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Summery 
Computer networks have expanded significantly in use and in 
numbers. This expansion makes them target to different attacks. 
Intrusion Detection System (IDS) is used to identify unknown or 
new type of attacks or in dynamic environments as mobile 
networks. As a result, it is necessary to find a ways to implement 
and operate IDSs. Among different techniques, Genetic-based 
machine learning algorithm (GBML) which offers a good ability 
to be adapted to changing environments, robustness to noise and 
ability to identify unknown attacks. The objective of this paper is 
to incorporate different techniques into classifier system to detect 
and classify intrusion from normal network packet. Among 
several techniques, steady state genetic-based machine leaning 
algorithm (SSGBML) which will be used to detect intrusions. 
Steady State Genetic Algorithm (SSGA) and Zeroth Level 
Classifier system (ZCS) are investigated. SSGA is used as a 
discovery mechanism for classifiers, while ZCS plays the role of 
detector by matching incoming environment message with 
classifiers to determine whether it is normal or intrusion. As a 
feedback, the environment will make a decision on whether to 
take action or not.  In order to attain the best results, modifying 
SSGA will enhance our discovery engine. The experiments and 
evaluations of the proposed method were performed with the 
KDD 99 intrusion detection dataset.  
Key words: 
Network intrusion detection, SSGA, Modified SSGBML KDD' 99.  

1. Introduction 

With the ever-increasing growth of computer networks 
and emergence of electronic commerce in recent years, 
computer security has become a priority. Since intrusions 
take advantage of vulnerabilities in computer systems or 
use socially engineered penetration techniques, intrusion 
detection (ID) is often used as another wall of protection. 
In addition, traditional security techniques as user 
authentication are not optimal method to protect data from 
any possible attack. That is due to the vastness of the 
network activity data and the need to regularly update our 
intrusion detection systems (IDS) to cope with new 
unknown attack methods or upgraded computing 
environments. Thus, ID is becoming one of the main 

technologies can be used to monitor network traffics and 
identify network intrusions. There are different 
taxonomies for IDSs have been suggested [1, 2, 3]. One of 
these taxonomies depends on the source of audit data that 
will be used to detect possible intrusions. This was divided 
into two groups; network intrusion detection (NID) and 
host-based intrusion detection (HID) [4, 5].  HID 
identifies the intruders by monitoring host-based traffic, 
while NID refers to identifying the intruders by 
monitoring network traffics (packets). This can be 
accomplished by identifying attacks using their known 
pattern (signature). Figure 1 shows the computer network 
with NIDS. 

 
Fig 1: A computer network with network intrusion detection systems 

IDS methodologies include statistical models, immune 
system approaches, protocol verification, file and taint 
checking, neural networks, whitelisting, expression 
matching, state transition analysis, machine learning, GAs, 
and others.  
There is a need for adapting technique capable to work 
effectively in a dynamic environment and identifying 
known and unknown network attacks. Machine learning 
with GA as a discovery mechanism can be used to 
accomplish this task. GA offers the ability to overcome the 
shortcomings of many existing IDS techniques. GAs 
possess properties that make them particularly suitable for 
ID including robustness to noise, self-learning capability, 
and the ability to build initial rules without the need for a 
priori  knowledge. GAs are intrinsically parallel because 
they generate multiple offsprings that explore the solution 
space in multiple directions simultaneously. Parallelism 
makes GAs well-suited where solution space is extremely 
large. The adaptability of GA allows the system to be 
easily retrained to evolve new rules.  
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This paper presents a Modified SSGBML for NID using 
SSGA. In addition, crossover and mutation probability 
will be adapted by using Fuzzy Logic. Section 2 provides 
the dataset commonly used in training and testing the 
performance of NIDS. Section 3 presents related work for 
ID. The GBML is presented in section 4, and Section 5 
provides several methods for ID evaluations. The 
experimental results and comparisons with existing 
approaches presented in Section 6. Finally, conclusion and 
future research directions are presented in Section 7. 

