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Summary 
In this paper, we propose a new algorithm which associates 
weight to each item in the transaction database based on the 
significance of the corresponding item. Weighted support is 
calculated using the weight and the frequency of occurrence of 
the item in the transactions. This weighted support is used to find 
the frequent itemsets. We partition the database among ‘N’ 
processors and generate closed frequent itemsets in parallel. The 
parallel algorithm used minimizes communication by exchanging 
only weighted supports among the processors. We generate 
closed frequent itemsets to reduce the number of itemsets and 
also as all frequent itemsets can be obtained from closed frequent 
itemsets, we are not losing any interesting and significant 
itemsets. The performance of the proposed algorithm is 
compared to count distribution algorithm in terms of scaleup, 
speedup, sizeup and is shown that the proposed algorithm 
performs better. 
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1. Introduction 

During recent years, one of active research topic is 
Association rule discovery. This was first introduced in [2]. 
The association rule discovery is used to identify 
relationships between items in very large databases, to 
extract interesting correlations, associations among sets of 
items in the transaction databases or other data repositories. 
For example, given a market basket database, it would be 
interesting for decision support to know the fact that 30% 
of customers who bought coca powder and sugar also 
bought butter. This analysis may be used to provide some 
basis if is required to increase the sales and introduce from 
free schemes like, if 3 kg of sugar is bought then 100g 
butter free. In a census database, we should discover that 
20% of persons who worked last year earned more than 
the average income, or in a medical database, that 35% of 
patients who have cold also have sinus [3]. There are 
many areas in which association rules are widely used. We 
list out some of areas such as telecommunication networks, 
market and risk management, inventory control etc. After 
the publication of Agrawal, Imielinski and Swami and 
Agrawal and Srikant papers [2, 1], discovering association 
rules for the given threshold of minimum support and  

confidence have become one of the most active research 
topics. 
There are two sub-problems in association rule mining. 
Finding frequent or large itemsets is the first sub-problem. 
Frequent itemsets are those itemsets whose frequency of 
occurrence or support is greater than the minimum support 
provided by the user in the database. Generating 
association rules from the frequent itemsets generated in 
the first step is the second problem. Association rules must 
satisfy the minimal confidence constraint. Suppose one of 
the large itemsets is Lk, Lk = {I1, I2, … , Ik}, this itemset 
can be used to generate the association rules like the 
following: the first rule is {I1, I2, … , Ik-1}→ {Ik}, this 
rule can be determined whether it is interesting or not by 
using the confidence constraint [6]. The different rules are 
generated from this rule itself by deleting the last items on 
the left side of the rule and appending it to the right of the 
rule. The confidence constraint is used now to determine 
the corresponding rule’s interestingness. This process 
continues till all the items come to the right of the rule. 
The second sub-problem is simpler when compared to the 
first sub-problem. Once the frequent items are found, it is 
a straight forward procedure to generate association rules 
with the provided support. Hence, the problem of mining 
association rules is reduced to the problem of finding 
frequent itemsets.  
Frequent items can be generated in two steps. Firstly, 
candidate large itemsets are generated and secondly 
frequent itemsets are generated using these candidate 
itemsets. The itemsets whose support is greater than the 
minimum support are referred as frequent itemsets. The 
itemsets that are expected to be large or frequent are 
termed as candidate itemsets. The drawback in validating 
the large number of association rules that are generated 
limits the applications of data mining. There is very vast 
literature survey done to reduce the number of association 
rules. Some of these algorithms stated that the association 
rules can be generated without duplicates or only 
interesting rules or based on strength [6]. Mostly all 
algorithms that are proposed to generate association rules 
are based on Apriori mining method [1]. The performance 
of such algorithms is good for weakly correlated data as 
market basket data but is bad for correlated data such as 
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census data. The significance of the attributes in a 
transaction within the whole item space is considered to be 
same without its significance in traditional association rule 
mining. If the association rules are generated in this 
fashion, some interesting rules are missed. For example, 
[wine → salmon, 1%, 80%] may be more important than 
[bread → milk, 3%, 80%] even though the former holds 　
a lower support [7]. This is because those items in the first 
rule usually come with more profit per unit sale, but the 
standard ARM simply ignores this difference. The model 
in [4] also considers only whether an item is present in a 
transaction, but does not take into account the 
weight/intensity of an item within a transaction. For 
example, a customer may purchase 13 bottles of coke and 
6 bags of snacks and another may purchase 4 bottles of 
coke and 1 bag of snacks at a time. The conventional 
association rule approach treats the above two transactions 
in the same manner, which could lead to the loss of some 
vital information. Assume, for example, that if a customer 
buys more than 7 bottles of coke, he is likely to purchase 3 
or more bags of snacks. Otherwise, the purchase tendency 
of coke is not strong. The traditional association rule 
cannot express this type of relationship. With this 
knowledge, the supermarket manager may set a promotion 
such as if a customer buys 8 bottles of coke; he can get 
two free bags of snacks. So, weight is associated for the 
items through which rules are found. Weighted 
Association Rules cannot only improve the confidence in 
the rules, but also provide a mechanism to do more 
effective target marketing by identifying or segmenting 
customers based on their potential degree of loyalty or 
volume of purchases [4]. The main challenge of adapting 
traditional association rule mining model in a weighted 
setting is the invalidation of the “downward closure 
property”, which is used to justify the efficient iterative 
process of generating and pruning large itemsets from its 
subsets.  
The organization of the rest of the paper is as follows: 
Next section gives the work done in this area before; third 
section describes the proposed work, fourth section shows 
the performance evaluation and last section concludes the 
paper. 

