
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

273

Manuscript received March 5, 2009
Manuscript revised March 20, 2009

DESIGNING AND OPTIMIZATION OF CODEC H-263
FOR MOBILE APPLICATIONS

Mr. Sourabh Rungta Dr.Neeta Tripathi* Mr.Arvind K Verma** Dr.Anupam Shukla**

*RCET DURG
**ABV-IIITM GWALIOR

Abstract
Mobile phones size transformed today’s communication industry
with their continuous reduction in size and weight, Personal
Digital Assistants (PDAs) such as pocket PCs and palms have
grown in popularity over the past years. Due to the limited
processing capability, memory constraints, and the power budget
of mobile clients, coders, decoders and renderer are very difficult
to implement on wireless handheld PDAs. In this paper we
proposed an algorithm to develop a software which implement
H.263 Decoder (& renderer) and Encoders so that the software
implementation must be highly optimized to achieve
“reasonable” video quality.
Keywords - Optimize, Personal Digital Assistants (PDA),
Applications, H.263, Multimedia, Encoder, Decoder, Renderer,
MobiFDR.

1. Introduction

The H.263 design original goal of this endeavor was to
design a video coding standard suitable for applications
with bit rates around 20 Kbits/s (the so-called very-low-
bit-rate applications), it became apparent that H.263 could
provide a significant improvement over H.261 at any bit
rate. In essence, H.263 combines the features of H.261
with several new methods, including the half-pixel motion
compensation first found in MPEG-1 and other techniques.
Compared to an earlier standard H.261, H.263 can provide
50% or more savings in the bit rate needed to represent
video at a given level of perceptual quality at very low bit
rates. H.263 provides superior coding efficiency to that of
H.261 at all bit rates (although not nearly as dramatic an
improvement when operating above 64 Kbits/s).
H.263[1,2] represents today’s state of the art for
standardized video coding. Essentially any bit rate, picture
resolution, and frame rate for progressive-scanned video
content can be efficiently coded with H.263. H.263 is
structured around a “baseline” mode of operation, which
defines the fundamental features supported by all decoders,
plus a number of optional enhanced modes of operation
for use in customized or higher performance applications.
Because of its high performance, H.263 was chosen as the
basis of the MPEG-4 video design, and its baseline mode
is supported in MPEG-4 without alteration.
 Many of its optional features are now also found in some
form in MPEG-4. In addition to the baseline mode, H.263
includes a number of optional enhancement features to

serve a variety of applications. The original version of
H.263 had about four such optional modes. The latest
version of H.263, known informally as H.263+ or H.263
Version 2, extends the number of negotiable options to 16.
These enhancements provide either improved quality or
additional capabilities to broaden the range of applications.
Among the new negotiable coding options specified by
H.263 Version 2, five of them are intended to improve the
coding efficiency. These are the advanced intra coding
mode, alternate inter VLC mode, modified quantization
mode, deblocking filter mode, and improved PB-frame
mode. Three optional modes are especially designed to
address the needs of mobile video and other unreliable
transport environments. They are the slice structured mode,
reference picture selection mode, and independent
segment decoding mode. The temporal, SNR, and spatial
scalability modes support layered bitstream scalability,
similar to those provided by MPEG-2. There are two other
enhancement modes in H.263 Version 2: the reference
picture resampling mode and reduced-resolution update
mode. The former allows a previously coded picture to be
resampled, or warped, before it is used as a reference
picture. Another feature of H.263 Version 2 is the use
of supplemental information, which may be included in
the bitstream to signal enhanced display capabilities or to
provide tagging information for external use. One use of
the supplemental enhancement information is to specify
the chroma key for representing transparent and
semitransparent pixels. Each optional mode is useful in
some applications, but few manufacturers would want to
implement all of the options. Therefore, H.263 Version 2
contains an informative specification of three levels of
preferred mode combinations to be supported[3]. Each
level contains a number of options to be supported by an
equipment manufacturer. Such information is not a
normative part of the standard. It is intended only to
provide manufacturers some guidelines as to which modes
are more likely to be widely adopted across a full
spectrum of terminals and networks. Three levels of
preferred modes are described in H.263 Version 2, and
each level supports the optional modes specified in lower
levels.
Due to the limited processing capability, memory
constraints, and the power budget of mobile clients, Full
Duplexing multimedia coders, decoders and renderer are