2. IDS Dataset 

The methods in [ 9,10,12 ] used the KDD 1999 Dataset [6]. 
This dataset was derived from the 1998 DARPA Intrusion 
Detection Evaluation Program held by MIT Lincoln Labs. 
The dataset was created and simulated in a military 
network environment in which a typical U.S. Air Force 
LAN was subjected to simulated attacks. Raw TCP/IP 
dump data was gathered. The data is approximately 4 GB 
of compressed TCP dump data which took 7 weeks of 
network traffic and comprised about 5 million connection 
records. For each TCP/IP connection, 41 various 
quantitative and qualitative features were extracted and 
listed in Table 1. The features exhibited in the dataset can 
be grouped into 3 categories: basic features of individual 
TCP connections, content features within a connection, 
and traffic features computed using a two second time 
window. Each of the categories and the associated features 
are shown in [6]. KDD dataset is divided into training and 
testing record sets. This is too large for our purpose; hence, 
only concise training dataset of KDD, known as 10% 
training dataset, was employed here and this sample 
distributed is shown in Table 2. 
The dataset was divided into training and test dataset. 
Training is used to train the work presented here, while 
test dataset is used to test it. Test dataset contains 
additional attacks not described in training dataset. The 
attacks include the four most common categories of attack: 
• Denial of service (DoS) attacks; here, the attacker makes 
some computing or memory resource which makes the 
system too busy to handle legitimate requests. These 
attacks may be initiated by flooding a system with 
communications, abusing legitimate resources, targeting 
implementation bugs, or exploiting the system’s 
configuration. 
• User to root (U2R) attacks; here, the attacker starts with 
accessing normal user account and exploits vulnerabilities 
to gain unauthorized access to the root. The most common 
U2R attacks cause buffer overflows. 
• Remote to user (R2L) attacks; here, the attacker sends 
packets to a machine, then exploits the machine’s 
vulnerabilities to gain local access as a user. This 

unauthorized access from a remote machine may include 
password guessing. 
• Probing (PROBE); here, the attacker scans a network to 
gather information or find known vulnerabilities through 
actions such as port scanning. 
 

Table 1: KDD Feature 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2:  10% of KDD Dataset 
Type Number of samples  % 
Normal 97227 19.69 
DoS 391458 79.24 
Probe 4107 0.83 
R2L 1126 0.23 
U2R 52  0.01 

Feature No. Feature name  
1.   duration  
2.   protocol type  
3.   service  
4.   Flag  
5.   src_bytes  
6.   dst_bytes  
7.  land  
8.  Wrong_fragment   
9.  Urgent  
10.  hot  
11.  num_failed_logins   
12.  Logged in  
13.  num_compromised  
14.   root_shell  
15.  su_attempted  
16.   num_root  
17.   num_file_creation     
18.  num_shells 
19.   num_access_files   
20.   num_outbound_cmds    
21.   is_host_login 
22.   is_guest_login  
23.   Count  
24.   srv_count  
25.   Serror_rate  
26.   srv_serror_rate  
27.   Rerror_rate  
28.  srv_rerror_rate  
29.   same_srv_rate  
30.   diff_srv_rate  
31.   srv_diff_host_rate    
32.   dst_host_count  
33.   dst_host_srv_count  
34.   dst_host_same_srv_rate  
35.   dst_host_diff_srv_rate  
36.  dst_host_same_src_port_rate  
37.  dst_host_srv_diff_host_rate  
38.   dst_host_serror_rate  
39.   dst_host_srv_serror_rate  
40.   dst_host_rerror_rate  
41.  dst_host_srv_rerror_rate  
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3. Related Work 

This section briefly summarizes some of the techniques 
for ID. The early effort of using GAs for ID can be dated 
back to 1995, when Crosbie et. al. [7] applied the multiple 
agent technology and Genetic programming (GP) to detect 
network attempts. Each agent monitors one parameter of 
the network packet and GP is used to find the set of agents 
that collectively determine anomalous network behaviors. 
This method has the advantage of using many small 
autonomous agents, but the communication among them is 
still a problem. Also the training process can be time-
consuming if the agents are not appropriately initialized.                     
In [8] researchers develop a method that integrates fuzzy 
data mining techniques and genetic algorithms to detect 
both network misuses and anomalies. In most of the 
existing GA based IDSs, the quantitative features of 
network audit data are either ignored or treated. Such 
features are often involved in intrusion detection. This is 
because of the large cardinalities of quantitative features. 
The researchers proposed a method to include quantitative 
features by introducing fuzzy numerical functions. Their 
preliminary experiments show that the inclusion of 
quantitative features and the fuzzy functions significantly 
improved the accuracy of the generated rules. In this 
approach, a GA was used to find the optimal parameters of 
the fuzzy function as well as to select the most relevant 
network features. Different computing paradigm has been 
used in [9] where the proposed paradigm was neuro-fuzzy 
network, fuzzy inferences, and GA to detect intrusion 
activities in networks. This method firstly used a set of 
parallel      nero-fuzzy classifiers (five layers 4- for type of 
attack, and one for normal). Then, fuzzy inference used 
the output from classifiers to take a decision whether the 
current action is normal or not. The role of GA was used 
to optimize the classifier engine to give the right decision. 
This Method also used the same data KDD CUP 99 [6] for 
training and for testing the system. As a result, this 
technique will be effectively used to detect intrusion. To 
enhance their proposed work, feature reduction must be 
performed instead of using all 41 features. In [10, 11] 
researchers tried to build an application to enhance the 
knowledge domain to detect vast range of intrusion by 
using machine learning (ML) techniques to create rules of 
Expert System (ES) that can learn from dynamic 
environment to acquire expert knowledge to be adapted 
with new attacker behaviors. Knowledge is represented as 
a set of if-then rules.   