2. Background 

The basic concepts of association rule mining and its 
preliminaries are discussed in [6] by Sotiris Kotsiantis et., 
al. They also had survey of the existing association rule 
mining techniques.  
The new and efficient algorithm, Close is proposed by 
Nicolas Pasquier et., al [3]. This algorithm is based on the 
pruning the closed set lattice. Closed itemset lattice is a 
sub-order of the subset lattice and is closely related to 
Wille’s concept lattice in formal concept analysis. 

Traditional association rule problem is extended in [4] by 
Wei Wang et.al. In this algorithm, the intensity of the item 
in the transaction is considered and a weight attribute is 
associated with each item based on its intensity. The rule 
generated from the items associated with weight is 
referred as weighted association rule (WAR). They also 
discussed how the confidence of the rules can be improved 
and effective target marketing can be achieved if the 
customers are divided based on their potential degree of 
loyalty or the volume they purchase. In WAR, the frequent 
itemsets are found by ignoring the weight and the weight 
is associated during the generation of association rules. 
Rakesh Agrawal et., al [1] presented two new algorithms 
for solving the problem of discovering association rules 
between items in a large database of sales transactions,  
that are fundamentally different from the known 
algorithms. Empirical evaluation shows that these 
algorithms outperform the known algorithms by factors 
ranging from three for small problems to more than an 
order of magnitude for large problems. The best features 
of the two proposed algorithms can be combined into a 
hybrid algorithm, called AprioriHybrid.  
Feng Tao et., al [7] addressed the issues of discovering 
significant binary relationships in transaction datasets in a 
weighted setting. Traditional model of association rule 
mining is adapted to handle weighted association rule 
mining problems where each item is allowed to have a 
weight. The focus is to those significant relationships 
involving items with significant weights rather than being 
flooded in the combinatorial explosion of insignificant 
relationships. The challenge in this approach is using 
weights in the iterative process of generating large 
itemsets. The problem of invalidation of the “downward 
closure property” in the weighted setting is solved by 
using an improved model of weighted support 
measurements and exploiting a “weighted downward 
closure property”. A new algorithm called WARM 
(Weighted Association Rule Mining) is developed based 
on the improved model. The algorithm is both scalable and 
efficient in discovering significant relationships in 
weighted settings as illustrated by experiments performed 
on simulated datasets. 
Rakesh Agrawal et.al., [5] presented three algorithms and 
explore tradeoffs between computation, communication, 
memory usage and synchronization. The three algorithms 
are count distribution, data distribution and candidate 
distribution. Count distribution algorithm is the motivation 
of our proposed work. In count distribution algorithm, 
Agrawal considers only the support of the item to generate 
frequent itemsets. We consider the significance of the item 
also and generated closed frequent itemsets. These are the 
two variations in the proposed work from the count 
distribution algorithm. By considering the significance of 
the item, we don’t loose important items whose support 
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may be less than the minimum support provided by the 
user because of its durability. By generating closed 
frequent itemsets, the number of itemsets in each level 
reduces, so that time taken will be reduced and moreover 
we will not loose any interesting or significant itemsets as 
all frequent itemset can be generated from closed frequent 
itemsets.  

