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Summary 
This paper addresses the problem of evaluating the performance 
of multiprocessor with shared memory and private caches 
executing Invalidate Coherence Protocols. The model is 
grounded in queuing network theory and includes bus 
interference, cache interference, and main memory interference. 
The method of the Imbedded Markov Chains is used. The 
highest and lowest performance characteristics are calculated 
for both equilibrium and transient states. 
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1. Introduction 

   Shared bus shared memory multiprocessors are a 
suitable platform to speed up execution of general purpose 
workload. Shared bus architecture is the straightforward 
approach to connect several processor having private caches 
by means of a simple interconnection network [2]. Coherency 
units have to be added in order to maintain a consistent view 
of the shared memory for each processor. The traffic induced 
by cache coherency contributes to the degradation of the 
overall performance, so that its adverse effect should be 
recognized and evaluated.  
         A commonly used modeling technique is execution 
driven simulation in which a parallel program is executed on 
top of a simulated memory system [4].  These simulations can 
be extremely accurate but incur very long execution times and 
are highly prone to logical errors in coding. Less detailed 
simulation can be used when the target of the performance 
evaluation is the memory hierarchy and the shared bus. The 
method of trace -driven simulation is based on the collection 
of traces [4, 10] and on the utilization of the trace as input for 
the simulator of the memory hierarchy.  For memory 
structures relatively accurate analytical models were 
developed [3] through extensive use of various queuing 
systems. Even though those models are not very accurate and 
fewer architectural details can be incorporated into, they can 
be used successfully at the early design stage. The most 
popular analytical technique for this purpose is the Mean 
Value Analysis (MVA) [3, 5, 7, 8]. It allows the total number 
of the customers to be fixed (closed queue system), and this 

seems to be adequate representation of the processes of self-
blocking requestors [5]. Calculations of output parameters 
such as residency times, waiting times and utilization are 
shown in [3, 7, 8]. MVA is based on the forced flow that 
means in equilibrium output rate equals input rate. However, 
instantaneously, we can have input rate different from output 
rate, so that the instantaneous probabilities could be different 
from equilibrium [5]. MVA offers no possibility to study 
transient effects. Moreover, the assumption of exponential 
service times is not realistic, in fact all bus access times and 
memory access times are constants. The technique of 
continuous time Markov processes, which produces both the 
stationary and the instantaneous probabilities, can also be 
used to describe the behavior of multiprocessor implementing 
cache coherence [6].  Solutions for the instantaneous metrics, 
however, are too complex and very difficult to follow and 
require use of special software tools to obtain the Inverse 
Laplace transform. 
       Alternative to the approach described above is presented 
by considering both the processors and the memories as 
discrete machines, so that there is no need to approximate 
times by continuous distributions. We employ discrete time 
Markov chains to obtain the performance characteristics of 
the system for blocking and nonblocking caches. 

2 Definition of the model 
       A multiprocessor consists of several processors 
connected together to a shared main memory by a 
common complete transaction bus. Each processor has a 
private cache. When a processor issues a request to its 
cache, the cache controller examines the state of the cache 
and takes suitable action, which may include generating 
bus transaction to access main memory. Coherence is 
maintained by having all cache controllers "snoop" on the 
bus and monitor the transaction. Snoopy cache-coherence 
protocols fall in two major categories: Invalidate and 
Update [9]. Invalidating protocols are studied here but the 
concepts can be applied with some modifications to 
updating protocols too. Transactions may or may not 
include the memory block and the shared bus. Typical 
transaction that does not include memory block is 
Invalidate Cache Copy which occurs when a processor 
requests writing in the cache. All other processors simply 
change the status bit(s) of their on copies to Invalid. If the 
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memory block is uncached or not clean it can be uploaded 
from the main memory, but in todays multiprocessors it is 
rather uploaded from another cache designated as Owner 
(O) (cache-to cache transfer). Memory-to-cache transfer 
occurs when the only clean copy is in the main memory. A 
cache block is written back (WB) in the main memory 
(bus is used) when a dirty copy is evicted [6].  Apparently 
the bus can be considered as the bottleneck of the system. 
      In terms of the queuing theory processors can be 
viewed as customers (clients) and the bus can be viewed 
as a server in a closed queuing network. 
     The customer (processor) spends time intt doing 
internal processing (computing, thinking) during which all 
memory requests are satisfied from its private cache, then 
it issues a blocking request, and cannot proceed unless this 
request is satisfied. Requests are served from another 
cache-cache to cache transfer- or from the main memory. 
After completion of the blocking request it resumes 
internal processing with probability p or resumes 
processing and generates a new request with probability q 
(p+q=1). This new request corresponds to WB transaction. 
It does not block the customer but the server is held until 
completion of WB transaction therefore adding to the 
queue. Details on how to obtain the input parameters are 
given in [3, 8].  
      The system can be in one of the following states: 1) N: 
all N customers are doing internal processing; 2)i,bl : i 
customers are doing internal processing iN −(  are 
blocked respectively), the server is serving blocking 
request )10( −≤≤ Ni  , 3) i,wb:  i customers are doing 
internal processing, the server is serving WB request, and 

