
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

79

Manuscript received April 5, 2009
Manuscript revised April 20, 2009

Imbedded Markov Chains Model of Multiprocessor with
Shared Memory

Angel Vassilev Nikolov,

National University of Lesotho, Roma 180, Lesotho

Summary
This paper addresses the problem of evaluating the performance
of multiprocessor with shared memory and private caches
executing Invalidate Coherence Protocols. The model is
grounded in queuing network theory and includes bus
interference, cache interference, and main memory interference.
The method of the Imbedded Markov Chains is used. The
highest and lowest performance characteristics are calculated
for both equilibrium and transient states.

Key words:
Invalidate Cache Protocols, Markov Chains, Multiprocessor,
Queuing Network

1. Introduction

 Shared bus shared memory multiprocessors are a
suitable platform to speed up execution of general purpose
workload. Shared bus architecture is the straightforward
approach to connect several processor having private caches
by means of a simple interconnection network [2]. Coherency
units have to be added in order to maintain a consistent view
of the shared memory for each processor. The traffic induced
by cache coherency contributes to the degradation of the
overall performance, so that its adverse effect should be
recognized and evaluated.
 A commonly used modeling technique is execution
driven simulation in which a parallel program is executed on
top of a simulated memory system [4]. These simulations can
be extremely accurate but incur very long execution times and
are highly prone to logical errors in coding. Less detailed
simulation can be used when the target of the performance
evaluation is the memory hierarchy and the shared bus. The
method of trace -driven simulation is based on the collection
of traces [4, 10] and on the utilization of the trace as input for
the simulator of the memory hierarchy. For memory
structures relatively accurate analytical models were
developed [3] through extensive use of various queuing
systems. Even though those models are not very accurate and
fewer architectural details can be incorporated into, they can
be used successfully at the early design stage. The most
popular analytical technique for this purpose is the Mean
Value Analysis (MVA) [3, 5, 7, 8]. It allows the total number
of the customers to be fixed (closed queue system), and this

seems to be adequate representation of the processes of self-
blocking requestors [5]. Calculations of output parameters
such as residency times, waiting times and utilization are
shown in [3, 7, 8]. MVA is based on the forced flow that
means in equilibrium output rate equals input rate. However,
instantaneously, we can have input rate different from output
rate, so that the instantaneous probabilities could be different
from equilibrium [5]. MVA offers no possibility to study
transient effects. Moreover, the assumption of exponential
service times is not realistic, in fact all bus access times and
memory access times are constants. The technique of
continuous time Markov processes, which produces both the
stationary and the instantaneous probabilities, can also be
used to describe the behavior of multiprocessor implementing
cache coherence [6]. Solutions for the instantaneous metrics,
however, are too complex and very difficult to follow and
require use of special software tools to obtain the Inverse
Laplace transform.
 Alternative to the approach described above is presented
by considering both the processors and the memories as
discrete machines, so that there is no need to approximate
times by continuous distributions. We employ discrete time
Markov chains to obtain the performance characteristics of
the system for blocking and nonblocking caches.

2 Definition of the model
 A multiprocessor consists of several processors
connected together to a shared main memory by a
common complete transaction bus. Each processor has a
private cache. When a processor issues a request to its
cache, the cache controller examines the state of the cache
and takes suitable action, which may include generating
bus transaction to access main memory. Coherence is
maintained by having all cache controllers "snoop" on the
bus and monitor the transaction. Snoopy cache-coherence
protocols fall in two major categories: Invalidate and
Update [9]. Invalidating protocols are studied here but the
concepts can be applied with some modifications to
updating protocols too. Transactions may or may not
include the memory block and the shared bus. Typical
transaction that does not include memory block is
Invalidate Cache Copy which occurs when a processor
requests writing in the cache. All other processors simply
change the status bit(s) of their on copies to Invalid. If the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

