced
publish/subscribe scheme which has been named as the
MiPSCom, MiSense Content-based Publish/Subscribe
Communication Model. The core decomposition of the
proposed communication model is discussed in this

section. Table 1 shows the enhanced publish/subscribe
scheme.

Table 1. The enhanced publish/subscribe API that is provided by

communication model. A square bracket represents a set of
constraints (C), metadata (M) or attributevalue pairs (A).

Enhanced Publish/Subscribe API

Subscriber:

Subscribe([C] [M])
Unsubscribe()
Notify([A] [M])

Publisher:

Publish([A] [M] , push)
Listener([C] [M])

Matching:

Matching([C] , [A])

 Figure 2 shows the decomposition of the
communication model. The Publish/Subscribe service is
distributed and the figure represents an instance of the
model on one sensor node. A publish/subscribe
application is divided into a variable number of Publisher
and Subscriber components. A Publisher component can
listen for subscriptions, collect data and publish
notifications and Subscriber components can issue
subscriptions and receive matching notifications. The
Broker component provides the publish/subscribe service
to the application, it manages the subscription table and it
can apply the matching algorithm to filter out notifications
that do not match a registered subscription.

Application

Publish/Subscribe System

Network Layer Protocols

Fig. 2 The MiPSCom Architecture.

Subscribers Publishers

Broker

Service Ext

Attributes

Subscription
Delivery Protocol

Notification
Delivery Protocol

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

180

 The data (“events") that subscribers can subscribe to
and publishers can publish are encapsulated in Attribute
components. In addition to a data collection interface, an
Attribute component must provide a matching interface
that compares two of its data items based on an attribute-
specific operator. The motivation is twofold: First, an
Attribute component represents functionality that
Publisher components should be able to reuse and access
independent of the specific attribute properties (data type,
metric, etc.). Secondly, matching operators are usually
attribute dependent: for example, when sensor readings are
affected by hardware-related jitter, the operator “=" should
not be interpreted as the exact equality of two values. To
increase modularity and keep the core matching algorithm
decoupled, this information should be provided by the
particular Attribute component. Within the network, all
attributes and operators are represented by integral
identifiers. Attribute identifiers are globally unique, while
operator identifiers are unique within the scope of a
particular attribute. The AttributeCollector component
structures access to the attributes: it maps a request based
on the attribute/operator identifier to an actual Attribute
component that is registered at compile time (but could
even be added at runtime by dynamic over the air code
updates).
 In MiPSCom, the proposed communication model,
the publisher publishes its interface (Listener), including
the events it will notify. A subscriber registers interest in
events indicating, where appropriate, constraints on the
event parameters. The publisher notifies the subscriber of
event occurrences that match the subscriber's registration.
The broker service acts as a mediator between the
publisher and the subscriber decoupling the subscriber and
the publisher in space, flow and time, undertaking event
filtering and event storage and, at the same time, providing
services such as message buffering and message
forwarding to disconnected subscribers. In MiPSCom
subscribers register their interest in events by typically
calling a Subscribe() operation on the event service
without knowing the publishers of these events. A
symmetric operation Unsubscribe() terminates a
subscription. To generate an event, a publisher calls a
Notify() operation on the event service. The event service
directs the call to all relevant subscribers so that every
subscriber receives a notification for every event
conforming to its registration.
 The key elements in the proposed communication
model are the notification service and the buffer where the
messages are queued before they are passed to subscribers.
The notification service takes responsibility to inform the
subscribers when a new message arrives. In this way, it
allows the asynchronous communication as producers and
consumers are fully decoupled. This loose coupling is the
prime advantage of this kind of communication in the

context of ad-hoc and pervasive environments such as
wireless sensor networks.

