
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

55

Manuscript received April 5, 2009
Manuscript revised April 20, 2009

Adaptive Framework for Network Intrusion Detection by Using
Genetic-Based Machine Learning Algorithm

Wafa' S. Al-Sharafat * , Reyadh Sh.Naoum **

*Al Al-Bayt University, Information Technology College, Jordan
** Arab Academy for Financial and Banking Science. IT Collage, Jordan

Summery
Computer networks have expanded significantly in use and in
numbers. This expansion makes them target to different attacks.
Intrusion Detection System (IDS) is used to identify unknown or
new type of attacks or in dynamic environments as mobile
networks. As a result, it is necessary to find a ways to implement
and operate IDSs. Among different techniques, Genetic-based
machine learning algorithm (GBML) which offers a good ability
to be adapted to changing environments, robustness to noise and
ability to identify unknown attacks. The objective of this paper is
to incorporate different techniques into classifier system to detect
and classify intrusion from normal network packet. Among
several techniques, steady state genetic-based machine leaning
algorithm (SSGBML) which will be used to detect intrusions.
Steady State Genetic Algorithm (SSGA) and Zeroth Level
Classifier system (ZCS) are investigated. SSGA is used as a
discovery mechanism for classifiers, while ZCS plays the role of
detector by matching incoming environment message with
classifiers to determine whether it is normal or intrusion. As a
feedback, the environment will make a decision on whether to
take action or not. In order to attain the best results, modifying
SSGA will enhance our discovery engine. The experiments and
evaluations of the proposed method were performed with the
KDD 99 intrusion detection dataset.
Key words:
Network intrusion detection, SSGA, Modified SSGBML KDD' 99.

1. Introduction

With the ever-increasing growth of computer networks
and emergence of electronic commerce in recent years,
computer security has become a priority. Since intrusions
take advantage of vulnerabilities in computer systems or
use socially engineered penetration techniques, intrusion
detection (ID) is often used as another wall of protection.
In addition, traditional security techniques as user
authentication are not optimal method to protect data from
any possible attack. That is due to the vastness of the
network activity data and the need to regularly update our
intrusion detection systems (IDS) to cope with new
unknown attack methods or upgraded computing
environments. Thus, ID is becoming one of the main

technologies can be used to monitor network traffics and
identify network intrusions. There are different
taxonomies for IDSs have been suggested [1, 2, 3]. One of
these taxonomies depends on the source of audit data that
will be used to detect possible intrusions. This was divided
into two groups; network intrusion detection (NID) and
host-based intrusion detection (HID) [4, 5]. HID
identifies the intruders by monitoring host-based traffic,
while NID refers to identifying the intruders by
monitoring network traffics (packets). This can be
accomplished by identifying attacks using their known
pattern (signature). Figure 1 shows the computer network
with NIDS.

Fig 1: A computer network with network intrusion detection systems

IDS methodologies include statistical models, immune
system approaches, protocol verification, file and taint
checking, neural networks, whitelisting, expression
matching, state transition analysis, machine learning, GAs,
and others.
There is a need for adapting technique capable to work
effectively in a dynamic environment and identifying
known and unknown network attacks. Machine learning
with GA as a discovery mechanism can be used to
accomplish this task. GA offers the ability to overcome the
shortcomings of many existing IDS techniques. GAs
possess properties that make them particularly suitable for
ID including robustness to noise, self-learning capability,
and the ability to build initial rules without the need for a
priori knowledge. GAs are intrinsically parallel because
they generate multiple offsprings that explore the solution
space in multiple directions simultaneously. Parallelism
makes GAs well-suited where solution space is extremely
large. The adaptability of GA allows the system to be
easily retrained to evolve new rules.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

56

This paper presents a Modified SSGBML for NID using
SSGA. In addition, crossover and mutation probability
will be adapted by using Fuzzy Logic. Section 2 provides
the dataset commonly used in training and testing the
performance of NIDS. Section 3 presents related work for
ID. The GBML is presented in section 4, and Section 5
provides several methods for ID evaluations. The
experimental results and comparisons with existing
approaches presented in Section 6. Finally, conclusion and
future research directions are presented in Section 7.

