
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

247

Manuscript received March 5, 2009
Manuscript revised March 20, 2009

Weighted Support Association Rule Mining using Closed Itemset
Lattices in Parallel

A.M.J. Md. Zubair Rahman and P. Balasubramanie

Kongu Engineering College, Perundurai, Tamilnadu, India

Summary
In this paper, we propose a new algorithm which associates
weight to each item in the transaction database based on the
significance of the corresponding item. Weighted support is
calculated using the weight and the frequency of occurrence of
the item in the transactions. This weighted support is used to find
the frequent itemsets. We partition the database among ‘N’
processors and generate closed frequent itemsets in parallel. The
parallel algorithm used minimizes communication by exchanging
only weighted supports among the processors. We generate
closed frequent itemsets to reduce the number of itemsets and
also as all frequent itemsets can be obtained from closed frequent
itemsets, we are not losing any interesting and significant
itemsets. The performance of the proposed algorithm is
compared to count distribution algorithm in terms of scaleup,
speedup, sizeup and is shown that the proposed algorithm
performs better.
Key words:
frequent itemsets, support, confidence, association rules.

1. Introduction

During recent years, one of active research topic is
Association rule discovery. This was first introduced in [2].
The association rule discovery is used to identify
relationships between items in very large databases, to
extract interesting correlations, associations among sets of
items in the transaction databases or other data repositories.
For example, given a market basket database, it would be
interesting for decision support to know the fact that 30%
of customers who bought coca powder and sugar also
bought butter. This analysis may be used to provide some
basis if is required to increase the sales and introduce from
free schemes like, if 3 kg of sugar is bought then 100g
butter free. In a census database, we should discover that
20% of persons who worked last year earned more than
the average income, or in a medical database, that 35% of
patients who have cold also have sinus [3]. There are
many areas in which association rules are widely used. We
list out some of areas such as telecommunication networks,
market and risk management, inventory control etc. After
the publication of Agrawal, Imielinski and Swami and
Agrawal and Srikant papers [2, 1], discovering association
rules for the given threshold of minimum support and

confidence have become one of the most active research
topics.
There are two sub-problems in association rule mining.
Finding frequent or large itemsets is the first sub-problem.
Frequent itemsets are those itemsets whose frequency of
occurrence or support is greater than the minimum support
provided by the user in the database. Generating
association rules from the frequent itemsets generated in
the first step is the second problem. Association rules must
satisfy the minimal confidence constraint. Suppose one of
the large itemsets is Lk, Lk = {I1, I2, … , Ik}, this itemset
can be used to generate the association rules like the
following: the first rule is {I1, I2, … , Ik-1}→ {Ik}, this
rule can be determined whether it is interesting or not by
using the confidence constraint [6]. The different rules are
generated from this rule itself by deleting the last items on
the left side of the rule and appending it to the right of the
rule. The confidence constraint is used now to determine
the corresponding rule’s interestingness. This process
continues till all the items come to the right of the rule.
The second sub-problem is simpler when compared to the
first sub-problem. Once the frequent items are found, it is
a straight forward procedure to generate association rules
with the provided support. Hence, the problem of mining
association rules is reduced to the problem of finding
frequent itemsets.
Frequent items can be generated in two steps. Firstly,
candidate large itemsets are generated and secondly
frequent itemsets are generated using these candidate
itemsets. The itemsets whose support is greater than the
minimum support are referred as frequent itemsets. The
itemsets that are expected to be large or frequent are
termed as candidate itemsets. The drawback in validating
the large number of association rules that are generated
limits the applications of data mining. There is very vast
literature survey done to reduce the number of association
rules. Some of these algorithms stated that the association
rules can be generated without duplicates or only
interesting rules or based on strength [6]. Mostly all
algorithms that are proposed to generate association rules
are based on Apriori mining method [1]. The performance
of such algorithms is good for weakly correlated data as
market basket data but is bad for correlated data such as

