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Summary 
A model of neurons with CHN (Continuous Hysteresis Neurons) 
for the Hopfield neural networks is studied. We prove 
theoretically that the emergent collective properties of the 
original Hopfield neural networks also are present in the 
Hopfield neural networks with continuous hysteresis neurons. 
The network architecture is applied to the N-Queens problem and 
results of computer simulations are presented and used to 
illustrate the computation power of the network architecture. The 
simulation results show that the Hopfield neural network with 
CHN is much better than other algorithms for N-Queens problem 
in terms of both the computation time and the solution quality. 
Key words: 
Hopfield neural network, hysteresis, collective properties, N-
Queen problem  

1. Introduction 

The optimization problems are encountered in various 
situation. There is a problem which has discrete 
determined variables is called “Combinatorial 
Optimization Problems.” This problem is complicated 
more than a linear programming, and it is called “NP-
Hard.” N-Queens problem is one of the NP-Hard 
combinatorial optimization problems. N-Queens problem 
is that N chess queens must be placed on a square 
chessboard composed of N rows and N columns, in such a 
way that they do not attack each other for 8 directions.  
The auto associative memory model proposed by Hopfield 
[1, 2] has attracted considerable interest both as a content 
address memory (CAM) and, more interestingly, as a 
method of solving difficult optimization problems [3-5]. 
The Hopfield neural networks contain highly 
interconnected nonlinear processing elements (“neurons”) 
with two-state threshold neurons [1] or graded response 
neurons [2]. Takefuji and Lee proposed a two-state (binary) 
hysteretic neuron model to suppress the oscillatory 
behaviors of neural dynamics [14]. However, Tateshi and 
Tamura showed Takefuji and Lee’s model did not always 
guarantee the descent of energy function [7], Wang also 
explained why the model may lead to inaccurate results 
and oscillatory behaviors in the convergence process [8]. 
Since their report, several modifications on the hysteretic 
function, for example Galán and Muñoz’s binary [9] and 

Bharitkar and Mendel’s multivalued [10] hysteretic 
functions. 
In this paper, we propose a new Hopfield neural network 
algorithm for efficient solving N-Queens problem. 
Different to the original Hopfield neural network, our 
architecture uses continuous hysteresis neurons. We prove   
theoretically that the emergent collective properties of the 
original Hopfield neural network also are present in the 
Hopfield network with continuous hysteresis neurons. 
Simulations of randomly generated neural networks are 
performed on both networks and show that the Hopfield 
neural networks with CHN have the collective 
computational properties like the original Hopfield neural 
networks. What a more, it converges faster than the 
original Hopfield neural networks do. In order to see how 
well the architecture neurons do for solving practical 
combinatorial optimization problems, a large number of 
computer simulations are carried out for the N-Queens 
problem. 

2. Hopfield Network with Continuous 
Hysteresis Neurons  

2.1 Original Hopfield Neural Networks 

For the original Hopfield neural networks, let the output 
variable yi for neuron i have the range 10

iii yyy ≤≤  and be 
a continuous and monotone-increasing function of the 
instantaneous input xi to neuron i. The typical input-output 
relation gi(xi) ( )eyi += 1/1  shown in Fig.1(a) is sigmoid 
with asymptotes 0

iy  and 1
iy . as, 
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Where r is the gain factor andθ is the threshold parameter. 

2.2 Continuous Hysteresis Neurous 

If In biological system, xi will lag behind the instantaneous 
outputs yi of the other cells because of the input 
capacitance C of the cell membranes, the transmenmbrane 
resistance R, and the finite impedance 1−

ijw  between the 
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output yi and the cell body of cell i. Thus there is a 
resistance-capacitance (RC) charging equation that 
determines the rate of change of xi. 
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Where Ci is the total input capacitance of the amplifier i 
and its associated input lead. wijyj represents the electrical 
current input to cell i due to the present potential of cell j, 
and wij is thus the synapse efficacy. Ii is any other (fixed) 
input current to neuron i. In terms of electrical circuits, 
gi(xi) represents the input-output characteristic of a 
nonlinear amplifier with negligible response time. It is 
convenient also to define the inverse output-input relation, 

)(1
ii yg − . 