2. IDS Dataset

The methods in [9,10,12] used the KDD 1999 Dataset [6].
This dataset was derived from the 1998 DARPA Intrusion
Detection Evaluation Program held by MIT Lincoln Labs.
The dataset was created and simulated in a military
network environment in which a typical U.S. Air Force
LAN was subjected to simulated attacks. Raw TCP/IP
dump data was gathered. The data is approximately 4 GB
of compressed TCP dump data which took 7 weeks of
network traffic and comprised about 5 million connection
records. For each TCP/IP connection, 41 various
quantitative and qualitative features were extracted and
listed in Table 1. The features exhibited in the dataset can
be grouped into 3 categories: basic features of individual
TCP connections, content features within a connection,
and traffic features computed using a two second time
window. Each of the categories and the associated features
are shown in [6]. KDD dataset is divided into training and
testing record sets. This is too large for our purpose; hence,
only concise training dataset of KDD, known as 10%
training dataset, was employed here and this sample
distributed is shown in Table 2.
The dataset was divided into training and test dataset.
Training is used to train the work presented here, while
test dataset is used to test it. Test dataset contains
additional attacks not described in training dataset. The
attacks include the four most common categories of attack:
• Denial of service (DoS) attacks; here, the attacker makes
some computing or memory resource which makes the
system too busy to handle legitimate requests. These
attacks may be initiated by flooding a system with
communications, abusing legitimate resources, targeting
implementation bugs, or exploiting the system’s
configuration.
• User to root (U2R) attacks; here, the attacker starts with
accessing normal user account and exploits vulnerabilities
to gain unauthorized access to the root. The most common
U2R attacks cause buffer overflows.
• Remote to user (R2L) attacks; here, the attacker sends
packets to a machine, then exploits the machine’s
vulnerabilities to gain local access as a user. This

unauthorized access from a remote machine may include
password guessing.
• Probing (PROBE); here, the attacker scans a network to
gather information or find known vulnerabilities through
actions such as port scanning.

Table 1: KDD Feature

Table 2: 10% of KDD Dataset
Type Number of samples %
Normal 97227 19.69
DoS 391458 79.24
Probe 4107 0.83
R2L 1126 0.23
U2R 52 0.01

Feature No. Feature name
1. duration
2. protocol type
3. service
4. Flag
5. src_bytes
6. dst_bytes
7. land
8. Wrong_fragment
9. Urgent
10. hot
11. num_failed_logins
12. Logged in
13. num_compromised
14. root_shell
15. su_attempted
16. num_root
17. num_file_creation
18. num_shells
19. num_access_files
20. num_outbound_cmds
21. is_host_login
22. is_guest_login
23. Count
24. srv_count
25. Serror_rate
26. srv_serror_rate
27. Rerror_rate
28. srv_rerror_rate
29. same_srv_rate
30. diff_srv_rate
31. srv_diff_host_rate
32. dst_host_count
33. dst_host_srv_count
34. dst_host_same_srv_rate
35. dst_host_diff_srv_rate
36. dst_host_same_src_port_rate
37. dst_host_srv_diff_host_rate
38. dst_host_serror_rate
39. dst_host_srv_serror_rate
40. dst_host_rerror_rate
41. dst_host_srv_rerror_rate