4. Intrusion Detection using Steady State 
Genetic-based Machine Learning 
Algorithm 

ML is the study of computational methods for improving 
the performance of acquisition of knowledge from 
experience. Expert performance requires much domain 
specific knowledge and tries to build ES that can be used 
in different domains such as industry. Thus, ML will 
reduce human time-consuming. In addition, ML will 
increase the level of automation to improve the accuracy 
and the efficiency of detection systems by discovering and 
exploiting regularities through training data [12]. 
SSGBML takes into account the ability to learn from 
environment to be not restricted to static inputs to learn 
from. SSGBML merges ES and SSGA that enables 
learning from incomplete information. In addition, in the 
early stages for developing our algorithm SSGBML, using 
Simple Genetic Algorithm (SGA), shows better detection 
rate rather than using SGA. Different combinations of 
inputs will be produced to perform rules in the form of 
{condition} --> action.  SSGA will play the role of 
discovery engine in SSGBML. SSGA is used to give a 
chance for previous rules from previous generation to 
participate in detecting intrusions in next generations. In 
contrast, SGA replaces whole previous generation with 
new produced generation neglecting the fact that there 
exist some good rules in previous generation. Therefore, 
[13] has indicated that SSGA achieved better and faster 
solution than SGA.  This leads us to use SSGA to generate 
rules from previous rules (act as parents), taking into 
account how the output will be closed to the problem 
solution. By modifying SSGBML, MSSGBML, 
performance will be improved compared with other works. 
Figure2 provides an overview for MSSGBML.  

 
Fig 2: MSSGBML 
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MSSGBML has a set of components which they are:  
 

4.1 Detector  

Detector, Input Unit, takes the input variables that perform 
network traffic features from network environment.  In 
this unit, the input must be encoded, where in our work, 
we used real encoding method.  Network features have 
either continuous or discrete values. Furthermore, features 
are classified as: significant and insignificant features. 
Significant features have a significant role to detect attacks. 
Insignificant features don't have a significant role in 
detecting attack. In this case, these features have been 
replaced by the least value of number in Java. These 
features composed the condition part of an environment 
message. Afterward, determining related features for each 
type of network attack is exhaustive stage. So, different 
techniques have been tried to find a relation and a 
correlation between network features and type of attack 
that these features can predict. In [14, 15] researchers have 
tried to find a correlation between features and network 
attacks. While in [16], researchers have used features for 
each type of attack according to previous studies that have 
been accomplished. As a result, we can perform different 
classes taking the advantages of other results. We used 
classes contain main features to detect specific type of 
network attacks. Table 3 shows these classes. 

 
Table 3 : Network Attack classes 

Class # Attack type: Features  
DoS: 5,10,24,29,33,34,38,40 
Probe: 2,3,23,34,36,40 
U2R: 3,4,6,14,17,22 

Class 1 
[17] 

R2L: 3,4,10,23,33,36 
DoS: 1,2,3,4,5,6, 12,23,24,31,32,37 
Probe: 1,2,3,4,12,16,25,27,28,29,30,40
U2R:1,2,3,10,16 

Class 2 
[18] 

R2L: 1,2,3,4,5,10,22 
DoS:1,5,6,23,24,25,26,32,36,38,39 
Probe: 1,2,3,4,5,6,23,24,29,32,33 
U2R: 1,2,3,4,5,6,12,23,24,32,33 

Class 3 
[19] 

R2L:1,3,5,6,32,33 
DoS: 7,8,12,13,23 
Probe: 3,12,27,31,35 
U2R: 14,17,25,38,36 

Class 4 
[20] 

R2L: 6,11,12,19,22 

4.2 Effector  

Effector, as output unit, is responsible for firing action of 
the winning rule to the environment. The result can be 
either normal, Probe, U2R, R2L or DoS.   

