
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

320

Manuscript received March 5, 2009
Manuscript revised March 20, 2009

Using McCabe Method to Compare the Complexity of Object
Oriented Languages

Yas Alsultanny,

AArabian Gulf University (AGU),
Manama Bahrain, Manama, Bahrain 26671

Abstract
The absence of a standard regulatory mechanism in
terms of quality control/quality assurance with respect to
implementation and managing projects, particularly in
the industrial sector has lead to an inconsistency among
the various software systems.
The methodologies and tools relevant to the entire life
cycle, from conceptualization to implementation, the
quality assurance of software has to be visualized.
Development of software for managing projects is an
extremely complex affair.
The McCabe method of software complexity used to
compare the complexity of several object oriented
languages such as C++, Java and Visual Basic. The
binary search algorithm written in three languages; C++,
Java, and Visual Basic was used to measure the
complexity of the algorithm, the results showed that the
complexity of these languages are different, and the
results showed that the languages that are easy in
programming has more complexity, than that is not easy
in programming. This means that the programs written in
Visual Basic will be expected to have higher complexity
than the same program written in C++ language.
A comparison between languages keywords showed that
we can expected the complexity of programming
languages with less keywords will be increased with
longer access time.

Keywords: Software complexity, MacCabe method,
object oriented languages, software programming.

1. Introduction

The concept of objects and instances in computing had
its first major breakthrough with the PDP-1 system at
MIT which was probably the earliest example of
capability based architecture.
Another early example was Sketchpad made by Ivan
Sutherland in 1963; however, this was an application and
not a programming paradigm. Objects as programming
entities were introduced in the 1960s in Simula 67, a
programming language designed for making simulations.
The idea occurred to group the different types of ships
into different classes of objects, each class of objects

being responsible for defining its own data and behavior.
Such an approach was a simple extrapolation of concepts
earlier used in analog programming [1].
Object-oriented programming developed as the dominant
programming methodology during the mid-1990s,
largely due to the influence of C++. Its dominance was
further cemented by the rising popularity of graphical
user interfaces, for which object-oriented programming
is well-suited [2].
Java has emerged in wide use partially because of its
similarity to C and to C++, but perhaps more importantly
because of its implementation using a virtual machine
that is intended to run code unchanged on many different
platforms. This last feature has made it very attractive to
larger development shops with heterogeneous
environments. Microsoft's .NET initiative has a similar
objective and includes/supports several new languages,
or variants of older ones[3].

2. Object Oriented Keywords

The programming languages are affected by the
keywords used in programming. Table (1) shows an
example of comparison between the keywords of C# and
Java languages.

Table (1) shows that there are (35) keywords with similar
identification in both languages C# and Java. There are
(15) keywords having different identification in both
languages for example base in C# language is
represented with super in Java language.
We can predicate that one of the reasons of software
complexity is the absence of some keywords form the
languages. From the programmer side view it is easier to
learn the languages with less keywords, but from the
software complexity side, it will be expected that the
complexity increased and the access time will be longer.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

321

Table 1: C# and Java keywords

C#
keyword

Java
keyword

C#
keyword

Java
keyword

C#
keyword

Java
keyword

C#
keyword

Java
keyword

abstract abstract Explicit N/A object N/A this This
as N/A Extern native operator N/A throw Throw

base Super Finally finally out N/A true True
bool boolean Fixed N/A override N/A try try
break break Float float params N/A typeof N/A
byte N/A For for private private unit N/A
case case Foreach N/A protected N/A ulong N/A
catch catch Get N/A public public unchecked N/A
char char Goto goto readonly N/A unsafe N/A

checked N/A If if ref N/A ushort N/A
class class Implicit N/A return return using import
const const In N/A sbyte byte value N/A

continue continue Int int sealed final virtual N/A
decimal N/A Interface interface set N/A void void
default default Internal protected short short volatile volatile

delegate N/A Is instanceof sizeof N/A while while
do do Lock synchronized stackalloc N/A : extends

double double Long long static static : implements
else else namespace package string N/A N/A strictfp

enum N/A New new struct N/A N/A throws
event N/A Null null switch switch N/A transient

3. Software Complexity

Software measurement is concerned with deriving a
numeric value for an attribute of a software product, i.e. a
measurement is a mapping from the empirical world to
the formal world.
Software metrics have been found to be useful in reducing
software maintenance costs by assigning a numeric value
to reflect the ease or difficulty with which a program
module may be understood. There are hundreds of
software complexity measures that have been described
and published for example, the most basic complexity
measure, the number of lines of code (LOC), simply
counts the lines of executable code, data declarations,
comments, and so on. While this measure is extremely
simple, it has been shown to be very useful and correlates
well with the number of errors in programs [4].