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

57

3. Related Work

This section briefly summarizes some of the techniques
for ID. The early effort of using GAs for ID can be dated
back to 1995, when Crosbie et. al. [7] applied the multiple
agent technology and Genetic programming (GP) to detect
network attempts. Each agent monitors one parameter of
the network packet and GP is used to find the set of agents
that collectively determine anomalous network behaviors.
This method has the advantage of using many small
autonomous agents, but the communication among them is
still a problem. Also the training process can be time-
consuming if the agents are not appropriately initialized.
In [8] researchers develop a method that integrates fuzzy
data mining techniques and genetic algorithms to detect
both network misuses and anomalies. In most of the
existing GA based IDSs, the quantitative features of
network audit data are either ignored or treated. Such
features are often involved in intrusion detection. This is
because of the large cardinalities of quantitative features.
The researchers proposed a method to include quantitative
features by introducing fuzzy numerical functions. Their
preliminary experiments show that the inclusion of
quantitative features and the fuzzy functions significantly
improved the accuracy of the generated rules. In this
approach, a GA was used to find the optimal parameters of
the fuzzy function as well as to select the most relevant
network features. Different computing paradigm has been
used in [9] where the proposed paradigm was neuro-fuzzy
network, fuzzy inferences, and GA to detect intrusion
activities in networks. This method firstly used a set of
parallel nero-fuzzy classifiers (five layers 4- for type of
attack, and one for normal). Then, fuzzy inference used
the output from classifiers to take a decision whether the
current action is normal or not. The role of GA was used
to optimize the classifier engine to give the right decision.
This Method also used the same data KDD CUP 99 [6] for
training and for testing the system. As a result, this
technique will be effectively used to detect intrusion. To
enhance their proposed work, feature reduction must be
performed instead of using all 41 features. In [10, 11]
researchers tried to build an application to enhance the
knowledge domain to detect vast range of intrusion by
using machine learning (ML) techniques to create rules of
Expert System (ES) that can learn from dynamic
environment to acquire expert knowledge to be adapted
with new attacker behaviors. Knowledge is represented as
a set of if-then rules.

4. Intrusion Detection using Steady State
Genetic-based Machine Learning
Algorithm

ML is the study of computational methods for improving
the performance of acquisition of knowledge from
experience. Expert performance requires much domain
specific knowledge and tries to build ES that can be used
in different domains such as industry. Thus, ML will
reduce human time-consuming. In addition, ML will
increase the level of automation to improve the accuracy
and the efficiency of detection systems by discovering and
exploiting regularities through training data [12].
SSGBML takes into account the ability to learn from
environment to be not restricted to static inputs to learn
from. SSGBML merges ES and SSGA that enables
learning from incomplete information. In addition, in the
early stages for developing our algorithm SSGBML, using
Simple Genetic Algorithm (SGA), shows better detection
rate rather than using SGA. Different combinations of
inputs will be produced to perform rules in the form of
{condition} --> action. SSGA will play the role of
discovery engine in SSGBML. SSGA is used to give a
chance for previous rules from previous generation to
participate in detecting intrusions in next generations. In
contrast, SGA replaces whole previous generation with
new produced generation neglecting the fact that there
exist some good rules in previous generation. Therefore,
[13] has indicated that SSGA achieved better and faster
solution than SGA. This leads us to use SSGA to generate
rules from previous rules (act as parents), taking into
account how the output will be closed to the problem
solution. By modifying SSGBML, MSSGBML,
performance will be improved compared with other works.
Figure2 provides an overview for MSSGBML.

Fig 2: MSSGBML

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

58

MSSGBML has a set of components which they are:

4.1 Detector

Detector, Input Unit, takes the input variables that perform
network traffic features from network environment. In
this unit, the input must be encoded, where in our work,
we used real encoding method. Network features have
either continuous or discrete values. Furthermore, features
are classified as: significant and insignificant features.
Significant features have a significant role to detect attacks.
Insignificant features don't have a significant role in
detecting attack. In this case, these features have been
replaced by the least value of number in Java. These
features composed the condition part of an environment
message. Afterward, determining related features for each
type of network attack is exhaustive stage. So, different
techniques have been tried to find a relation and a
correlation between network features and type of attack
that these features can predict. In [14, 15] researchers have
tried to find a correlation between features and network
attacks. While in [16], researchers have used features for
each type of attack according to previous studies that have
been accomplished. As a result, we can perform different
classes taking the advantages of other results. We used
classes contain main features to detect specific type of
network attacks. Table 3 shows these classes.