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

248

census data. The significance of the attributes in a
transaction within the whole item space is considered to be
same without its significance in traditional association rule
mining. If the association rules are generated in this
fashion, some interesting rules are missed. For example,
[wine → salmon, 1%, 80%] may be more important than
[bread → milk, 3%, 80%] even though the former holds 　
a lower support [7]. This is because those items in the first
rule usually come with more profit per unit sale, but the
standard ARM simply ignores this difference. The model
in [4] also considers only whether an item is present in a
transaction, but does not take into account the
weight/intensity of an item within a transaction. For
example, a customer may purchase 13 bottles of coke and
6 bags of snacks and another may purchase 4 bottles of
coke and 1 bag of snacks at a time. The conventional
association rule approach treats the above two transactions
in the same manner, which could lead to the loss of some
vital information. Assume, for example, that if a customer
buys more than 7 bottles of coke, he is likely to purchase 3
or more bags of snacks. Otherwise, the purchase tendency
of coke is not strong. The traditional association rule
cannot express this type of relationship. With this
knowledge, the supermarket manager may set a promotion
such as if a customer buys 8 bottles of coke; he can get
two free bags of snacks. So, weight is associated for the
items through which rules are found. Weighted
Association Rules cannot only improve the confidence in
the rules, but also provide a mechanism to do more
effective target marketing by identifying or segmenting
customers based on their potential degree of loyalty or
volume of purchases [4]. The main challenge of adapting
traditional association rule mining model in a weighted
setting is the invalidation of the “downward closure
property”, which is used to justify the efficient iterative
process of generating and pruning large itemsets from its
subsets.
The organization of the rest of the paper is as follows:
Next section gives the work done in this area before; third
section describes the proposed work, fourth section shows
the performance evaluation and last section concludes the
paper.

2. Background

The basic concepts of association rule mining and its
preliminaries are discussed in [6] by Sotiris Kotsiantis et.,
al. They also had survey of the existing association rule
mining techniques.
The new and efficient algorithm, Close is proposed by
Nicolas Pasquier et., al [3]. This algorithm is based on the
pruning the closed set lattice. Closed itemset lattice is a
sub-order of the subset lattice and is closely related to
Wille’s concept lattice in formal concept analysis.

Traditional association rule problem is extended in [4] by
Wei Wang et.al. In this algorithm, the intensity of the item
in the transaction is considered and a weight attribute is
associated with each item based on its intensity. The rule
generated from the items associated with weight is
referred as weighted association rule (WAR). They also
discussed how the confidence of the rules can be improved
and effective target marketing can be achieved if the
customers are divided based on their potential degree of
loyalty or the volume they purchase. In WAR, the frequent
itemsets are found by ignoring the weight and the weight
is associated during the generation of association rules.
Rakesh Agrawal et., al [1] presented two new algorithms
for solving the problem of discovering association rules
between items in a large database of sales transactions,
that are fundamentally different from the known
algorithms. Empirical evaluation shows that these
algorithms outperform the known algorithms by factors
ranging from three for small problems to more than an
order of magnitude for large problems. The best features
of the two proposed algorithms can be combined into a
hybrid algorithm, called AprioriHybrid.
Feng Tao et., al [7] addressed the issues of discovering
significant binary relationships in transaction datasets in a
weighted setting. Traditional model of association rule
mining is adapted to handle weighted association rule
mining problems where each item is allowed to have a
weight. The focus is to those significant relationships
involving items with significant weights rather than being
flooded in the combinatorial explosion of insignificant
relationships. The challenge in this approach is using
weights in the iterative process of generating large
itemsets. The problem of invalidation of the “downward
closure property” in the weighted setting is solved by
using an improved model of weighted support
measurements and exploiting a “weighted downward
closure property”. A new algorithm called WARM
(Weighted Association Rule Mining) is developed based
on the improved model. The algorithm is both scalable and
efficient in discovering significant relationships in
weighted settings as illustrated by experiments performed
on simulated datasets.
Rakesh Agrawal et.al., [5] presented three algorithms and
explore tradeoffs between computation, communication,
memory usage and synchronization. The three algorithms
are count distribution, data distribution and candidate
distribution. Count distribution algorithm is the motivation
of our proposed work. In count distribution algorithm,
Agrawal considers only the support of the item to generate
frequent itemsets. We consider the significance of the item
also and generated closed frequent itemsets. These are the
two variations in the proposed work from the count
distribution algorithm. By considering the significance of
the item, we don’t loose important items whose support

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

249

may be less than the minimum support provided by the
user because of its durability. By generating closed
frequent itemsets, the number of itemsets in each level
reduces, so that time taken will be reduced and moreover
we will not loose any interesting or significant itemsets as
all frequent itemset can be generated from closed frequent
itemsets.

