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Abstract 
Various expanded rough set models based on tolerance relations 
enlarge the application fields of rough set theory. Through 
generating tolerance relations to fuzzy tolerance relations and 
combining with dominance relations, a tolerance class of a fuzzy 
tolerance relation is further decomposed into a positive fuzzy 
tolerance class, a negative fuzzy tolerance class and a purely 
fuzzy tolerance class. Then the paper gives out relative 
definitions of lower approximation and upper approximation 
respectively. Furthermore it proposes the decomposition of rough 
sets of fuzzy tolerance relations. This method can cope with 
continuous attributes effectively. Information retrieval, as one of 
its example applications, is introduced to show its 
meaningfulness. 
Key words: Information retrieval,rough set, fuzzy set, fuzzy 
tolerance relation, dominance relation 
 
1. Introductions 
 
Z.Pawlak put forward rough sets theory, as a new 
mathematic tool in dealing with uncertainty, vagueness, 
non-deterministivity in information processing ([1,2]). In 
practice, people have discovered that indiscernibility 
relations based on which rough sets work are much 
rigorous. Some people propose to extend the original 
rough set models. For example, some put forward rough 
sets based on tolerance relation by using tolerance relation 
instead of indiscernibility relation; others suggest rough 
sets based on dominance relation by using dominance 
relation instead of indiscernibility relation. All these 
enlarge application scopes of rough set theory. Literature 
([3]) decomposes tolerance class into positive tolerance 
class, negative tolerance class and pure tolerance class by 
introducing dominance relations. However, firstly, there is 
a large amount of fuzzy information, secondly, the 
capability of rough sets in dealing with the continuous 
attributes in the information system is limited because 
continuous attributes are usually processed by discrediting 
them into binary system in rough sets and it may bring 
errors by using this method apparently for most of 
continuous attributes are fuzzy attributes. This article 
decomposes the tolerance class of a fuzzy tolerance 
relation into positive fuzzy tolerance class, negative fuzzy 
tolerance class and pure fuzzy tolerance class by extending 
tolerance relations to fuzzy tolerance relations and 
introducing dominance relations. This method can deal 
with continuous attributes effectively. One example of 
information retrieval is used to demonstrate its application 

usefulness and values. 
 
2. Basic concepts 
 
A. Basic theories of rough sets 
Definition 1. Suppose R is an indiscernibility relation on 
universe U (i.e. an equivalence relation, with reflexivity, 
symmetry and transitivity). For any X⊆U, we can define 
following subsets of U : Lower approximation: 
R*(X)=∪ {[x]|[x]⊆X}; 
Upper approximation: R*(X)= ∪ {[x]|[x] 
∩X≠ ∅ };Boundary: BnR(X)= R*(X) - R*(X).Wherein 
[x] is the equivalence class where element x is in. <R*(X), 
R*(X)> is called the rough sets based on indiscernibility 
relation R.  
 
B. Basic theories of fuzzy sets 
Here the fuzziness mainly means the illegibility during the 
transitional phases between the differences of objective 
things; the fuzzy concepts mean no unambiguous 
extensions. According to the requirement of general set 
theory, an object belongs to a set or doesn’t belong to it, it 
should be the only one case. Such sets can’t deal with 
idiographic fuzziness. L. A. Zadeh presented fuzzy sets 
theories, which use precise mathematical language to 
describe the fuzziness. 
Definition 2.  A is a fuzzy subset on universe U, for any 
u∈U, μ A(u) ∈  [0,1] is called membership degree for u 
to A.  The following mapping μ A:U →  [0,1]  or  
ua μ A(u) is called A’s membership function. The fuzzy 
subset is only described by membership function. F(U) 
denotes the class consisted of all fuzzy subsets on U. 
Definition  3.  If  A, B are two fuzzy sets on U, then 
the union and intersections of A and B and the 
complimentary set of  A  are all fuzzy sets. Their 
membership functions are respectively defined as follows: 

 
(A∪ B) (x)= max ( A(x), B(x) ) 
(A∩ B) (x)= min ( A(x), B(x) ) 
Ac(x)=1-A(x) 

 
The union and intersections of two fuzzy sets may be 
generalized to any more fuzzy sets. 
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C. Fuzzification of continuous attributes  
Transform every numerical value attribute into 
corresponding fuzzy set, transform attributes value into 
membership degree. Membership functions may presented 
by users or experts in the domain, however, in many cases 
it’s impractical, we may transform the original database 
into corresponding fuzzy membership matrix directly by 
using fuzzy C-mean Clustering Algorithm, wherein C 
denotes the amounts of fuzzy sets divided by numerical 
attributes. 