Table 3 : Network Attack classes

Class # Attack type: Features
DoS: 5,10,24,29,33,34,38,40
Probe: 2,3,23,34,36,40
U2R: 3,4,6,14,17,22

Class 1
[17]

R2L: 3,4,10,23,33,36
DoS: 1,2,3,4,5,6, 12,23,24,31,32,37
Probe: 1,2,3,4,12,16,25,27,28,29,30,40
U2R:1,2,3,10,16

Class 2
[18]

R2L: 1,2,3,4,5,10,22
DoS:1,5,6,23,24,25,26,32,36,38,39
Probe: 1,2,3,4,5,6,23,24,29,32,33
U2R: 1,2,3,4,5,6,12,23,24,32,33

Class 3
[19]

R2L:1,3,5,6,32,33
DoS: 7,8,12,13,23
Probe: 3,12,27,31,35
U2R: 14,17,25,38,36

Class 4
[20]

R2L: 6,11,12,19,22

4.2 Effector

Effector, as output unit, is responsible for firing action of
the winning rule to the environment. The result can be
either normal, Probe, U2R, R2L or DoS.

4.3 Feedback

Feedback will influence the rule that has been selected to
fire its action. That is done by adding positive value (for
reward) to the selected rule strength if it gave right
prediction for the type of attack. Otherwise it adds a
negative value (for penalty).

4.4 Classifier System

The Zeroth Level Classifier System (ZCS) consists of a
finite set of classifiers (rules) in the form of
{condition - action}. The rule's condition is a string of
characters compound from significant network features
with real valued where insignificant features represented
don't care (D= least value for number in Java) acts as a
wildcard allowing generalization. The action is
represented by one character. Initial rules in ZCS are
initialized randomly using GA. To initialize fitness for
each rule, the fitness functions calculated using equation 1

Fitness =
B
b

A
a
− (1)

where a is the number of correctly identified attacks, A is
the total number of attacks in the training dataset, b is the
number of connections incorrectly classified as attack
(false positive), and B is the total number of normal
connections. Resulting fitness value is in the range of [-1,
1]. Then, fitness for rules is calculated as in shown in
equation 2.

)(*)(

1

n
FPR

n
DR

fi

fi
n

i

−

∑
=

 (2)

where n is rules number.
Classifier fitness acts as an indicator of the perceived
utility of that rule within the system. On receipt of an input
message, the rules [N] are scanned and any rules whose
condition matches the message is placed in a match set
[M]. The selection policy for best [M] to be selected and
action set [A] is based on the rules fitness. When an action
has been selected, all of the rules in the [M] that advocate
this action are placed in action set [A], and the system
executes the action as shown in Figure 3. Reinforcement
in ZCS consists of redistributing payoff between
subsequent action sets. A fixed fraction, β, of the fitness of
each member [A] at each time step is placed in a common
bucket. A record is kept for the previous action set [A]-1.
If this is not empty, then the members of this set receive an
equal share of the content of the current bucket, once this
has been reduced by a pre-determined discount factor, γ. If
a reward is received from the environment, then the β of
this value is distributed evenly amongst the members of
[A]. Finally, a tax is imposed on the members of [M] that

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

59

do not belong to [A]. ZCS employs SSGA as a discovery
mechanism. Settings the parameter used in ZCS are tuned
to gain better results.

Fig 3: Zeroth Level classifier system (ZCS)

In ZCS, rules clustered according to the type of action that
can be taken into five categories: Normal, DOS, Probe,
U2R, and R2L. Incoming message spreads to these
categories. As a result, best match set will be used to take
action. Furthermore, SSGA use this feature to crossover
and mutate each category separately as shown in Figure 4.