3. Proposed work

In general, the association rules are generated in two steps.
First, frequent itemsets are found and secondly, rules are
generated using the frequent itemsets found in first step.
Frequent itemsets are also very huge in order to perform
any analysis or for generating association rules. Instead,
we are generating closed frequent itemsets from which
association rules can be formed. Generally, in generating
closed frequent itemsets, minimum support is only
considered. But if minimum support alone is considered,
some interesting / important items whose support <
minimum support are lost. So, we consider a special
attribute referred as weight which is associated with each
item and has a value based on its durability / expiry /
significance. For example, the lifetime of bread, cheese is
less when compared to the lifetime of wheat, rice etc in
market basket database. The quantity of purchase also can
be considered as a weight. To improve the performance,
parallel algorithm – count distribution is used to generate
closed frequent itemsets and rules are also generated in
parallel. The focus of the count distribution algorithm is
on minimizing communication. It does so at the expense
of carrying out redundant computations in parallel. The
principle of allowing “redundant computations in parallel
on otherwise idle processors to avoid communication” is
followed in this algorithm.

3.1 Proposed algorithm

3.1.1 Generating Closed Frequent itemsets

1. Minimum weighted support is provided by the

user.
2. Weight is associated with each item in the

transaction database.
3. The database is distributed among ‘N’ different

processors.
4. In first pass, each processor scans its local

database and generates local candidate itemset.
5. Support of each item is found based on its

frequency in the local database of a particular
processor.

6. Weighted support of each item in the database is
calculated as weight * support.

7. The weighted supports (count) of all items are
normalized to fix in some defined range of values.

8. The local counts are communicated among all the
processors to develop global counts.

a. Local candidate set of each processor Pi
is maintained in a closed hash-table. For
each tuple, every item is hashed and its
corresponding count in the hash table is
incremented; new entries are created if
necessary.

b. At the end of the pass, processor loads
items and their counts from the hash
table into a send buffer ItemsOfProcI
and then gathers items and their support
counts from all other processors.

c. To do this, it must first gather the count
of the total number of items residing in
the send buffers of all other processors.

d. Processor Pi puts the count of its own
items in a CountBuf and calls
AllGather(SendBuf=CountBuf,
ReceiveBuf=CountArr,
BlockLen=sizeof(integer)). The jth
element of the CountArr now contains
the number of items processor j has in its
send buffer.

e. Next, processor Pi calls AllGatherV() to
collect all items and their counts into the
receive buffer AllItems

f. AllGatherV(SendBuf=ItemsOfProcI,
ReceiveBuf=AllItems, BlockLen=
sizeof(ItemsOfProcI),
ReceiveBlockLen= CountArr)

g. AllGatherV() is the variable length
counterpart of AllGather() in which a
processor receives messages of different
sizes from other processors. SendBuf is
of size BlockLen, ReceiveBuf is an
array of N messages, and the size of the
ith receive buffer is given by the ith
element of the ReceiveBlockLen array.
If AllItems array becomes too large, we
have an intermediate step using
ReduceScatter() to reduce the number of
duplicate entries. We omit this detail for
brevity.

h. Pi now hashes items from the receive
buffer into a new hash table. If the same
item was counted by more than one
processor, it will hash to the same
bucket and the support count for this

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

250

item is accumulated. Thus, Pi now has
the entire candidate set C1, complete
with global counts.

9. These global counts are used to generate frequent
itemsets Lk.

10. Closed frequent itemsets CLk are found from
these frequent itemsets by removing every
frequent itemset that is a proper subset of, and
carries the same support as, an existing frequent
itemset.

11. When k >1 then
12. Each processor Pi generates the complete

candidate set Ck using the closed frequent itemset
CLk-1 created at the end of pass k – 1. Now the
candidate set is identical in all the processors
because of identical CLk-1.

13. Local counts (weighted supports) for the
candidate set are developed by making a pass
over its local database.

14. Weighted Support of an itemset is calculated as
the average weight of all the items in the set (sum
of weights of all items/number of items in the set)

15. All processors exchange local counts with the
other to generate global counts. Here
synchronization of processors is forced.

a. The candidates are kept in a hash-tree to
allow efficient counting when making a
pass over the data.

b. To exchange local counts, each
processor asynchronously extracts its
local counts of candidate sets into a
count array LCntArr.

c. Since candidate set Ck is identical for all
processors, if every processor traverses
Ck in exactly the same order,
corresponding elements of the count
arrays will correspond to identical
candidate itemsets.

d. Thus we do not have to communicate
itemsets themselves but only their counts.
We also save on computation because
we can sum these local counts using
simple vector summation rather than
having to compare and match candidates.

e. Having created LCntArr, processors
now do ReduceScatter() communication
to perform a partitioned vector-sum of
the count arrays.
ReduceScatter(SendBuff=LCntArr,
ReceiveBuf=PartGCntArr, BlockLen=
PartSize, ReductionFunction=add)

f. As the result of this operation, processor
Pi receives the global counts of all the

items in the ith LCntArr partition of all
the processors.

g. The number of items in each partition,
PartSize, will be sizeof(LCntArr)/N.

h. Each processor now gathers into
GCntArr the global counts of items
belonging to all other partitions by
calling AllGather(SendBuf=PartGCnt,
ReceiveBuf=GCntArr,
BlockLen=PartSize).

i. Thus giving each processor the global
counts for all candidates in Ck.