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

274

very difficult to implement on wireless handheld PDAs.
The project is especially aimed at development of a Full
Duplexed Mobile Video Decoder and Renderer system so
that videos in H.263 / H.264+[10,12,14] formats, which
are popularly used in the various mobile phones, PDAs
and wireless devices, can be encoded (recorded) using the
on-board hardware and played back at the same time.
Applications of such a system would be widespread in the
current scenario where mobile value added services
including content streaming, mobile TV streaming, video
conferencing, e-learning, telemedicine etc are being
commercially deployed. This system could be useful
component in all these application services and could thus
be made available to technical users at reasonable prices.

2. H.263 Encoder and Decoder

A number of video coding standard exist, each of which is
designed for a particular type of application: for e.g. JPEG
for still images, MPEG2/4 for digital television and H.261
for ISDN video conferencing. H.263 standard specifies the
requirements for a video encoder and decoder[6,7,9]. It
does not describe the encoder or decoder themselves:
instead, it specifies the format and content of the encoded
(compressed) stream. A typical encoder (as in figure 1)
and decoder (as in figure 2) are described here:

 Figure 1. H.263 Encoder

H.263 Encoder:
Motion estimation and compensation: The first step in
reducing the bandwidth is to subtract the previous frame
from the transmitted frame from the current frame so that
only the difference or residue needs to be encoded and
transmitted. This means that areas of the frame that do not
change (for example the background) are not encoded.

Further reduction is achieved by attempting to estimate
where areas of the previous frame have moved to in the
current frame (motion estimation) and compensating for
this movement (motion compensation). The motion
estimation module compares each 16×16 pixel block
(macroblock) in the current frame with its surrounding
area in the previous frame and attempts to find a match.
The matching area is moved into the current macroblock
position by the motion compensator module. The motion
compensated macroblock is subtracted from the current
macroblock. If the motion estimation and compensation
process is efficient, the remaining “residual” macroblock
should contain only a small amount of information.
 Virtually all motion estimation algorithms in
video communication have been developed for coding
purposes with different objectives. In the first stage of this
method, called motion estimation (ME), the motion of
objects between a reference frame and the current frame is
estimated. This motion information is then used in the
second stage, called motion compensation (MC), to move
the objects of the reference frame to provide a prediction
for the current frame. They aim at minimizing the
prediction error after motion-compensation so that only a
comparatively small residue must be encoded. By
removing the high temporal redundancy present in video
sequences. High compression ratios can be achieved.
Classical approaches to motion estimation belong to the
group of nonparametric techniques because their only
interest is in computing the motion field. All motion
estimation methods rely on the principle of intensity
conservation; that is, they more or less implicitly assume
that the luminance of pixels does not change along their
motion trajectories. Discrete Cosine Transform (DCT):
The DCT transform a block of pixel values (or residual
values) into a set of “spatial frequency” coefficients. The
DCT operates on a 2-dimensional block of pixel (rather
than on a 1-dimensional signal) and is particularly good at
“compacting” the energy in the block of values into a
small number of coefficients. This means that only a few
DCT coefficients are required to recreate a recognizable
copy of the original block of pixels.
Quantization: For a typical block of pixels, most of the
coefficients produced by the DCT are close to zero. The
Quantizer module reduces the precision of each coefficient
so that the non-zero coefficients are set to zero and only a
few significant non-zero are left. This is done in practice
by dividing each coefficient by an integer scale factor and
truncating the result. It is important to realize that the
Quantizer “throws away” information.
Entropy encoding: An entropy encoder (such as
Huffman encoder) replaces frequently-occurring values
with short binary codes and replaces infrequently-
occurring values with longer binary codes. The entropy
encoding in H.263 is based on this technique and is used
to compress the quantized DCT coefficients. The result is

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

275

a sequence of variable length binary codes. These codes
are combined with synchronization and control
information to form the encoded H.263 bitstream.
Frame store: The current frame must be stored so that it
can be used as a reference when the next frame is encoded.
Instead of simply copying the current frame in to a store,
the quantized coefficients are re-scaled; inverse
transformed using an Inverse DCT and added to the
motion-compensated reference block to create a
reconstructed frame that is placed in a store. This ensures
that the contents of the frame store in the decoder. When
the next frame is encoded, the motion estimator uses the
contents of this frame store to determine the best matching
area for motion compensation.