3. Proposed work 

In general, the association rules are generated in two steps. 
First, frequent itemsets are found and secondly, rules are 
generated using the frequent itemsets found in first step. 
Frequent itemsets are also very huge in order to perform 
any analysis or for generating association rules. Instead, 
we are generating closed frequent itemsets from which 
association rules can be formed. Generally, in generating 
closed frequent itemsets, minimum support is only 
considered. But if minimum support alone is considered, 
some interesting / important items whose support < 
minimum support are lost. So, we consider a special 
attribute referred as weight which is associated with each 
item and has a value based on its durability / expiry / 
significance. For example, the lifetime of bread, cheese is 
less when compared to the lifetime of wheat, rice etc in 
market basket database. The quantity of purchase also can 
be considered as a weight. To improve the performance, 
parallel algorithm – count distribution is used to generate 
closed frequent itemsets and rules are also generated in 
parallel. The focus of the count distribution algorithm is 
on minimizing communication. It does so at the expense 
of carrying out redundant computations in parallel. The 
principle of allowing “redundant computations in parallel 
on otherwise idle processors to avoid communication” is 
followed in this algorithm. 

3.1 Proposed algorithm 

3.1.1 Generating Closed Frequent itemsets 

 
1. Minimum weighted support is provided by the 

user. 
2. Weight is associated with each item in the 

transaction database. 
3. The database is distributed among ‘N’ different 

processors. 
4. In first pass, each processor scans its local 

database and generates local candidate itemset.  
5. Support of each item is found based on its 

frequency in the local database of a particular 
processor. 

6. Weighted support of each item in the database is 
calculated as weight * support. 

7. The weighted supports (count) of all items are 
normalized to fix in some defined range of values. 

8. The local counts are communicated among all the 
processors to develop global counts. 

a. Local candidate set of each processor Pi 
is maintained in a closed hash-table. For 
each tuple, every item is hashed and its 
corresponding count in the hash table is 
incremented; new entries are created if 
necessary.  

b. At the end of the pass, processor loads 
items and their counts from the hash 
table into a send buffer ItemsOfProcI 
and then gathers items and their support 
counts from all other processors.  

c. To do this, it must first gather the count 
of the total number of items residing in 
the send buffers of all other processors.  

d. Processor Pi puts the count of its own 
items in a CountBuf and calls 
AllGather(SendBuf=CountBuf, 
ReceiveBuf=CountArr, 
BlockLen=sizeof( integer)). The jth 
element of the CountArr now contains 
the number of items processor j has in its 
send buffer.  

e. Next, processor Pi calls AllGatherV( ) to 
collect all items and their counts into the 
receive buffer AllItems  

f. AllGatherV(SendBuf=ItemsOfProcI, 
ReceiveBuf=AllItems, BlockLen= 
sizeof(ItemsOfProcI), 
ReceiveBlockLen= CountArr)  

g. AllGatherV() is the variable length 
counterpart of AllGather() in which a 
processor receives messages of different 
sizes from other processors. SendBuf is 
of size BlockLen, ReceiveBuf is an 
array of N messages, and the size of the 
ith receive buffer is given by the ith 
element of the ReceiveBlockLen array. 
If AllItems array becomes too large, we 
have an intermediate step using 
ReduceScatter() to reduce the number of 
duplicate entries. We omit this detail for 
brevity. 

h. Pi now hashes items from the receive 
buffer into a new hash table. If the same 
item was counted by more than one 
processor, it will hash to the same 
bucket and the support count for this 
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item is accumulated. Thus, Pi now has 
the entire candidate set C1, complete 
with global counts. 