16. Each processor Pi now computes Lk from Ck.
17. Then closed frequent itemset CLk is generated

from Lk by each processor.
18. The decision to terminate or continue to the next

pass will be taken independently by each
processor. The decision will be identical as the
processors all have identical frequent itemsets.

Thus the processors scan their local data asynchronously
in parallel in every pass. At the end of each pass, they are
synchronized to develop global counts.

3.1.2 Association Rule Generation in Parallel

We now present our parallel implementation of the second
subproblem – the problem of generating rules from closed
frequent itemsets. Generating rules is much less expensive
than discovering closed frequent itemsets as it does not
require examination of the data. Given a closed frequent
itemset L, rule generation examines each non-empty
subset a and generates the rule a ⇒ (L – a) with support
= support(L) and confidence = support(L)/support(a).
This computation can efficiently be done by examining the
largest subsets of L first and only proceeding to smaller
subsets if the generated rules have the required minimum
confidence [4]. For example, given a closed frequent
itemset ABCD, if the rule ABC ⇒ D does not have
minimum confidence, neither will AB ⇒ CD, and so we
need not consider it.
Generating rules in parallel simply involves partitioning
the set of all closed frequent itemsets among the
processors. Each processor then generates rules for its
partition only using the algorithm above. Since the number
of rules that can be generated from an itemset is sensitive
to the itemsets size, we attempt equitable balancing by
partitioning the itemsets of each length equally across the
processors. Note that in the calculation of the confidence
of a rule, a processor may need to examine the weighted
support of an itemset for which it is not responsible. For
this reason, each processor must have access to all the
closed frequent itemsets before rule generation can begin.
This is not a problem because all the processors have all
the closed frequent itemsets at the end of the last pass.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

251

4. Performance Evaluation

Synthetic datasets of varying complexity are used for
experiments. The datasets on which the experiments are
carried out is D1456K.T15.I4. Experiments were repeated
many times to obtain stable values at each data point. The
characteristics like scaleup, sizeup and speedup are
examined and compared with existing count distribution
algorithm. The results clearly indicate that the proposed
algorithm performs better when compared to the count
distribution algorithm.

Scaleup

0

300

600

900

1200

0 5 10 15 20 25 30 35

Number of Processors

R
es

po
ns

e
Ti

m
e

(s
ec

)

Count Distribution
Proposed Algorithm

Fig. 1 Comparative Performance of Count Distribution and the proposed

algorithm in terms of absolute response time with varied number of
processors and varied database sizes

Relative Scaleup

0

0.3

0.6

0.9

1.2

0 5 10 15 20 25 30 35

Number of Processors

Sc
al

eu
p

Count Distribution

Proposed Algorithm

Ideal

Fig. 2 Comparative Performance of Count Distribution and the proposed

algorithm in terms of Scaleup with varied number of processors and
varied database sizes

Scaleup experiments were done in order to test how the
proposed algorithm handles the larger datasets when more
processors are available. The results shown in Fig. 1
indicate clearly that the proposed algorithm performs well
by maintaining response time almost constant as the
database and the number of processors increase. We have
also shown the results in terms of scaleup which is the
response time normalized with respect to the response
time for a single processor in Fig. 2.

SIZEUP

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350 400 450

Amount of Data per node (MB)

R
es

po
ns

e
tim

e
(s

ec
)

Count Distribution

Proposed algorithm

Fig. 3 Comparative Performance of Count Distribution and the proposed
algorithm in terms of absolute response time with varied database sizes

and 16 nodes.

Relative Sizeup

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400 450

Amount of data per node (MB)

Si
ze

up

Count Distribution
Proposed Algorithm
Ideal

Fig. 4 Comparative Performance of Count Distribution and the proposed
algorithm in terms of sizeup with 16 processors and varied database sizes

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

252

The experiments in terms of sizeup are done by fixing the
size of the multiprocessor at 32 nodes while growing the
database from 25MB per node to 400 MB per node and
results are shown in Fig. 3. The sizeup is the response time
normalized with respect to the response time for 25MB
per node. The results show that algorithm performs better
as the database size is increased. The performance in terms
of sizeup is shown in Fig. 4.