6. Proposed Adaptation Strategy

Distributed sensor applications demand a high degree of
flexibility and adaptability in order to deal with dynamic
changes in application requirements and sensor
environments. They can benefit greatly from knowing the
status inside the underlying layers, and in the
computational and physical environment. Therefore, we
introduce the notion of computational reflection to the
MiSense sensing architecture, bringing network and
system monitoring support to the level of sensor
applications. Computational reflection [25, 26] is a
technique that allows a system to observe and maintain
information about itself (meta-data) and use this
information to change its behavior (adapt). In other words,
the system maintains a causally-connected self
representation. This is achieved by processing at two well-
defined levels: functional level (also known as base or
application level) and management (or meta) level. An
important part of the reflection is the reification process -
the capture and observation of the base level states.
 The middleware inspection capacity allows an
application to request information on the current execution
context. The request and the respective response are
represented as SOAP messages. From the analysis of the
provided information, the application may decide to
modify the system behavior, changing some previously
registered QoS parameter or execution policy. The
adaptation module keeps a table to register the parameters
that each application requests to monitor. Monitoring
components existent in the sensor nodes periodically
check the values of requested parameters.
 Adaptation policies are pre-registered in the system as
sets of actions to be performed when the application QoS
requirements are not being fulfilled for a given execution
context. Adaptation policies created for the proposed
middleware are: (i) increase the data reliability (data
accuracy); (ii) decrease the energy consumption; (iii)
increase the available bandwidth. A policy of decreasing
the energy consumption may be implemented by two
actions: decreasing the data rate and turning off some
sensors.

7. Conclusion

The MiSense middleware provides an abstraction layer
between applications and the underlying network
infrastructure. Besides supplying an abstract programming
model to WSN applications, it keeps the balance between
application QoS requirements and the network lifetime.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

181

The middleware is in charge of decisions about
communication protocols, network topologic organization,
sensor operation modes and other infrastructure functions
typical of WSNs. The middleware monitors network and
application execution states performing a network
adaptation whenever it is needed, with or without
application interference. A major design goal of the
presented communication model is to separate out those
service sub-tasks which are expected to have large impact
on the resource usage. This decomposition strives to give
an application designer a simple and flexible means to
select protocol components and data attributes according
to his needs.
 The main contributions of the proposed middleware
are three-folded. First, MiSense reduces complexity by
imposing a structure on top of the component model in the
form of composability restrictions and by offering well-
defined, service-specific interfaces to the rest of the
system. Second, the services provided by the middleware
are accessed in a flexible way through a standard and
high-level interface. MiSense breaks up the middleware
design into fine, self-contained and richly interacting
components in order to resolve the tension between the
optimization requirements for specific scenarios and the
need for flexibility and reusability for developing energy
efficient wireless sensor networks applications. Finally,
the provided services of decision about network
configuration and of dynamic adaptation aim to increase
the network global lifetime, while meeting the applications
requirements.
 We believe that MiSense is well suited for sensor
networks, in order to satisfy the resource constraints and it
can enable a wealth of new sensor based services.
MiSense provides a strong programming abstraction that
simplifies application development while still maintaining
flexibility. Our work has attempted to provide a simpler,
more productive interface to the sensor network. By
approaching the problem from the architectural level,
common, low level functions were factored out and
provided as middleware services. The resulting
architecture of MiSense is sufficiently general to support
the properties identified as necessary to adequately fulfill
the middleware role.

References
 [1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,

“Sensor networks: A Survey,” Computer Networks, vol. 38,
no. 4, pp. 393-422, March 2002.

[2] D. Culler, D. Estrin, and M. Srivastava, "Overview of
Sensor Networks,"
http://doi.ieeecomputersociety.org/10.1109/MC.2004.93,
Computer, vol. 37, no. 8, 2004, pp. 41-49.

[3] P. Levis and D. Culler, "Mate: A Tiny Virtual Machine for
Sensor Networks," Proc. 10th Int'l Conf. Architectural

Support for Programming Languages and Operating
Systems (ASPLOSX), ACM Press, 2002, pp. 85-95.

[4] T. Liu and M. Martonosi, "Impala: A Middleware System
for Managing Autonomic, Parallel Sensor Systems," Proc.
ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming (PPoPP 03), 2003, pp. 107-118.

[5] C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor
Information Networking Architecture and Applications”,
IEEE Personal Communications, August 2001, pp. 52–59.

[6] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan.
Energy efficient communication protocol for wireless
microsensor networks. In Proceedings of the Hawaii
International Conference on System Sciences, January 2000.

[7] A. Murphy and W. Heinzelman, “MiLan: Middleware
linking applications and networks,” University of Rochester,
Tech. Rep. TR-795, 2002.

[8] S.R. Madden, M.J. Franklin and J.M. Hellerstein, "TinyDB:
An Acquisitional Query Processing System for Sensor
Networks," ACM Trans. Database Systems, 30(1), 2005.

[9] S. Li, S. Son, and J. Stankovic, "Event Detection Services
Using Data Service Middleware in Distributed Sensor
Networks," Proc. 2nd Int'l Workshop Information
Processing in Sensor Networks (IPSN 03), LNCS 2634,
Springer, 2003, pp. 502-517.