In order to improve the solution quality of N-Queens 
problem, we proposed a new neural network method for 
efficiently solving the N-Queens problem. In this method, 
an continuous hysteresis neuron is applied to the Hopfield 
neural network. 
The continuous hysteresis neurons change the value of 
their output or leave them fixed according to a hysteretic 
threshold rule (Fig.1 (b)). Mathematically, the hysteretic 
neuron function is described as: 
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Thus, there is a resistance-capacitance (RC) charging 
equation that determines the rate of change of xi. 
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Consider the energy: 
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Its time derivative for a symmetric W is: 
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The parenthesis is the right-hand side of Eq.6, so 
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Since )(1
ii yg −  is a monotone increasing function and 

iC is positive, each term in this sum is nonnegative. 
Therefore: 
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Together with the boundedness of E, Eq.6 shows that the 
time evolution of the system is a motion in state space that 
seeks out minima in E and comes to a stop at such points. 
E is a Liapunov function for the system. 
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Fig. 1 Hysteresis functions. 

3. Application to N-Queens Problem 

N-Queens problem is classic of difficult optimization. The 
task is given a standard chessboard and N chess queens, to 
place them on the board so that no queen is on the line of 
attack of any other queen. The problem can be solved by 
constructing an appropriate energy function and 
minimizing the energy function to zero (E=0) using an 
N×N two-dimensional Hopfield neural networks [11~14]. 
 The objective energy function of the N-Queens problem is 
given by: 
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where A and B are coefficients, the output yij=1 represents 
that a queen is placed at i-th or j-th column on the 
chessboard, and output yij=0 represents no placement there. 
The first term becomes zero if one queen is placed in every 
row. The second term becomes zero if one queen is placed 
in every column and the third term becomes zero if no 
more than one queen is placed on any diagonal line. We 
can get the total input (xij) of neuron by using the partial 
derivation term of the energy function. Thus, the total 
input (xij) of neuron is given: 
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Using Eq.12, networks with continuous hysteresis neurons 
for a total 10 chessboard size instances from 10 to 300 
queens problem were simulated on a digital computer. 100 
simulation runs with different initial states were performed 
in each of these instances. In the simulations, Eq.6 was 
used as the input/output functions of neurons. The 
neuron’s activation function has four parameters 
associated with it. We set 5.05.0 == βα  and 

02.0== βα γγ for all neurons. The parameters A and B 
were set to 1. The maximum iteration steps were set to 
1000. Using the same condition, the original Hopfield 
neural networks was also executed for comparison. The 
simulation results are shown in Table1.  
In Table1, where the convergence rates and the average 
numbers of iteration steps required for the convergence 
were summarized. The simulation results show that the 
networks with continuous hysteresis neurons can almost 
find optimum solution to all N-Queens problems within 
short computation times; while the original Hopfield 
neural networks can hardly find any optimum solution to 
the N-Queens problems. 
We also compared our results with that found by 
Takefuji’s neural network [11] and the maximum neural 
network [13]. Table 1 shows the results by the four 
different networks, where the convergence rates and the 
average numbers of iteration steps required for the 
convergence are summarized. From Table 1 we can see 
that the Hopfield neural networks with continuous 
hysteresis neurons was very effective, and was better than 
other exiting neural networks in terms of the computation 
time and the solution quality for the N-Queens problem. 
Further, the average numbers of iteration steps indicated 
that the problem size did not strongly reflect the global 
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minimum convergence rate and number of iteration steps. 
From the simulation results we can summarize that the 
Hopfield neural networks with continuous hysteresis 
neurons is very effective for solving the N-Queens 
problem. 