Speedup

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35

Number of Processsors

R
es

po
ns

e
Ti

m
e

(s
ec

)

Count Distribution

Proposed Algorithm

Fig. 5 Comparative Performance of Count Distribution and the proposed

algorithm in terms of absolute response time with varied number of
processors and constant database size of 400MB

Relative Speedup

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Number of Processsors

S
pe

ed
up

Count Distribution
Proposed Algorithm
Ideal

Fig. 6 Comparative Performance of Count Distribution and the proposed

algorithm in terms of speedup with varied number of processors and
constant database size of 400MB

The speedup experiments are done by keeping the
database as constant and varying the number of processors
and results are shown in Fig. 5. The database size is fixed
at

400MB. The speed up is the response time normalized
with respect to the response time for a single processor
and the performance is shown in Fig. 6. We noticed from
the experiments that the more data a node processes, the
less significant becomes the communication time giving us
better performance.

5. Conclusions

As there are wide applications of association rules in data
mining, it is important to provide good performance. In
view of this, we proposed a new algorithm which
considers the significance of the item also but not only
support of the item. The database is partitioned across
different processors to generate the frequent itemsets in
parallel. Moreover, we have concentrated in generating
closed frequent itemsets instead of frequent itemsets
because the number of closed frequent itemsets will be
smaller than the number of frequent itemsets. As, all
frequent itemsets can be obtained from the closed frequent
itemsets, it is enough to find the closed frequent itemsets.
Similar to the count distribution algorithm, the proposed
algorithm exchanges only weighted supports of the items
among the processors and minimizes communication. The
performance of the proposed algorithm is compared with
the existing count distribution algorithm in terms of
scaleup, sizeup and speedup and is shown that the
proposed algorithm exhibits better performance.

References
[1] Rakesh Agrawal and Ramakrishnana Srikant, “Fast

Algorithms for Mining Association Rules”, in Proc. of
the 20th Int’l Conference on Very Large Databases,
Santiago, Chile, September 1994.

[2] Agrawal R, Imielinski T and Swami A.N, “Mining
Association rules between sets of items in large
databases”, in proceedings of the 1993 ACM
SIGMOD International Conference on Management
of Data, 207-216.

[3] N. Pasquier, Y.Bastide, R.Taouil, and L.Lakhal,
“Efficient Mining of association rules using closed
itemset lattices”, Information systems, Vol. 24, No. 1,
1999, pp. 25–46.

[4] W.Wang, J.Yang and P.Yu, “Efficient mining of
weighted association rules (WAR)”, Proc. of the
ACM SIGKDD Conf. on Knowledge Discovery and
Data Mining, 270-274, 2000.

[5] Agrawal R., Shafer J, “Parallel Mining of Association
Rules”, in IEEE Knowledge and Data Engineering,
8(6):962-969, 1996.

[6] Sotiris Kotsiantis, Dimitris Kanellopoulos,
“Association Rules Mining: A Recent Overview”, in

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

253

GESTS Int’l Transactions on Computer Science and
Engineering, Vol. 32, 2006, pp. 71-82

[7] Feng Tao, Fionn Murtagh, Mohsen Farid, “ Weighted
Association Rule Mining using Weighted Support and
Significance Framework”, SIGKDD 2003.

Prof A.M.J.Md.Zubair Rahman has
completed his M.S.,(Software Systems) in
BITS Pilani , India in 1995. Then he
completed M.E.,(Computer Science &
Engineering) in Bharathiar Univeristy ,
Tamilnadu , India in 2002 . Now he is
doing research in the field of Association
Rule Mining algorithms . Currently, he is
working as Assistant Professor in the

Department of Computer Science & Engineering , Kongu
Engineering College , Tamil Nadu, India. He has completed 18
years of teaching service. He has published 15 articles in
International / National journals.

Dr.P.Balasubramanie has completed his
P.hD., degree in Theoretical Computer
Science in 1996 in Anna University. He
was awarded Junior Research Fellow in
the year 1990 by CSIR. Currently he is a
professor in the department of Computer
science & Engineering in Kongu
Engineering College, Tamilnadu, India.
He has completed 14 years of teaching

service. He has published more than 50 articles in International /
National Journals. He has authored six books with reputed
publishers. He has guided 3 P.hD., scholars and guiding 20
research scholars. He is a referee for ACCST Research Journal,
Science Direct Journal and so on.