4. McCabe Method

McCabe method “A complexity measure” that brought
forward the idea of cyclomatic complexity for the first
time, and it basically measures decision points or loops of
the program. This method showed the intelligibility,
testability, and maintainability. Cyclomatic complexity
utilizes a graph, which is derived from code. The formula
defined as; [5]

MC=V(G)=e-n+2p
 …(1)
Where;
e: is the number of edges
n: is the number of nodes
p: is the number of connected components
McCabe's cyclomatic complexity metrics measures
software complexity in program's structure, but it neglects
the fact that length of a program is a factor of complexity
[6].
McCabe's complexity measurement calculates total
number of possible control paths through a program,
using a control graph. In some programs, it is possible to
have an infinite number of control paths. In order to
address this issue, a combination of the basic control paths
in a program is used to produce all possible paths [7].

5. Binary Search Complexity

The binary search [8] was taken as a case study to
measure the complexity of the programs written in C++,
Visual Basic and Java languages. The listing of the main
program (test program) of the binary search algorithm was
written in C++, Visual Basic and Java languages will be
listed in the following sections; the method of
binarySearch was not used in the comparison for
simplicity.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

322

5.1 C++ binarySearch Program
Bellow is the Listing of the binarySearch (test program)
that was taken from Detiel book (How to program C++)
[8];

1 // C++
2 // BinarySearch test program.
3 #include <iostream>
4 using std::cin;
5 using std::cout;
6 using std::endl;
7
8 #include "BinarySearch.h" // class BinarySearch
definition
9
10 int main()
11 {
12 int searchInt; // search key
13 int position; // location of search key in vector
14
15 // create vector and output it
16 BinarySearch searchVector (15);
17 searchVector.displayElements();
18
19 // get input from user
20 cout << "\nPlease enter an integer value (-1 to
quit): ";
21 cin >> searchInt; // read an int from user
22 cout << endl;
23
24 // repeatedly input an integer; -1 terminates the
program
25 while (searchInt != -1)
26 {
27 // use binary search to try to find integer
28 position =
searchVector.binarySearch(searchInt);
29
30 // return value of -1 indicates integer was not
found
31 if (position == -1)
32 cout << "The integer " << searchInt << "
was not found.\n";
33 else
34 cout << "The integer " << searchInt
35 << " was found in position " << position
<< ".\n";
36
37 // get input from user
38 cout << "\n\nPlease enter an integer value (-1
to quit): ";
39 cin >> searchInt; // read an int from user
40 cout << endl;
41 } // end while

42
43 return 0;
44 } // end main

Figure (1) shows the C++ flow graph of the binarySearch
algorithm (main program)

Figure 1: C++ languages-binarySearch flow graph

Table 2 shows the complexity of the main program
binarySearch written in C++ language. With file size of
this program is 1393 bytes.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

323

Table 2: The complexity of the main program binary search written in C++

Complexity Type Value
program length (in lines) 44
McCabe complexity 8
File size 1,393 bytes

5.2 Visual Basic binarySearch Program
Bellow is the Listing of the binarySearch (test program)
that was written in Visual Basic taken from Detiel book
(Visual Basic 2008 for Programmers) [9];

1 ' Visual Basic
2 ' Binary search of an array using
Array.BinarySearch.
3 Imports System
4
5 Public Class FrmBinarySearchTest
6 Dim array1 As Integer() = New Integer(19) {}
7
8 ' create random data
9 Private Sub btnCreate_Click(ByVal sender As
System.Object, _
10 ByVal e As System.EventArgs) Handles
btnCreate.Click
11
12 Dim randomNumber As Random = New
Random()
13 Dim output As String = ("Index" & vbTab &
"Value" & vbCrLf)
14
15 ' create random array elements
16 For i As Integer = 0 To
array1.GetUpperBound(0)
17 array1(i) = randomNumber.Next(1000)
18 Next
19
20 Array.Sort(array1) ' sort array to enable
binary searching
21
22 ' display sorted array elements
23 For i As Integer = 0 To
array1.GetUpperBound(0)
24 output &= (i & vbTab & array1(i) &
vbCrLf)
25 Next
27 txtData.Text = output ' displays numbers
28 txtInput.Text = "" ' clear search key text box

29 btnSearch.Enabled = True ' enable search
button
30 End Sub ' btnCreate_Click
31
32 ' search array for search key
33 Private Sub btnSearch_Click(ByVal sender As
System.Object, _
34 ByVal e As System.EventArgs) Handles
btnSearch.Click
35
36 ' if search key text box is empty, display
37 ' message and exit method
38 If txtInput.Text = "" Then
39 MessageBox.Show("You must enter a
search key.", "Error", _
40 MessageBoxButtons.OK,
MessageBoxIcon.Error)
41 Exit Sub
42 End If
43
44 Dim searchKey As Integer =
Convert.ToInt32(txtInput.Text)
45 Dim element As Integer =
Array.BinarySearch(array1, searchKey)
46
47 If element >= 0 Then
48 lblResult.Text = "Found Value in index " &
element
49 Else
50 lblResult.Text = "Value Not Found"
51 End If
52 End Sub ' btnSearch_Click