Figure2. H.263 Decoder

H.263 Decoder:
Entropy Decode: The variable-length codes that make
up the H.263 bit stream are decoded in order to extract the
coefficient values and motion vector information.
Rescale: This is the “reverse” of quantization: the
coefficients are multiplied by the same scaling factor that
would be used in the Quantizer. However, because the
Quantizer discarded the fractional remainder, the rescaled
coefficients are not identical to the original coefficients.
Inverse Discrete Cosine Transform: The IDCT
reverses the DCT operation to create a block of samples:
these correspond to the difference values that were
produced by the motion compensator in the encoder.
Motion compensation: The difference values are added
to a reconstructed area from the previous frame. The
motion vector information is used to pick the correct area.
The result is a reconstruction of the original frame: note
that this will not be identical to the original because of the
“lossy” quantization stage, i.e. the image quality will be
poorer than the original. The reconstructed frame is placed
in a frame store and it is used to motion-compensate the
next received frame.

3. Implementations Issues

3.1 Real-time video communications
Many issues need to be addressed in order to develop a
video encoder and decoder that can operate effectively in
real time. These include:
Bit rate control: Practical communications channels
have a limit to the number of bits that they can transmit
per second. The basic H.263 encoder generates a variable
number of bits for each encoded frame[11,13]. If the
motion estimation/compensation process works well then
there will be few remaining non-zero coefficients to
encode. However, if the motion estimation does not work
well (for example when the video scene contains complex
motion), there will be many non-zero coefficients to
encode and so the number of bits will increase.
In order to "map" this varying bit rate to (say) a CBR
channel, the encoder must carry out rate control. The
encoder measures the output bit rate of the encoder. If it is
too high, it increases the compression by increasing the
quantizer scale factor: this leads to more compression (and
a lower bit rate) but also gives poorer image quality at the
decoder. If the bit rate drops, the encoder reduces the
compression by decreasing the quantizer scale factor,
leading to a higher bit rate and a better image quality at
the decoder.
Synchronization: The encoder and decoder must stay in
synchronization, particularly if the video signal has
accompanying audio. The H.263 bitstream contains a
number of "headers" or markers: these are special codes
that indicate to a decoder the position of the current data
within a frame and the "time code" of the current frame. If
the decoder loses synchronization then it can "scan"
forward for the next marker in order to resynchronize and
resume decoding. It should be noted that even a brief loss
of synchronization can cause severe disruption in the
quality of the decoded image and so special care must be
taken when designing a video coding system to operate in
a "noisy" transmission environment.
Audio and multiplexing:
The H.263 standard describes only video coding. In many
practical applications, audio data must also be compressed,
transmitted and synchronized with the video signal.
Synchronization, multiplexing and protocol issues are
covered by "umbrella" standards such as H.320 (ISDN-
based videoconferencing), H.324 (POTS-based video
telephony) and H.323 (LAN or IP-based
videoconferencing. Audio coding is supported by a range
of standards including G.723.1. Other, related standards
cover functions such as multiplexing (e.g. H.223) and
signaling (e.g. H.245).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

276

3.2 Software implementations:
Functions such as motion estimation, variable length
encoding/decoding and the DCT require a significant
amount of processing power to implement. However, with
recent developments in processor technology, it is possible
to encode and decode H.263 video in real time on general-
purpose processors such as the Pentium family.
A software implementation must be highly optimized to
achieve "reasonable" video quality This involves a number
of steps such as choosing fast algorithms for processor-
intensive functions, minimizing the number of move or
copy operations and unrolling loops.

3.3 Hardware implementations

For high quality video, or in applications where a
powerful processor is not available, a hardware
implementation is the solution. A typical hardware
CODEC might use dedicated logic for the computationally
intensive parts of the system (such as the motion
estimator/compensator, DCT, quantizer and entropy
encoder) with a control module that schedules events and
keeps track of the encoding and decoding
parameters[4,5,8]. A programmable controller is
advantageous because many of the encoding parameters
(such as the rate control algorithm) can be modified or
adapted to suit different environments. Recently, logic
core (Intellectual Property core) implementations of H.263
have become available.