Table 1: Simulation result  

 
Queens 

Convergence Step Convergence Step Convergence Step Convergence Step

10 99 8 9 609 20 85 42 178

20 100 19 8 701 37 121 53 260

30 100 24 0 49 146 53 259

50 100 43 0 68 152 86 331

100 100 52 0 79 162 99 324

150 100 81 0 89 161 98 410

200 100 99 0 96 165 90 521

300 100 146 0 98 159 83 631

Proposed network Hopfield MaximumNN Takefuji

 

4. Simulation Results 

Experiments were first performed to show the convergence 
of the Hopfield neural networks with continuous hysteresis 
neurons. In the simulations, a 100-neuron Hopfield neural 
network with continuous hysteresis neurons (i = 1, 2, …, 
100) was chosen. Initial parameters of the network, 
connection weights and thresholds were randomly 
generated uniformly between –1.0 and 1.0. Simulations on 
a randomly generated 100-neuron Hopfield network with 
continuous hysteresis neurons were carried out. We did 
100 simulations with different randomly-generated 
weights and thresholds. Fig.2 shows the statistically 
compared convergence charactoristics of both networks 
with the average energy over 100 simulations. From this 
figure we can see that both the Hopfield neural networks 
with continuous hysteresis neurons ( 5.0,5.0 == βα ) and 
the original Hopfield neural networks converged to stable 
states that did not further change with time. It is worth to 
note that the Hopfield neural network with continuous 
hysteresis neurons ( 5.0,5.0 == βα ) seek out a smaller 
minimum at -162.38=E  than the original Hopfield 
neural network at  -136.90=E . 
 
 
 

 
 

Fig. 2.  The average convergence characteristic of a 100-
neuron Hopfield network with and without the continuous 

hysteresis  neurons. 
 
In general, the performance of optimization problem using 
neural network depends on parameters. In the proposed 
algorithm, α and β  are important parameters which 
influence the performance of the network. To study the 
appropriate range of α and β , we simulated two graphs 
using different α and β . We experimented with the 
following values of ,0=α ,3,,1,5.0,0 L=β  respectively. 
Fig.3 shows the simulation results. From the simulation 
results we found that the networks with continuous 
hysteresis neurons ( ,5.11 ≤≤ β when 0=α ), had the 
best performance. But, when β  was larger than 3.0 
( 0=α ), the continuous hysteresis neurons tended to 
degrade the performance of the network. Using the 
sameα and β set, we also simulated the average number of 
the iterations by the Hopfield neural networks with 
continuous hysteresis neurons. Fig.4 shows the simulation 
results.  

 
 
Fig.3.  The percentage of optimal solution of the 10 Queens problem by 

the Hopfield neural networks 
with continuous hysteresis neurons (β - α = 0, 0.5，,…, 3) 

From these figures, we find that the appropriate range of 
α and β  is almost as same as that in the first instance. 
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From these simulation results, we may conclude that the 
proposed architecture could improve the performance of 
the Hopfield neural network by selecting an appropriate 
value of continuous hysteresis neurons. 
 
 
 

 
 
 
Fig.4.  The percentage of optimal solution of the 10 Queens problem by 

the Hopfield neural networks 
with continuous hysteresis neurons (β - α = 0, 0.5，,…, 3) 

 
 
In order to widely verify the proposed algorithm, we have 
also tested it with a few number of randomly generated 
queens defined in terms of two parameters, A and B. Fig.5 
shows the simulation results. From this we can find that 
the when A=1 and B=1, it has the best performance for the 
problem. 
 
 

 
Fig.5.  The relationship of the parameters A, B and with the continuous 

hysteresis neurons 

5. Conclusions 

In this paper, we have presented theoretical and 
experimental evidence showing that the Hopfield neural 
networks with continuous hysteresis neurons has the same 
collective computational properties as the original 
Hopfield neural networks. We have also compared the 
network with the original Hopfield neural networks. As 
theoretically predicted, it was found experimentally that 
the Hopfield neural networks with continuous hysteresis 
neurons converged faster than the original Hopfield neural 
networks did. In order to confirm the practical worth of the 
Hopfield neural networks with continuous hysteresis 
neurons, it was also applied to N-Queens problem. A large 
number of computer simulation have been carried out for 
N-Queens problem to verify the effectiveness of this 
network in combinatorial optimization problems. The 
simulation results showed that the Hopfield neural 
networks with continuous hysteresis neurons were better 
than the original Hopfield neural networks method and 
other existing neural network methods for solving N-
Queens problem in terms of the computation time and the 
solution quality. 
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