9. These global counts are used to generate frequent 
itemsets Lk. 

10. Closed frequent itemsets CLk are found from 
these frequent itemsets by removing every 
frequent itemset that is a proper subset of, and 
carries the same support as, an existing frequent 
itemset. 

11. When k >1 then 
12. Each processor Pi generates the complete 

candidate set Ck using the closed frequent itemset 
CLk-1 created at the end of pass k – 1. Now the 
candidate set is identical in all the processors 
because of identical CLk-1.  

13. Local counts (weighted supports) for the 
candidate set are developed by making a pass 
over its local database. 

14. Weighted Support of an itemset is calculated as 
the average weight of all the items in the set (sum 
of weights of all items/number of items in the set) 

15. All processors exchange local counts with the 
other to generate global counts. Here 
synchronization of processors is forced. 

a. The candidates are kept in a hash-tree to 
allow efficient counting when making a 
pass over the data.  

b. To exchange local counts, each 
processor asynchronously extracts its 
local counts of candidate sets into a 
count array LCntArr.  

c. Since candidate set Ck is identical for all 
processors, if every processor traverses 
Ck in exactly the same order, 
corresponding elements of the count 
arrays will correspond to identical 
candidate itemsets.  

d. Thus we do not have to communicate 
itemsets themselves but only their counts. 
We also save on computation because 
we can sum these local counts using 
simple vector summation rather than 
having to compare and match candidates. 

e. Having created LCntArr, processors 
now do ReduceScatter() communication 
to perform a partitioned vector-sum of 
the count arrays. 
ReduceScatter(SendBuff=LCntArr, 
ReceiveBuf=PartGCntArr, BlockLen= 
PartSize, ReductionFunction=add) 

f. As the result of this operation, processor 
Pi receives the global counts of all the 

items in the ith LCntArr partition of all 
the processors. 

g. The number of items in each partition, 
PartSize, will be sizeof(LCntArr)/N. 

h. Each processor now gathers into 
GCntArr the global counts of items 
belonging to all other partitions by 
calling AllGather(SendBuf=PartGCnt, 
ReceiveBuf=GCntArr, 
BlockLen=PartSize). 

i. Thus giving each processor the global 
counts for all candidates in Ck. 

16. Each processor Pi now computes Lk from Ck. 
17. Then closed frequent itemset CLk is generated 

from Lk by each processor. 
18. The decision to terminate or continue to the next 

pass will be taken independently by each 
processor. The decision will be identical as the 
processors all have identical frequent itemsets. 

Thus the processors scan their local data asynchronously 
in parallel in every pass. At the end of each pass, they are 
synchronized to develop global counts. 

3.1.2 Association Rule Generation in Parallel 

We now present our parallel implementation of the second 
subproblem – the problem of generating rules from closed 
frequent itemsets. Generating rules is much less expensive 
than discovering closed frequent itemsets as it does not 
require examination of the data. Given a closed frequent 
itemset L, rule generation examines each non-empty 
subset a and generates the rule a ⇒  (L – a) with support 
= support(L) and confidence =  support(L)/support(a). 
This computation can efficiently be done by examining the 
largest subsets of L first and only proceeding to smaller 
subsets if the generated rules have the required minimum 
confidence [4]. For example, given a closed frequent 
itemset ABCD, if the rule ABC ⇒  D does not have 
minimum confidence, neither will AB ⇒  CD, and so we 
need not consider it. 
Generating rules in parallel simply involves partitioning 
the set of all closed frequent itemsets among the 
processors. Each processor then generates rules for its 
partition only using the algorithm above. Since the number 
of rules that can be generated from an itemset is sensitive 
to the itemsets size, we attempt equitable balancing by 
partitioning the itemsets of each length equally across the 
processors. Note that in the calculation of the confidence 
of a rule, a processor may need to examine the weighted 
support of an itemset for which it is not responsible. For 
this reason, each processor must have access to all the 
closed frequent itemsets before rule generation can begin. 
This is not a problem because all the processors have all 
the closed frequent itemsets at the end of the last pass. 
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4. Performance Evaluation 