4. Problems of the Mobile platforms

When we switch from one platform to another such as PC
platforms to devices special care has to be taken during
the development process because the mobile platform
have limitations in performance, power and memory
resources[8,9]. Limitations that should be faced by all
mobile application programmers.
A. Limited Speed Control Processing Units
Many of the current high-end mobile phones operate at
relatively slow clock speed. This means that many
complex calculations required by some applications, such
as graphics, are limited in the speed with which they can
be performed. CPUs on mobile phones generally have
small caches due to which the complex algorithms
requiring more data moves accelerates demands on the
CPU. Some specialists expect that high speed mobile
processors are likely to appear in the next couple of years
and for these processors to exist we have to overcome the
problems of battery life and heat generation.
B. Limited Bandwidth
In complex applications data transferred between the CPU
and memory, or I/O peripherals, could easily create
problem due to limited bandwidth. Too narrow or too

slow bus limits have significant impact on the overall
efficiency and throughput.
Various mobile venders are trying to optimize bus speed
for better performance but developers have to be aware of
this limitation while programming their application by
meeting the critical data throughput boundaries and not
overloading the data path.

C. Limited Memory
The memory space available is always been an issue in
mobile environment. This is no longer a critical issue
with the tremendous fall in prices of flash memory and the
introduction of hard-drive-based mobile phones. However,
memory has to be used carefully and used wisely in any
mobile application because the sizes available are
insignificant in comparison to the nature of applications
using memory this might cause memory fragmentation,
memory leaks and frequent system crashing.

5. The Proposed Improvement in H.263

Now day’s Mobile phones have evolved rapidly and are
now required to perform increasing amounts of processing
and data usage more than their predecessors. Applications
ranging from teleconferencing to telecommunication all
operation on this compact but limited platform creating
considerable demands of its memory and power resources.
To make sure these resources are not wasted programmers
should guarantee efficient performance of their programs
by providing the optimized balance of processing
consumption and code size. In other words they must
develop designs that take proper account of the platform
constraints and operating parameters.
With the potential of even greater speeds in the near future,
low-cost multimedia solutions would be possible since
audio and video decompression would be done on the
native processor without any additional hardware.
Optimization can occur in different stages of the
development cycle and in different areas. For example, the
target architecture can be upgraded, algorithms could be
modified, compilers’ optimization power can be turned on,
and coding practices might be subject to amendment.
Upgrading the mobile architecture is not practical for the
general developer as it would generally require significant
modifications of internal chip architectures or device
structures. Algorithms on the other hand are dependent on
the context and field they are being used in and are
therefore often application dependent. Compilers usage
relies on programmers’ taste and preference. However,
coding style is generic to every project and therefore is a
worthy topic of study. In this paper we will address this
generic issue for the wider benefit and improvement of
most mobile application developers.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

277

Keeping in mind the observations outlined above, we
would proposed to develop a software video library
(MobiFDR) that would
1. Provide a common architecture under which multiple
audio and video codecs and renderers could be accessed.
2. Be the lowest, functionally complete layer in the
software video codec hierarchy.
3. Be fast, extensible, and thread-safe, providing reentrant
code with minimal overhead
4. Provide an intuitive, simple, flexible, and extensible
application programming interface (API) that supports a
client-server model of multimedia computing.
5. Provide an API that would accommodate multiple
upper layers, allowing foe easy and seamless integration
into multimedia products.

Whilst there is a number of software platforms for mobile
development we focus the most popular, the Symbian OS,
which utilizes a specialized version of C++. Symbian is
divided into different versions to cover a number of user
interfaces and in this paper we concentrate on the most
common which is Series 60, although this is for
illustration and the techniques could be applied almost
generically.
The information retrieved demonstrates the effectiveness
of the prescribed programming technique which would
helpful in creating the optimized software. The
optimizations we will consider have been split into four
categories:

A) Object-oriented optimization
B) Memory optimization
C) Coding Style Optimization, and
D) Optimizations in Compiler.