[10] E. Souto, et al., "A Message-Oriented Middleware for
Sensor Networks," Proc. 2nd Int'l Workshop Middleware
for Pervasive and Ad-Hoc Computing (MPAC 04), ACM
Press, 2004, pp. 127-134.

[11] L. St. Ville and P. Dickman, "Garnet: A Middleware
Architecture for Distributing Data Streams Originating in
Wireless Sensor Networks," Proc. 23rd Int'l Conf.
Distributed Computing Systems Workshops (ICDCSW 03),
IEEE CS Press, 2003, pp. 235-241.

[12] K. Romer, “Programming paradigms and middleware for
sensor networks,” GI/ITG Workshop on Sensor Networks,
Germany, 2004, pp. 49-54.

[13] D. Chen and P.K. Varshney, “QoS support in wireless
sensor networks: a survey,” Proc. of Int. Con. On Wireless
Networks (ICWN), Las Vegas, 2004.

[14] Y. Yu, B. Krishnamachari, and V. E. Prasanna, “Issues in
designing middleware for wireless sensor networks”, IEEE
Network Magazine, vol. 18, 2004, pp.15-21.

 [15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.
Pister, “System Architecture Directions for Networked
Sensors,” In ASPLOS 2000, Cambridge, USA, Nov. 2000.

[16] W.B. Heinzelman, A.L. Murphy, H.S. Carvalho, and M.A.
Perillo, “Middleware to Support Sensor Network
Applications”, IEEE Network, January 2004, pp. 6–14.

[17] K. Aberer, M. Hauswirth, and A. Salehi, “The Global
Sensor Networks middleware for efficient and flexible
deployment and interconnection of sensor networks,” Tech.
Rep. LSIR-REPORT-2006-006, Ecole Polytechnique
F´ed´erale de Lausanne, 2006.

[18] K. Römer, O. Kasten, and F. Mattern, “Middleware
challenges for wireless sensor networks,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 6, no. 4, 2002.

[19] Y. Yao and J. Gehrke, “The Cougar Approach to In-
Network Query Processing in Sensor Networks,” In
SIGMOD, 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

182

[20] T. Umezawa, I. Satoh, and Y. Anzai, “A mobile agent-based
framework for configurable sensor networks,” Proc. of 4th
Int. Workshop on Mobile Agents for Telecom Applications,
2002, pp. 128-140.

[21] A. Boulis, C. C. Han, and M. B. Srivastava, “Design and
Implementation of a Framework for Programmable and
Efficient Sensor Networks,” In Proceedings of the 1st
ACM/USENIX Conference on Mobile Systems, Applications,
and Services, pp. 187- 200, ACM Press, New York, May
2003.

[22] D. Gelernter, “Generative communication in Linda”, ACM
Computing Surveys, 7(1), 1985, 80–112.

[23] Delicato, F. et al., “Service Oriented Middleware for
Wireless Sensor Networks”. TR. NCE04/04. Available in
http://www.nce.ufrj.br/labnet/research/sensornet/publication
s.htm, 2004.

[24] O. Younis and S. Fahmy, "Distributed Clustering in Ad-hoc
Sensor Networks: A Hybrid, Energy-Efficient Approach,"
In Proceedings of IEEE INFOCOM, vol. 1, March 2004.

[25] P. Maes, “Concepts and experiments in computational
reflection”, In Proceedings of OOPSLA, 1987.

[26] B. Smith, “Reflection and Semantics in a Procedural
Language”, PhD thesis, Massachusetts Institute of
Technology, January 1982.

Kavi Kumar Khedo is currently a
senior lecturer and Head of the
Department of Computer Science and
Engineering at the University of
Mauritius, Reduit, Mauritius. He is an
active member of the Context-
Awareness Research Group and
Mobile and Ubiquitous Computing
Research Group at the University of
Mauritius. Kavi Khedo has acted as
reviewer for a number of international

conferences including CSITEd 2007, ICIC 2007, WCSN 2007
and InSITE 2008. He is currently working on energy-efficient
middleware technologies for wireless sensor networks. His
research interests are also directed toward mobile ad-hoc
networks, context-awareness, mobile and ubiquitous computing.

R. K. Subramanian is currently a
Professor with the Department of
computer Science and Engineering,
Faculty of Engineering, University
of Mauritius. He has over 40 years
of teaching and research experience.
He received his Ph.D Degree . in
Computer Science from the Indian
Institute of Technology, Delhi. His
research interests include Mobile
and Ubiquitous Computing,
Biometric Based Security,

Knowledge Modeling and Distributed systems.