We can also use triangle membership function , 
π membership function, etc.. Suppose a is a continuous 
attribute, the domain of a may expressed as 
V={Va(u):a∈A, u∈U}. According to the size of the 
domain and the distribution of the values of attributes, a is 
fuzzified as k semantic variables Yi(i=1,2, L ,k). Every 
semantic variable Yi has a membership function, to ensure 
the integrity of the distribution, the values of the 
intersection between two neighbor membership functions 
are 0.5, in addition, k centers of fuzzy distribution mi may 
decided by using Kohonen self-organization network map 
algorithm. 

 
3. Decomposition of rough sets based on 

tolerance relation  
 
In practical applications, some attributes, especially 
described by numerical value, often bring uncertainty and 
fluctuation because of no specific definition to the values 
of attributes. And now using indiscernibility relation of 
traditional rough sets to describe them “strictly” or 
“accurately” is obviously unreasonable. The article 
presents the rough set models which use tolerance relation 
instead of indiscernibility relation. 
Definition  4.  Let SIM be the tolerance relation on U 
(is reflexive, symmetric) and X⊆U. The lower and upper 
approximation sets of X are defined as follows:  

SIM*(X)= ∪ {[x]s|[x]s⊆X} 
SIM*(X)= ∪ {[x]s|[x]s∩X≠ ∅ } 

where [x]s ={y| y∈U and (x, y)∈SIM} is the tolerance 
class to which x is belong to. 

In the following, dominance relation is introduced to 
further decompose tolerance relation. Dominance relation 
between x and y, denoted by xDpy, means that the value of 
every attribute in attribute set P of x is at least as well as 
those of y. where x, y∈ U, Dp

+(x)={y∈ U: yDpx}, 
Dp

-(x)={y∈U: xDpy}. The definition of dominance and 
theorems may consult literature ([5]). Decomposes the 
tolerance class of a tolerance relation into positive 
tolerance class, negative tolerance class and pure tolerance 
class by introduce dominance relations. And then define 
lower approximation, upper approximation and boundary, 
may consult literature([4]). 

 

4. Rough sets based on fuzzy tolerance 
relations and their decompositions 

 
Definition 5. ∀ x,y ∈ Ｕ , ∀ｑ ∈ Q, define fuzzy 
relation Ｒ : U × U →  [0,1] as 
xRy={(x,y) U∈ ×U≥ α |μ R(x,y) ≥ α } in the formula, 

μ R(x,y) ≥ α <=>｜ μ q(x)- μ q(y)｜≤1-α , for ∀ｑ

∈Ｑ; α  is a fixed constant,  called threshold. We use 
the simple method comparing distances of membership 
degree to solve the measurement of fuzzy tolerance 
relations. You may also use other methods. It is easily 
proved that fuzzy tolerance relations are reflexive and 
symmetric, but not transitive. So R is a fuzzy tolerance 
relation. The calculation about fuzzy tolerance degree may 
refer to literature ([6]). 
    [x]FS is the class based on fuzzy tolerance relation R , 
where x is in, and x U∈ , i.e. 

[x]FS ={y∈U｜q∈Q, μR(x,y) ≥ α } 
Suppose X⊆U, the lower approximation and upper 

approximation based on fuzzy tolerance relation 
approximate universe (X, R) are respectively described as 
follows:  

FS*(X)={ [x]FS｜[x]FS⊆X}   
FS*(X)={ [x]FS｜[x]FS∩X≠ ∅ } 

The bounder of X is: 
BnFS(X)= FS*(X) - FS*(X)  

The related properties of rough sets based on fuzzy 
tolerance relation may consult some literatures.  
    Now we introduce dominance relation to rough sets 
based on fuzzy tolerance relations to further decompose a 
class into positive fuzzy tolerance class, negative fuzzy 
tolerance class and pure fuzzy tolerance class. 