Fig 4: rules categorization

4.5 Steady State Genetic Algorithm

SSGA, as discovery mechanism, will be used as a
classifier producer to produce new classifiers from
existing ones. SSGA includes a set of operation performed
to produce new good classifiers and enhance the
performance capabilities for detecting network intrusions.
These operations are: selection, crossover, mutation, and
replacement of new rules with old ones. According to that,
there is a set of decisions must be taken into account to
begin using SSGA. First, the type of GA to be used has to
be determined. There were a set of studies that can be used
to determine which type of GA will be used. The causes
for selecting SSGA mentioned early. The results in [13]
concerning SSGA will be suitable to be used in solving
problems instead of SGA. Based on set of conducted
experiments on SSGA and SGA, SSGA gives better and
faster results than SGA. By using SSGA, current best
solutions are automatically maintained in the population
and only the poorest individuals are being replaced. In
contrast, in SGA, every individual is replaced in every

generation. Thus, there is a much greater pressure to
produce individuals that are not degraded by crossover
and mutation. Second, selection method for selecting rules
as Roulette Wheel, Ranking and other methods mentioned
in [21]. Third, parameterized crossover and mutation (Pc,
Pm respectively) will be used to determine the possibility
if we can accomplish the crossover and mutation on rules.
In the next stage for enhancing proposed algorithm, Pc
will be adaptive according to the performance of
SSGBML in detecting intrusions by applying fuzzy logic.
For crossover, the position will be selected randomly and
can be either single, or multiple positions. As for Pc, Pm
will be used to determine if we can mutate rules
component or not. Even more, Pc was adapted to be aware
from undesired behavior such as premature convergence.
Thus, Pc will be enhanced by using fuzzy logic.
Adaptation can be accomplished by using counter for each
rule to be an indicator on the rules age. Rule counter value
increased automatically with each generation. To
formalize the situation, the average and standard deviation
will be calculated for rules age to determine if the rule
Young, Mid-age, or Old. By applying fuzzy logic on
parent's rules age, Pc can be Low, Medium or High. Also,
Pm may take the advantage of rules age by applying fuzzy
logic on rules age to determine Pm that can be taken into
account in improvement stage for our algorithm. So Pm
can be Low, Medium or High. Table 4 summarizes the
idea of adaptive Pc.

 Parent II
 Young Mid-age Old

Young Low Medium Low
Mid-age Medium High Medium

Parent I

Old Low Medium Low
Table 4 : Crossover and Mutation Probability

Fourth, fitness function is one of the SSGBML keys that
will be used to give judgment rules. Fitness function in our
proposed algorithm takes into account the performance of
the rules to detect network intrusion. Fitness calculated as
in equation 4.2. Fitness will be used to evaluate strength
for all rules within classifier a calculated in equation 3.
Beside of rule's fitness, strength can be used as selection
mechanism for selecting best rule to fire an action.

iii agefStrength *= (3)

5. Performance Evaluation

One of the main issues involved in solving problems or
trying to find optimal solution is how to test these
proposed systems. As for NIDS, testing proposed
algorithm can provide a good indicator for the proposed
algorithm if it can give high performance compared with

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

60

others or not. If our proposed algorithm has performance
less than other algorithms, this encourages us to tune up
our algorithm to improve our work. In addition, it is
natural to assume that the difficulty of any problem
relevant to the scale of these problems. In general
evaluating security system is a complex task to be
accomplished. The main issue is measuring the
performance of IDS effectively. Evaluating IDS can be
expressed as how far it can correctly classify intrusions
and avoid false detection. The difficulty came from the
fact that it has to work properly in unknown situations and
deal with new types of attackers in network environment.
In previous work, there was a variety of ways used to
evaluate IDS. Some of these are False Positive Rate (FPR)
and Detection Rate (DR). FPR is defined as "the ratio of
incorrectly classified normal examples (false alarms) to
the total number of normal examples" [22]. FPR was
calculated using Equation 5.1.