6. Software Performance and usability

A better performing software product is one that saves
time for the user. Time is a precious resource for many
computer users and much time is wasted on software that
is slow, difficult to use, incompatible or error prone. All
these problems are usability issues, software performance
should be seen in the broader perspective of usability. The
following list points out some typical sources of
frustration and waste of time for software users as well as
important usability problems that software developers
should be aware of to overcome the problems caused by
the hardware implementation of H.263 and in optimizing
the MobiFDR.
Big runtime frameworks- The .NET framework and the
Java virtual machine are frameworks that typically take
much more resources than the programs they are running.
Such frameworks are frequent sources of resource
problems and compatibility problems and they waste a lot
of time both during installation of the framework itself,

during installation of the program that runs under the
framework, during start of the program, and while the
program is running. The main reason why such runtime
frameworks are used at all is for the sake of cross-platform
portability. Unfortunately, the cross-platform
compatibility is not always as good as expected. The
portability could be achieved more efficiently by better
standardization of programming languages, operating
systems, and API’s.
Installation problems- The procedures for installation
and un-installation of programs should be standardized
and done by the operating system rather than by individual
installation tools due to which we proposed MobiFDR.
Compatibility problems- All software should be tested
on different platforms, different screen resolutions,
different system color settings and different user access
rights. Software should use standard API calls rather than
self-styled hacks and direct hardware access. Available
protocols and standardized file formats should be used.
Web systems should be tested in different browsers,
different platforms, different screen resolutions, etc.
Copy protection- Some copy protection schemes are
based on hacks that violate or circumvent operating
system standards. Such schemes are frequent sources of
compatibility problems and system breakdown. Many
copy protection schemes are based on hardware
identification. Such schemes cause problems when the
hardware is updated. Most copy protection schemes are
annoying to the user and prevent legitimate backup
copying without effectively preventing illegitimate
copying. The benefits of a copy protection scheme should
be weighed against the costs in terms of usability
problems and necessary support.
Hardware updating- The change of a hard disk or other
hardware often requires that all software be reinstalled and
user settings are lost. It is not unusual for the reinstallation
work to take a whole workday or more. Current operating
systems need better support for hard disk copying.
Security- The vulnerability of software with network
access to virus attacks and other abuse is extremely costly
to many users.
Background services- Many services that run in the
background are unnecessary for the user and a waste of
resources. Consider running the services only when
activated by the user. Take user feedback seriously. User
complaints should be regarded as a valuable source of
information about bugs, compatibility problems, and
usability problems and desired new features. User
feedback should be handled in a systematic manner to
make sure the information is utilized appropriately. Users
should get a reply about investigation of the problems and
planned solutions. Patches should be easily available from
a website.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

278

Conclusion
In this paper we proposed to develop an software library
which try to remove hardware based implementation in
which the same component cannot be replicated for two
tasks. The hardware components would put these tasks in
a queue and perform these tasks one by one (rather than
together). In case of a two-way video streaming, the task
of encoding and decoding are to be performed
simultaneously this is thus not possible. The proposed
work, thus, is to develop a software implementation
(MobiFDR) for H.263 Decoder (& renderer) and Encoders
so that this can be executed simultaneously.

References
[1] Gary J. Sullivan, Pankaj Topiwala, and Ajay Luthra “The

H.264/AVC Advanced Video Coding Standard: Overview
and Introduction to the Fidelity Range Extensions”
Applications of Digital Image Processing XXVII Special
Session on Advances in the New Emerging Standard:
H.264/AVC, August, 2004

[2] V.Nguyen and Y.Tan, “Efficient H.263 To H.264/AVC
Video Transcoding Using Enhanced rate control”, IEEE
International Symposium on Volume, Issue, 23-26 May
2005 Page(s): 904 - 907 Vol. 2.

[3] T.Ye, Y.Tan and P.Xue, “Enhanced H.263 to H.264/AVC
Video Transcoding With Adaptive Intra-mode Decision”,
IEEE Information, Communications and Signal Processing,
2005 Fifth International Conference, on Volume, Issue, 06-
09 Dec. 2005, page(s)1130- 1134 .

[4] C.Wang, G.Sung, and J.Li, “Codec design for variable
length to fixed-length data conversion for H.263”, IEEE
Proceedings of the 2006 International conference on
Intelligent Information Hiding and Multimedia Signal
Processing (IIH-MSP’06).

[5] Hwang, T.Oh, H.Jung and S.Ha, “Conversion of Reference
C Code to Dataflow Model: H.264 Encoder case study”,
IEEE Design Automation, 2006. Asia and South Pacific
Conference on Volume, Issue, 24-27 Jan. 2006 Page(s): 6
pp.