In the fuzzy tolerance class of  x, those , decided by 
x ,whose membership degrees of all attributes are lower 
than those of  x are negative fuzzy similar with x, 
denoted by [x]FS

-; those,  deciding x ,whose membership 
degrees of all attributes are high than those of x,  are 
positive fuzzy similar with x, denoted by [x]FS

+; those 
whose membership degrees of some attributes are high 
than those of x and some lower, are neither negative fuzzy 
similar with x nor positive fuzzy similar with x and are 
called pure similar with x, denoted by [x]FS

0. That is 
[x]FS

-=[x]FS∩Dp-(x) 
[x]FS

+=[x]FS∩Dp+(x) 
[x]FS

0=[x]FS-[x]FS
--[x]FS

+∪ {x} 

Then we can define upper and lower approximations 
respectively according to them as follows:. 

FS*
+(X)={ [x]FS

+｜[x]FS
+⊆X} 

FS*+(X)={ [x]FS
+｜[x]FS

+∩X≠ ∅ } 
FS*

-(X)={ [x]FS
-｜[x]FS

-⊆X} 
FS*-(X)={ [x]FS

-｜[x]FS
-∩X≠ ∅ } 
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FS*
0(X)={ [x]FS

0｜[x]FS
0⊆X} 

FS*0(X)={ [x]FS
0｜[x]FS

0∩X≠ ∅ } 
 
5. A example of information retrieval 
 
An information system is given in Table 1.By using fuzzy 
C-mean Clustering Algorithm to fuzzily process attributes 
A,B,C,D of Table 1, Table 1 is converted into Table 2. 
 

Tab.1：Continuous information system 

 
Let α =0.3,we can obtain some fuzzy tolerance class 

as follows:{1,3}, {2,3}, {3,1,2},  {4,9}, {5,7}, {6,8}, 
{7,5,10}, {8,6}, {9,4}, {10,7}. Then we decompose each 
[x] into negative, positive and pure classes: 

 
Tab.2：Fuzzy information system 

 
[1]FS

-={1,3}, [1]FS
+={1}, [1]FS

0={1}; 
[2]FS

-={2}, [2]FS
+={2,3}, [1]FS

0={2}; 
[3]FS

-={2,3}, [3]FS
+={1,3}, [3]FS

0={3}; 
[4]FS

-={4,9}, [4]FS
+={4,9}, [4]FS

0={4,9}; 
[5]FS

-={5,7}, [5]FS
+={5}, [5]FS

0={5}; 
[6]FS

-={6}, [6]FS
+={6}, [6]FS

0={6,8}; 
[7]FS

-={7,10}, [7]FS
+={7,5}, [7]FS

0={7}; 
[8]FS

-={8}, [8]FS
+={8}, [8]FS

0={6,8}; 
[9]FS

-={4,9}, [9]FS
+={4,9}, [9]FS

0={4,9}; 
[10]FS

-={10},[10]FS
+={7,10}, [10]FS

0={10}. 
 

Then we query based on this and can obtain more 
correlative results. For instance, query the elements: a 
little weaker than and must satisfy the condition 
A=0.25&B=7.00. According to the condition we can get 
X={1,3,4,6,8,9}. And then calculate the lower 
approximation of X’s positive fuzzy tolerance class, the 
result is {1,4,6,8,9}. 
 
6. Conclusions 
 
For one information system, mostly it occurs that some 
attributes are discrete and some are continuous, so we can 
take following method to process: for discrete attributes 
we can decompose them by using common tolerance 
relation and dominance relation, for continuous attributes 
we firstly fuzzily handle them and then use tolerance 
relation and dominance relation to cope with. 
    Introducing fuzzy relation to tolerance relation can 
extend its application scope. Introducing dominance 
relation to fuzzy tolerance relation can extend its 
correlative scope, applying on the information retrieval 
can extend its retrieval scope. 
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No.  A B C D 
1 0.21 6.98 0.40 16.37
2 0.27 8.00 0.23 13.81
3 0.26 7.55 0.28 14.97
4 0.20 6.35 0.15 12.32
5 0.38 7.45 0.05 15.90
6 0.25 6.25 0.03 15.95
7 0.37 9.02 0.07 15.61
8 0.17 4.45 0.20 14.60
9 0.18 6.73 0.17 10.93
10 0.74 10.13 0.83 14.61

No. A B C D 
1 1 1 1 1 
2 0.8 0.6 0.5 0.7 
3 0.9 0.8 0.8 1 
4 1 1 0.1 0 
5 0 0.5 0 1 
6 0.9 1 0.1 1 
7 0 0.3 0 1 
8 0.9 0.9 0.3 0.9 
9 1 1 0.1 0 

10 0 0 0 0.9 