4.3 Feedback 

Feedback will influence the rule that has been selected to 
fire its action. That is done by adding positive value (for 
reward) to the selected rule strength if it gave right 
prediction for the type of attack. Otherwise it adds a 
negative value (for penalty). 

4.4 Classifier System  

The Zeroth Level Classifier System (ZCS) consists of a 
finite set of classifiers (rules) in the form of            
{condition - action}. The rule's condition is a string of 
characters compound from significant network features 
with real valued where insignificant features represented 
don't care (D= least value for number in Java) acts as a 
wildcard allowing generalization. The action is 
represented by one character. Initial rules in ZCS are 
initialized randomly using GA. To initialize fitness for 
each rule, the fitness functions calculated using equation 1 

Fitness = 
B
b

A
a
−                                                         (1) 

where a is the number of correctly identified attacks, A is 
the total number of attacks in the training dataset, b is the 
number of connections incorrectly classified as attack 
(false positive), and B is the total number of normal 
connections. Resulting fitness value is in the range of [-1, 
1]. Then, fitness for rules is calculated as in shown in 
equation 2. 

)(*)(

1

n
FPR

n
DR

fi

fi
n

i

−

∑
=

                                             (2) 

where n is rules number. 
Classifier fitness acts as an indicator of the perceived 
utility of that rule within the system. On receipt of an input 
message, the rules [N] are scanned and any rules whose 
condition matches the message is placed in a match set 
[M]. The selection policy for best [M] to be selected and 
action set [A] is based on the rules fitness. When an action 
has been selected, all of the rules in the [M] that advocate 
this action are placed in action set [A], and the system 
executes the action as shown in Figure 3. Reinforcement 
in ZCS consists of redistributing payoff between 
subsequent action sets. A fixed fraction, β, of the fitness of 
each member [A] at each time step is placed in a common 
bucket. A record is kept for the previous action set [A]-1. 
If this is not empty, then the members of this set receive an 
equal share of the content of the current bucket, once this 
has been reduced by a pre-determined discount factor, γ. If 
a reward is received from the environment, then the β of 
this value is distributed evenly amongst the members of 
[A]. Finally, a tax is imposed on the members of [M] that 
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do not belong to [A]. ZCS employs SSGA as a discovery 
mechanism. Settings the parameter used in ZCS are tuned 
to gain better results.  

 
Fig 3: Zeroth Level classifier system (ZCS) 

In ZCS, rules clustered according to the type of action that 
can be taken into five categories: Normal, DOS, Probe, 
U2R, and R2L. Incoming message spreads to these 
categories. As a result, best match set will be used to take 
action. Furthermore, SSGA use this feature to crossover 
and mutate each category separately as shown in Figure 4. 
 

 
Fig 4: rules categorization 

 

4.5 Steady State Genetic Algorithm 

SSGA, as discovery mechanism, will be used as a 
classifier producer to produce new classifiers from 
existing ones. SSGA includes a set of operation performed 
to produce new good classifiers and enhance the 
performance capabilities for detecting network intrusions. 
These operations are: selection, crossover, mutation, and 
replacement of new rules with old ones. According to that, 
there is a set of decisions must be taken into account to 
begin using SSGA. First, the type of GA to be used has to 
be determined. There were a set of studies that can be used 
to determine which type of GA will be used. The causes 
for selecting SSGA mentioned early. The results in [13] 
concerning SSGA will be suitable to be used in solving 
problems instead of SGA. Based on set of conducted 
experiments on SSGA and SGA, SSGA gives better and 
faster results than SGA. By using SSGA, current best 
solutions are automatically maintained in the population 
and only the poorest individuals are being replaced. In 
contrast, in SGA, every individual is replaced in every 

generation. Thus, there is a much greater pressure to 
produce individuals that are not degraded by crossover 
and mutation. Second, selection method for selecting rules 
as Roulette Wheel, Ranking and other methods mentioned 
in [21]. Third, parameterized crossover and mutation (Pc, 
Pm respectively) will be used to determine the possibility 
if we can accomplish the crossover and mutation on rules. 
In the next stage for enhancing proposed algorithm, Pc 
will be adaptive according to the performance of 
SSGBML in detecting intrusions by applying fuzzy logic. 
For crossover, the position will be selected randomly and 
can be either single, or multiple positions. As for Pc, Pm 
will be used to determine if we can mutate rules 
component or not. Even more, Pc was adapted to be aware 
from undesired behavior such as premature convergence. 
Thus, Pc will be enhanced by using fuzzy logic. 
Adaptation can be accomplished by using counter for each 
rule to be an indicator on the rules age. Rule counter value 
increased automatically with each generation. To 
formalize the situation, the average and standard deviation 
will be calculated for rules age to determine if the rule 
Young, Mid-age, or Old. By applying fuzzy logic on 
parent's rules age, Pc can be Low, Medium or High. Also, 
Pm may take the advantage of rules age by applying fuzzy 
logic on rules age to determine Pm that can be taken into 
account in improvement stage for our algorithm. So Pm 
can be Low, Medium or High. Table 4 summarizes the 
idea of adaptive Pc.  