[6] H.kim and M.kim “The Design of Single Encoder and
Decoder for Multi-view Video” SPRINGER, PSIVT 2006,
LNCS 4319, pp. 732-741, 2006.

[7] Bialkowski, J.; Barkowsky, M.; Kaup, A. “Overview of
Low-Complexity Video Transcoding from H.263 to
H.264” Multimedia and Expo, 2006 IEEE International
Conference on Volume , Issue , 9-12 July 2006 Page(s):49
- 52

[8] Chehimi, Fadi and Coulton, Paul and Edwards, Reuben
(2006) “C++ Optimisations for Mobile Applications”. In:
The Tenth IEEE International Symposium on Consumer
Electronics, June 29 – July 1, 2006, St.Petersburg , Russia.

[9] Zhihang Wang, Xiangyang Ji, Wen Gao, Qingming Huang

and Debin Zhao “Effective algorithms for fast transcoding
of AVS to H.264/AVC in the spatial domain” Journal
Multimedia Tools and Applications Springer Netherlands,
Volume 35, Number 2 / November, 2007 page(s):175 - 202.

[10] Pasqualini, S.Paola Pierleoni Fioretti, F.Andreoli, A.Univ.
Politec. delle Marche, Ancona; “Adaptive Threshold For
Intra Frame Prediction In H.263 To H.264 Smart-

Transcoder” Advanced Communication Technology, 2008.
ICACT 2008. 10th International Conference on 17-20 Feb.
2008
Volume: 2, On page(s): 1439-1444.

[11] Busschaert, H.J.; Reusens, P.P.; Dartois, L.; Desperben,
L.Custom “A power efficient channel coder/decoder chip
for GSM terminals” Integrated Circuits Conference, 1991.,
Proceedings of the IEEE 1991
Volume , Issue , 12-15 May 1991 Page(s):7.8/1 - 7.8/4.

[12] Gary Sullivan, “Recommended Simulation Common
Conditions for H.26L Coding Efficiency Experiments on
Low Resolution Progressive Scan Source Material,”
VCEG-N81, 14th meeting: Santa Barbara, USA. Sept.
2001.

[13] Keman Yu, Jiangbo Lv, Jiang Li and Shipeng Li. Practical
Real-TimeVideo Codec for Mobile Devices. Proceedings
of 2003 IEEE InternationalConference on Multimedia and
Expo, ICME 2003, USA, pages 509-512, 2003.

[14] B. Ashwani, Devesh Kandpal, Mayank Srivastava, Dr.
Anupam Shukla “An Efficient Mode Selection Algorithm
for H.264 encoder for Application in Low Computational
power devices”

Anupam Shukla was born on 1st January
1965, at Bhilai (CG). He is presently working
as an Associate Professor (Information
Communication & Technology Deptt) at Atal
Bihari Vajpayee Indian Institute of
Information Technology & Management,
(ABVIIITM), Gwalior (MP). He completed
PhD (Electronics & Telecommunication) in
the area of Artificial Neural Networks in the

year 2002 and ME (Electronics & Telecommunication)
Specialization in Computer Engineering in the year 1998 from
Jadavpur University, Kolkata. He stood first position in the
university and was awarded with gold medal. He completed BE
(Hons) in Electronics Engineering in 1988 from MREC, Jaipur.
He has teaching experience of 19 years. His research area
includes Speech recognition, Artificial neural Networks, Image
Processing & Robotics. He published around 57 papers in
national/international journals and conferences

Arvind Kumar Verma was born on 26th
September 1984, at Bhilai (C.G). He is
presently pursuning M.Tech from Atal Bihari
Vajpayee Indian Institute of Information
Technology and Management, (ABV-IIITM),
Gwalior (MP). He completed BE in
Information Technology in 2006 from GEC,
Bilaspur.

Sourabh Rungta is presently working as an
Reader (Computer Science and Engineering
Departtment) in RCET, Durg (CG). He
completed M.Tech (Hons) in 2004. He
completed BE in 1998. He has teaching
experience of 5 years. He published around 5
papers in national/international conferences
and journals.

Neeta Tripathi is principle of RCET, Durg. She has teaching
experience of 20 years. She published around 30 papers in
National/international conferences and journals. Her contributed
research area includes speech recognition.