80

memory block is uncached or not clean it can be uploaded
from the main memory, but in todays multiprocessors it is
rather uploaded from another cache designated as Owner
(O) (cache-to cache transfer). Memory-to-cache transfer
occurs when the only clean copy is in the main memory. A
cache block is written back (WB) in the main memory
(bus is used) when a dirty copy is evicted [6]. Apparently
the bus can be considered as the bottleneck of the system.
 In terms of the queuing theory processors can be
viewed as customers (clients) and the bus can be viewed
as a server in a closed queuing network.
 The customer (processor) spends time intt doing
internal processing (computing, thinking) during which all
memory requests are satisfied from its private cache, then
it issues a blocking request, and cannot proceed unless this
request is satisfied. Requests are served from another
cache-cache to cache transfer- or from the main memory.
After completion of the blocking request it resumes
internal processing with probability p or resumes
processing and generates a new request with probability q
(p+q=1). This new request corresponds to WB transaction.
It does not block the customer but the server is held until
completion of WB transaction therefore adding to the
queue. Details on how to obtain the input parameters are
given in [3, 8].
 The system can be in one of the following states: 1) N:
all N customers are doing internal processing; 2)i,bl : i
customers are doing internal processing iN −(are
blocked respectively), the server is serving blocking
request)10(−≤≤ Ni , 3) i,wb: i customers are doing
internal processing, the server is serving WB request, and

iN − customers are waiting in the queue)1(Ni ≤≤ .
Transfer times from/to a cache and from/to a main
memory are quite different, so all possible orderings
(combinations of the customers at the server should be
distinguished. If the number of customers at the server
(queued and served) is m and i customers are requesting
cache to cache transfer the number of the combinations
is ()m

i . The total of combinations for a system with N cus-

tomers then will be . For N=16 this num

ber and hence the number of equations is 262,142 and this
is very difficult to be handled. On the other hand we
would need to know whether the requested block is
available in other caches or in the main memory only. This
parameter is heavily dependent on the applications
running on the processors and their interactions and is
difficult to be determined using trace simulation [3]. At
the early phase of the design, however, precise estimation
of the performance is not even needed. It would be
satisfactory to predict the lowest and highest limits for the

performance [10]. Below we shall refer to the case of
maximal performance as HL (high limit), and to the case
of minimal performance as LL (low limit). Apparently
maximal performance is achieved when all blocks are
supplied from other caches and minimal performance
corresponds to the case of all request served by the main
memory. A suitable model for these two cases is defined
below.

We introduce the following notations:
ct -cache to cache transfer time including bus delays,
bt -bus cycle time,
mt -memory to cache and cache to memory transfer time;

write back time is equal to mt
wt - waiting time at the server
cc -number of bus cycles needed for cache to cache transfer,
intc -number of bus cycles needed for internal processing,
mc -number of bus cycles needed for memory to cache and

cache to memory transfer
wc -number of bus cycles the customer waits at the server

P-state transition matrix
)(nΠ -vector of the systems state probabilities after n

transactions

.

Obviously bcc tct = bmm tct = and bww tct = (1).
 We assume that requests are independent and identically
distributed and apply the imbedded markov chains technique.
The imbedded points are chosen to be completion of the bus
cycle when all processors do internal processing, and
completions of service when the server is busy serving
coherence transfer or write back request. Let x be the
probability that a particular processor is requesting a service
in a bus cycle, and y the probability that such request is not
generated (x+y=1). From our definition follows that
x= wb ttt +int/() (2). After substitution of the first equation
of (1) in (2) we get
x= wcc +int/(1) (3).
We also introduce ccx and cmx as probabilities that a
customer (processor) requests service during cache to cache
transfer or cache to memory transfer, respectively, and ccy
and cmy as probabilities that such request is not generated
(1;1 =+=+ cmcmcccc yxyx). Similarly

ccx = wc ccc +int/(), and cmx = wm ccc +int/() (4).
Then the nonzero probabilities of the state transition
matrix P for HL are given by

() iiNN
ibliN yxp −

→ =,
1 for i=0,…,N (5)