N
FFPR = 5.1

where F is a number of false alarms and N is the number
of total normal records.
In addition, Detection Rate (DR) was defined as "the ratio
of correctly classified intrusive examples to the total
number of intrusive examples" [22]. The DR is computed
using Equation 5.2.

T

DADR = 5.2

where DA is the number of truly detected attacks and T is
the number of total attacks.

5. Results

The SSGBML for NID algorithm was tested using the
KDD 99 Dataset [6]. Proposed algorithm was trained
using 10% of KDD 99 as a training dataset. The training
data contains approximately 500,000 connection records.
We trained and tested the proposed algorithm using same
dataset. After training our algorithm using different classes
of features, we extracted the rules and then tested the
resulted rules using same dataset. Table 5 provides initial
results for the proposed work compared with other work.

Model DR%
SSGBML 97.45%
ESC-IDS[9] 95.3%
RSS-DSS [23] 94.4%
Fuzzy Inference System[24] 98%
EFRID [25] 95.47%

Table 4: Detection rate (DTR) for the different algorithms performances
on the KDD 99 with corrected labels of KDD Cup 99 dataset (n/r stands
for not reported)

It can be stated that the proposed algorithm is offered an
acceptable level of detection performance compared with
others work. Fitness function has a great role in detecting
intrusions. For the types of intrusions, DoS, Probe or both
had an acceptable detection rate compared with U2R and
R2L types.

6. Conclusion

In this paper, a new algorithm was introduced to detect
network intrusions and was successfully demonstrated
on KDD 99 Dataset, training and testing data. Also,
matching difference between environment message and
classifier rules became adaptive according to DR values.
Discover engine has been improved by using SSGA
instead of SGA taking into account the suitable method
for selection. Also, when performing some training on
SGA, we dramatically reached premature convergence
early. So, training phase was stopped and not continued.
The proposed work focused on reducing the number of
features to be used in classifying and detecting various
attacks types. The future work will be continued to use
different fitness function since it plays important role in
intrusion detection. In addition, we will apply fuzzy
logic on Pc, Pm to gain better results.

References
[1] D.Batazrotti, “Testing Network Intrusion Detection

Systems", PhD Thesis, Milano University, 2006, Italy.
[2] R.Bace, P. Mell, “Intrusion Detection Systems", NIST

special publication on IDS, 16 Augest, 2001.
[3] D.J.Brown , B.Suckow, T.Wary, " A survey Of Intrusion

Detection Systems",
www.cse.ucsd.edu/classes/fa01/cse221/projects/grou
p10.pdf

[4] S.Selvakani, R.S. Rajesh, " Genetic Algorithm for framing
rules for intrusion Detection", IJCSNS International Journal
of Computer Science and Network Security, VOL.7 No.11,
November 2007

[5] A.Christie, W. Fithen, J.McHugh, J.Pickel, E. Stoner, "State
of the Practice of Intrusion Detection Technologies",
TECHNICAL REPORT, Carnegie Mellon University, 2000.

[6] KDD-CUP 1999 Data,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[7] Crosbie M and Spafford E, “Applying genetic
Programming to Intrusion Detection”, Proceedings of
the AAAI Fall Symposium, 1995.

[8] S.M. Bridges and R.B. Vaugha, " Fuzzy Data Mining and
Genetic Algorithms Applied to Intrusion Detection”,
Proceedings of 12th Annual Canadian Information
Technology Security Symposium, pp.109-122, 2000.

[9] N.Toosi , M.Kahani, " A new approach to intrusion
detection based on an evolutionary soft computing model
using neuro-fuzzy classifiers", Computer Communications
30(2007) 2201–2212, 2007

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

61

[10] M. Sabhnani, G. Serpen, "Application of Machine Learning
Algorithms to KDD Intrusion Detection Dataset within
Misuse Detection Context", Proceeding of International
Conference on Machine Learning: Models, Technology and
Application, Las Vegas, Nevada, USA, June 2003

[11] Ch. Sinclair, L. Pierce, S. Matzner, "An Application of
Machine Learning to Network Intrusion Detection", 15th
Annual Computer Security Applications Conference
Phoenix, Arizona , December 6-10, 1999