Synthetic datasets of varying complexity are used for 
experiments. The datasets on which the experiments are 
carried out is D1456K.T15.I4. Experiments were repeated 
many times to obtain stable values at each data point. The 
characteristics like scaleup, sizeup and speedup are 
examined and compared with existing count distribution 
algorithm. The results clearly indicate that the proposed 
algorithm performs better when compared to the count 
distribution algorithm. 
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Fig. 1 Comparative Performance of Count Distribution and the proposed 

algorithm in terms of absolute response time with varied number of 
processors and varied database sizes 
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Fig. 2 Comparative Performance of Count Distribution and the proposed 

algorithm in terms of Scaleup with varied number of processors and 
varied database sizes 

 

Scaleup experiments were done in order to test how the 
proposed algorithm handles the larger datasets when more 
processors are available. The results shown in Fig. 1 
indicate clearly that the proposed algorithm performs well 
by maintaining response time almost constant as the 
database and the number of processors increase. We have 
also shown the results in terms of scaleup which is the 
response time normalized with respect to the response 
time for a single processor in Fig. 2. 
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Fig. 3 Comparative Performance of Count Distribution and the proposed 
algorithm in terms of absolute response time with varied database sizes 

and 16 nodes. 
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Fig. 4 Comparative Performance of Count Distribution and the proposed 
algorithm in terms of sizeup with 16 processors and varied database sizes 
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The experiments in terms of sizeup are done by fixing the 
size of the multiprocessor at 32 nodes while growing the 
database from 25MB per node to 400 MB per node and 
results are shown in Fig. 3. The sizeup is the response time 
normalized with respect to the response time for 25MB 
per node. The results show that algorithm performs better 
as the database size is increased. The performance in terms 
of sizeup is shown in Fig. 4. 
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Fig. 5 Comparative Performance of Count Distribution and the proposed 

algorithm in terms of absolute response time with varied number of 
processors and constant database size of 400MB 
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Fig. 6 Comparative Performance of Count Distribution and the proposed 

algorithm in terms of speedup with varied number of processors and 
constant database size of 400MB 

The speedup experiments are done by keeping the 
database as constant and varying the number of processors 
and results are shown in Fig. 5. The database size is fixed 
at 

400MB. The speed up is the response time normalized 
with respect to the response time for a single processor 
and the performance is shown in Fig. 6. We noticed from 
the experiments that the more data a node processes, the 
less significant becomes the communication time giving us 
better performance. 

5. Conclusions 

As there are wide applications of association rules in data 
mining, it is important to provide good performance. In 
view of this, we proposed a new algorithm which 
considers the significance of the item also but not only 
support of the item. The database is partitioned across 
different processors to generate the frequent itemsets in 
parallel. Moreover, we have concentrated in generating 
closed frequent itemsets instead of frequent itemsets 
because the number of closed frequent itemsets will be 
smaller than the number of frequent itemsets. As, all 
frequent itemsets can be obtained from the closed frequent 
itemsets, it is enough to find the closed frequent itemsets. 
Similar to the count distribution algorithm, the proposed 
algorithm exchanges only weighted supports of the items 
among the processors and minimizes communication. The 
performance of the proposed algorithm is compared with 
the existing count distribution algorithm in terms of 
scaleup, sizeup and speedup and is shown that the 
proposed algorithm exhibits better performance. 
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