() 11
1,,

−+−
−→ = i

cc
ij

cc
j
iwbiblj yxpp for j=1,…,N-1 (6)

————————————————
 if m<0 or m<n

()∑∑
= =

N

m

m

i

m
ix

0 0
2

() 01 =n
m

∞→
Π=Π
n

n)(lim

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

81

() 11
1,,

−+−
−→ = i

cc
ij

cc
j
iwbiblj yxqp for j=1,…,N-1 (7)

() i
cm

ij
cm

j
ibliwbj yxp −

→ =,, for j=1,…,N (8).
For LL case the probabilities in (6) and (7) are

() 11
1,,

−+−
−→ = i

cm
ij

cm
j
iwbiblj yxpp for j=1,…,N-1 (9)

() 11
1,,

−+−
−→ = i

cm
ij

cm
j
iwbiblj yxqp for j=1,…,N-1 (10).

In equilibrium

∑ ∑
−

= =

=++
1

0 1
,, 1

N

i

N

i
wbibliN πππ , (11)

andΠ (P-I)=0 (12),
where I is identity matrix.
The number of cycles in waiting wc can be expressed in

terms ofΠ :

[]∑∑
=

−

=

+−+−=
N

i
wcwbi

N

i
cbliw ciNcciNc

1
,

1

0
,)()(ππ

 (13).

wc and Π can be determined from the set of equations (3),
(11), (12), and (13), which is solved numerically.

3 Numerical Results
In this section, we present the numerical results for the

system with blocking caches (BL) and fully nonblocking
caches (NBL) [2]. All performance characteristics are
expressed as a function of the bus cycles.

The bus utilization is defined as the fraction of bus cycles
that are used to service a memory. Since the bus is in use
unless all processors do internal processing and no processors
generate new request, the bus utilization U is given by:

 (14)

We set ,300int =c ,5=cc and .15=mc Plots in Fig.
1 are obtained from (14). Since nonblocking caches do not
change the traffic the bus utilization has the same value for
BL and NBL.

 For BL case the waiting time is given by (13).

If the processor utilizes nonblocking caches, however, it
consumes data while transfer is in progress, so the waiting

time will be:
 (15)

 It is assumed that during consumption of the incoming traffic,
the processor does not make coherency request.

 Speedup is computed using the formula:
)/(intint wccNc + . It is graphically illustrated in Fig. 3.a

and Fig. 3.b.

Fig. 1

0
0.2
0.4
0.6
0.8

1
1.2

2 6 10 14 18 22 26 30N

utilization
LL,p=0.65
HL,p=0.65
LL,p=0.75
HL,p=0.75

[]∑∑
=

−

=

+−+−−=
N

i
wcwbi

N

i
cbliw ciNcciNc

1
,

1

0
,)()1(ππ

 Fig. 2.a

0

50

100

150

200

2 6 10 14 18 22 26 30 N

waiting time,BL

LL,p=0.65

HL,p=0.65

LL,p=0.75

HL,p=0.75

Fig. 2.b

0

10
20

30
40

50

2 6 10 14 18 22 26 30 N

waiting time,NBL

LL,p=0.65
HL,p=0.65
LL,p=0.75
HL,p=0.75

N
N yU π−= 1

Fig. 3.a

0
5

10
15
20
25
30
35

2 6 10 14 18 22 26 30 N

speedup, BL

LL,p=0.65
HL,p=0.65
LL,p=0.75
HL,p=0.75

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

82

The difference between maximal and minimal
performance could be significant. For the worst case
scenario, saturation might set in, while the maximal
performance still increases linearly (Fig. 3.a). Use of
nonblocking caches leads to essential improvement of the
overall performance. Even when the bus utilization is
close to 1, the system is still scalable (Fig. 1 and Fig. 3.b).

 The vector of the state probabilities after n transitions

)(nΠ can be expressed as)(nΠ =Π)0(P n (16),
whereΠ)0(= (1, 0,…, 0) is the initial vector. Transient
waiting time now can be obtained by replacing the values
of Π with)(nΠ in (13) and (14). The number of
transitions needed to reach equilibrium strongly depends
on the transfer time (Fig. 4).