  Parent II 
  Young Mid-age Old 

Young Low Medium Low 
Mid-age Medium High Medium

Parent I

Old Low Medium Low 
Table 4 : Crossover and Mutation Probability  

Fourth, fitness function is one of the SSGBML keys that 
will be used to give judgment rules. Fitness function in our 
proposed algorithm takes into account the performance of 
the rules to detect network intrusion. Fitness calculated as 
in equation 4.2. Fitness will be used to evaluate strength 
for all rules within classifier a calculated in equation 3. 
Beside of rule's fitness, strength can be used as selection 
mechanism for selecting best rule to fire an action.  

iii agefStrength *=                                                  (3) 
 

5. Performance Evaluation  

One of the main issues involved in solving problems or 
trying to find optimal solution is how to test these 
proposed systems. As for NIDS, testing proposed 
algorithm can provide a good indicator for the proposed 
algorithm if it can give high performance compared with 
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others or not. If our proposed algorithm has performance 
less than other algorithms, this encourages us to tune up 
our algorithm to improve our work. In addition, it is 
natural to assume that the difficulty of any problem 
relevant to the scale of these problems.  In general 
evaluating security system is a complex task to be 
accomplished. The main issue is measuring the 
performance of IDS effectively. Evaluating IDS can be 
expressed as how far it can correctly classify intrusions 
and avoid false detection. The difficulty came from the 
fact that it has to work properly in unknown situations and 
deal with new types of attackers in network environment. 
In previous work, there was a variety of ways used to 
evaluate IDS. Some of these are False Positive Rate (FPR) 
and Detection Rate (DR). FPR is defined as "the ratio of 
incorrectly classified normal examples (false alarms) to 
the total number of normal examples" [22]. FPR was 
calculated using Equation 5.1. 

 
N
FFPR =                                                                    5.1 

 
where F is a number of false alarms and N is the number 
of total normal records. 
In addition, Detection Rate (DR) was defined as "the ratio 
of correctly classified intrusive examples to the total 
number of intrusive examples" [22]. The DR is computed 
using Equation 5.2. 
 

       
T

DADR =                5.2  

where DA is the number of truly detected attacks and T is 
the number of total attacks. 

5. Results  

The SSGBML for NID algorithm was tested using the 
KDD 99 Dataset [6].  Proposed algorithm was trained 
using 10% of KDD 99 as a training dataset. The training 
data contains approximately 500,000 connection records. 
We trained and tested the proposed algorithm using same 
dataset. After training our algorithm using different classes 
of features, we extracted the rules and then tested the 
resulted rules using same dataset. Table 5 provides initial 
results for the proposed work compared with other work.  

Model DR% 
SSGBML 97.45% 
ESC-IDS[9] 95.3% 
RSS-DSS [23] 94.4% 
Fuzzy Inference System[24] 98% 
EFRID [25] 95.47% 

Table 4: Detection rate (DTR) for the different algorithms performances 
on the KDD 99 with corrected labels of KDD Cup 99 dataset (n/r stands 
for not reported) 

It can be stated that the proposed algorithm is offered an 
acceptable level of detection performance compared with 
others work. Fitness function has a great role in detecting 
intrusions.  For the types of intrusions, DoS, Probe or both 
had an acceptable detection rate compared with U2R and 
R2L types. 

6. Conclusion 

In this paper, a new algorithm was introduced to detect 
network intrusions and was successfully demonstrated 
on KDD 99 Dataset, training and testing data. Also, 
matching difference between environment message and 
classifier rules became adaptive according to DR values. 
Discover engine has been improved by using SSGA 
instead of SGA taking into account the suitable method 
for selection. Also, when performing some training on 
SGA, we dramatically reached premature convergence 
early. So, training phase was stopped and not continued.  
The proposed work focused on reducing the number of 
features to be used in classifying and detecting various 
attacks types. The future work will be continued to use 
different fitness function since it plays important role in 
intrusion detection. In addition, we will apply fuzzy 
logic on Pc, Pm to gain better results.  
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