[12] A.Osareh, Bita Shadgar, " Intrusion Detection in Computer
Networks based on Machine Learning Algorithms",
International Journal of Computer Science and Network
Security, VOL.8 No.11, November 2008

[13] J.Jones, T.Soule, " Comparing Genetic Robustness in
Generational vs. Steady State Evolutionary Algorithms",
GECCO’06, Seattle, Washington, USA. July 8–12, 2006,
©Copyright 2006 ACM

[14] I.Guayan , A.Elisseeff, "An Introduction to Variable and
Selection" , Journal of Machine Leaning Research 3, March
2003

[15] L.Yu, H.Lin, "Feature Selection for High-Dimensional
Data: A Fast Correlation-based Filter Solution", Proceeding
of 20th International Conference on Machine Learning
(ICML-2003), Washington D.C., August 2003.

[16] T. S. Chou, K. K. Yen, and J. Luo, "Network Intrusion
Detection Design Using Feature Selection of Soft
Computing Paradigms", International Journal of
Computational Intelligence 4;3 © www.waset.org Summer
2008.

[17] A.Zaind, M. Maarof, S.Shamsnddin, A.
Abraham,"Ensamble of One-class Classifier for Ntwork
Intrusion Detections".
www.softcomputing.net/ias08_1.pdf

[18] T.S.Chou, K.K.Yen, J.LNO," Network Intrusion Detection
Design Using Feature Selection of Soft Computing
Paradigms", International Journal Of Computational
Intelligence, 2008.

[19] S.Mukkamala, A.h.Sung," Identifying Significant Features
for Network Forensic Analysis using Artificial Intelligent
Techniques", International Journal of Digital Evidence, Vol
1, Issue 4, Winter 2003.

[20] S.Mukkamala, A.h.Sung, A. Abraham, Modeling Intrusion
Detection System using Linear Genetic Programmimg
Approaches", LNCS 3029, Springer Hiedelberg, pp 633-642,
2004.

[21] M.Mitchell, "An Introduction to Genetic Algorithm", MIT
Press, 1996.

[22] L. Kuang, " DNIDS: A Dependable Network Intrusion
Detection System Using the CSI-KNN Algorithm", Master
thesis , Queen’s University , Canada, September 2007.

[23] D.Song, M.I.Heywood, A.N.Ziniric-Heywood, " Training
genetic programming on half million patterns: an example
from anomaly detection", IEEE Transaction on
Evolutionary Computation 9(3) p.225-239 , 2005.

[24] T.P.Fries, " A Fuzzy-Genetic Approach to Network
Intrusion Detection", GECCO'2008, Atlanta, Georgia, USA,
July 12-16,2008.

[25] J.Gomez, D.Dasgupta, "Evolving Fuzzy Classifier for
Intrusion Detection", Proceedings of the IEEE, 2002.

Wafa' Al-Sharafat was born in Jordan. She received
the B.S. in Computer Science from Hashemite University,
Jordan in 2001 and M.Sc. degree in Computer Information
system from Arab Academy for Banking and Financial Science,
IT collage, Jordan in 2004. She is currently pursuing her PhD
Degree in Computer information system from Arab Academy for
Banking and Financial Science, IT collage, Jordan. Presently she
is working as an Instructor in Computer Information System
department in Al Al-Bayt University, IT Collage. Her main
interests in Machine Learning, Genetic Algorithm, E-commerce.

Prof.Dr. Reyadh Sh.Naoum was born in Iraq. He
received the B.S. in Mathematics from Basrah University, Iraq
in 1969 and M.Sc. degree in Computing from Basrah University,
Iraq in 1976 and PhD in computing from England in 1987.
Presently he is working as Prof. in Arab Academy for Banking
and Financial Science, IT collage, Jordan. His main interests in
Neural Computing, Genetic Computing and Numerical Software.