4 Concluding Remarks
 This work presented a model for a shared bus, shared
memory multiprocessor with private caches and captures
the whole spectrum of Invalidate type cache coherence
protocols. We focused on two extreme cases: all cache
requests are satisfied from the main memory, and all cache
requests are satisfied from another cache. We used the
technique of the Imbedded Markov Chains to construct the
state transition matrix in terms of the architectural and

applications parameters with the waiting time as unknown.
This system of nonlinear equations is solved numerically
in a meaningless time. The model eliminates the need for
approximating times by continuous distributions. Another
merit is that it gives insight both into the stationary and
transient behavior.
 The model can be put to good use for evaluating the
protocols more thoroughly and efficiently at the early
design phase.

ACKNOWLEDGMENT
 This work was supported in part by a grant from the

National University of Lesotho.

References
[1] S. K. Bose, Introduction to Queuing Systems,

Kluwer/Plenum Publishers, 2001
[2] J. L. Hennessy, D. A. Patterson; Computer Architecture: A

Quantitative Approach, Pearson Publishers, 2003
[3] M. C. Chiang, Memory System Design for Bus Based

Multiprocessor, PhD Thesis, University of Wisconsin, 1991
[4] P.Foglia, R. Giorgi, C.A. Prete, Simulation Study of

Memory Performance of SMP Multiprocessor running a
TPC-W workload, IEE Proc. Comput. Digit. Tech., Vol. 151,
March 2004, pp.93-109

[5] R. E. Matick, Comparison of analytic performance models
using closed mean-value analysis versus open-queuing theory
for estimating cycles per instruction of memory hierarchies,
IBM Journal of Research and Development, Jul 2003

[6] A. V. Nikolov, Analytical Model For a Multiprocessor With
Private Caches And Shared Memory, Int. J. of Computers,
Communications & Control, Vol. III (2008), No. 2, pp. 172-
182

[7] D. J. Sorin et. al., A customized MVA model for ILP
multiprocessors, Technical report No.1369, University of
Wisconsin-Madison, 1998

[8] D. J. Sorin et. al., Evaluation of shared-memory parallel
system with ILP processors, Proc. 25th Int’l Symp. On
Computer Architecture, June 1998, pp. 180-191

[9] J. Sustersic, A. Hurson, Coherence protocol for bus-based
and scalable multiprocessors, Internet, and wireless
distributed computing environments: a survey, Advances in
Computers, vol.59, 2003, pp. 211-278

[10] T. Suh, D.M. Blough, Hsien-Hsin S. Lee, Supporting Cache
Coherence in Heterogeneous Multi processor System, Proc.
Of Conference of Design, Automation and test in Europe,
Vol.2, February 16-20, 2004

Fig. 3.b

0

5
10

15

20

25
30

35

2 6 10 14 18 22 26 30 N

speedup, NBL

LL,p=0.65
HL,p=0.65
LL,p=0.75
HL,p=0.75

Fig.4

0
2
4
6
8

10
12
14
16

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151
number of transitions

waiting time,
N=16, BL

LL,p=0.65
HL,p=0.65

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

83

Angel Vassilev Nikolov received
the BEng degree in Electronic and
Computer Engineering from the
Technical University of Budapest,
Hungary in 1974 and the PhD
degree in Computer Science from
the Bulgarian Academy of
Sciences in 1982 where he worked
as a Research Associate. In 1989
he was promoted to Associate

Research Professor in Bulgaria. Dr Nikolov also served as
a Lecturer of Computer Science at the National University
of Science and Technology, Bulawayo, Zimbabwe and at
the Grande Prairie Regional College, Alberta, Canada and
as an Associate Professor at Sharjah College, United Arab
Emirates. Currently he works for the National University
of Lesotho, Roma, Lesotho. His research interests include
computer architecture, performance evaluation of
multiprocessors, and reliability modeling.