 53 End Class ' FrmBinarySearchTest

Figure (2) shows the Visual Basic flow graph of the
binarySearch algorithm (main program)

Table 2 shows the complexity of the main program
binarySearch written in Visual Basic language. With file
size of this program is 2026 bytes.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

324

Figure 2: Visual Basic-binarySearch flow graph

Table 2: The complexity of the main program binary search written in C++

Complexity Type Value
program length (in lines) 53
McCabe complexity 11
File size 2,026 bytes

5.3 Java binarySearch Program
Bellow is the Listing of the binarySearch (test program)
that was written in Java taken from Detiel book (Java
How to Program) [10];

1 // Java
2 // Sequentially Binary search an array for an
item.
3 import java.util.Scanner;
4
5 public class BinarySearchTest
6 {
7 public static void main(String args[])
8 {
9 // create Scanner object to input data
10 Scanner input = new Scanner(System.in);
11
12 int searchInt; // search
13 int position; // location of search key in
array
14

15 // create array and output it
16 BinaryArray searchArray = new
BinaryArray(16);
17 System.out.println(searchArray);
18
19 // get input from user
20 System.out.print(
21 "Please enter an integer value (-1 to quit):
");
22 searchInt = input.nextInt(); // read an int
from user
23
24 // repeatedly input an integer; -1 will quit
the program
25 while (searchInt != -1)
26 {
27 // use binary search to try to find integer
28 position =
searchArray.binarySearch(searchInt);
29

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

325

30 // return value of -1 indicates integer was
not found
31 if (position == -1)
32 System.out.println("The integer " +
searchInt +
33 " was not found.\n");
34 else
35 System.out.println("The integer " +
searchInt +
36 " was found in position " + position +
".\n");
37
38 // get input from user
39 System.out.print(

40 "Please enter an integer value (-1 to
quit): ");
41 searchInt = input.nextInt();
42 } // end while
43 } // end main
44 } // end class BinarySearchTest

Figure (3) shows the Java flow graph of the binarySearch
algorithm (main program)

Table 3 shows the complexity of the main program
binarySearch written in Java language. With file size of
this program is 1,572 bytes.

Figure 3: Java-binarySearch flow graph

Table 3: The complexity of the main program binary search written in C++

Complexity Type Value

program length (in lines) 44
McCabe complexity 7
File size 1,572 bytes

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.3, March 2009

326

0

10

20

30

40

50

60

C++ Visual Basic Java

program length (in lines)
McCabe complexity

6. Conclusion
Figure (4) shows the comparison between program length
(in lines) and McCabe complexity of the three object
oriented languages C++, Visual Basic and Java, by using
the main program of the binarySearch algorithm that is
used as a case study for comparison, the figure shows that

the program length and complexity of C++ and Java are
less than the Visual Basic, in this case we can predicate
that the C++ and Java have less complexity than Visual
Basic.

Figure 4: Comparison between program length and complexity of C++, Visual Basic and Java languages.

The languages with less number of keywords expected to
be more complex and needs more access time compared
with the languages that has more keywords. This can be
used as a second pre-indictor for programs complexity.

References
[1] Benussi L., 1995, “Analysing the technological history of the

Open Source Phenomenon”, FLOSS history, working paper,
version 3.0, Department of Economics – University of Turin.

[2] Fatman R., 2000, “Software Fault Prevention by Language
Choice: Why C is Not My Favorite Language”, Computer
Science Division, University of California, Berkeley.

[3] Gopal N. et. al., 2004, “Distributed Parallel Virtual Machine:
An Object-Oriented Approach”, Department of Computer
Science, S.C.T College of Engineering.

[4] Cardoso, 2006, “Approaches to Compute Workflow
Complexity”, Dagstuhl Seminar, The Role of Business
Processes in Service Oriented Architectures, July 2006,
Germany.

[5] McCabe 1976, “A Complexity Measure”, IEEE Transactions
on Software Engineering, Vol. 2, No. 4, pp. 308-320,
December 1976.

[6] Yanming C. et. al., 2007, “Exploration of Complexity in
Software Reliability”, Tsinghua Science & Technology,
Volume 12, Supplement 1, July 2007, Pages 266-269.

[7] Garcia 2008, “Software metrics through fault data from
empirical evaluation using verification & validation tools”,
Texas Tech University.

[8] Deitel H. et. al., 2004, "C++ How to Program", Pearson
Prentice Hall.

[9] Deitel H. et. al., 2006, "Visual Basic 2008 for Programmers",
Pearson Prentice Hall.

[10] Deitel H. et. al., 2005, "Java How to Program", Pearson
Prentice Hall.