iN − customers are waiting in the queue )1( Ni ≤≤ . 
Transfer times from/to a cache and from/to a main 
memory are quite different, so all possible orderings 
(combinations of the customers at the server should be 
distinguished. If the number of customers at the server 
(queued and served) is m and i customers are requesting 
cache to cache transfer the number of the combinations 
is ( )m

i . The total of combinations for a system with N cus- 
 
tomers then will be     .  For N=16 this num 
 
ber and hence the number of equations is 262,142  and this 
is very difficult to be handled. On the other hand we 
would need to know whether the requested block is 
available in other caches or in the main memory only. This 
parameter is heavily dependent on the applications 
running on the processors and their interactions and is 
difficult to be determined using trace simulation [3]. At 
the early phase of the design, however, precise estimation 
of the performance is not even needed. It would be 
satisfactory to predict the lowest and highest limits for the 

performance [10]. Below we shall refer to the case of 
maximal performance as HL (high limit), and to the case 
of minimal performance as LL (low limit). Apparently 
maximal performance is achieved when all blocks are 
supplied from other caches and minimal performance 
corresponds to the case of all request served by the main 
memory.  A suitable model for these two cases is defined 
below. 

We introduce the following notations:  
ct -cache to cache transfer time including bus delays, 
bt -bus cycle time, 
mt -memory to cache and cache to memory transfer time; 

write back time is equal to mt  
wt - waiting time at the server 
cc -number of bus cycles needed for cache to cache transfer, 
intc -number of bus cycles needed for internal processing, 
mc -number of bus cycles needed for memory to cache and 

cache to memory transfer 
wc -number of bus cycles the customer waits at the server 

P-state transition matrix  
)(nΠ -vector of the systems state probabilities after n 

transactions 
 
. 
 

Obviously bcc tct =   bmm tct =   and bww tct =  (1).          
      We assume that requests are independent and identically 
distributed and apply the imbedded markov chains technique. 
The imbedded points are chosen to be completion of the bus 
cycle when all processors do internal processing, and 
completions of service when the server is busy serving 
coherence transfer or write back request. Let x be the 
probability that a particular processor is requesting a service 
in a bus cycle, and y the probability that such request is not 
generated (x+y=1). From our definition follows that 
x= wb ttt +int/( ) (2). After substitution of the first equation 
of (1) in (2) we get  
x= wcc +int/(1 )     (3).   
We also introduce ccx and cmx  as probabilities that a 
customer (processor) requests service during cache to cache 
transfer or cache to memory transfer, respectively, and ccy  
and cmy  as probabilities that such request is not generated 
( 1;1 =+=+ cmcmcccc yxyx ).  Similarly   

ccx = wc ccc +int/( ), and cmx = wm ccc +int/( ) (4). 
Then the nonzero probabilities of the state transition 
matrix P for HL are given by  
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For LL case the probabilities in (6) and (7) are 
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In equilibrium  
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andΠ (P-I)=0     (12), 
where I is identity matrix. 
The number of cycles in waiting wc can be expressed in 

terms ofΠ : 
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1
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      (13). 

wc and Π can be determined from the set of equations (3), 
(11), (12), and (13), which is solved numerically. 

3 Numerical Results 
In this section, we present the numerical results for the 

system with blocking caches (BL) and fully nonblocking 
caches (NBL) [2]. All performance characteristics are 
expressed as a function of the bus cycles. 

The bus utilization is defined as the fraction of bus cycles 
that are used to service a memory. Since the bus is in use 
unless all processors do internal processing and no processors 
generate new request, the bus utilization U is given by:  
    

 
            (14) 
 

We set ,300int =c ,5=cc  and .15=mc  Plots in Fig. 
1 are obtained from (14). Since nonblocking caches do not 
change the traffic the bus utilization has the same value for 
BL and NBL.  

 
 
 
 
 
 
 
 
 
 
 

 
      For BL case the waiting time is given by (13).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the processor utilizes nonblocking caches, however, it 
consumes data while transfer is in progress, so the waiting 

time will be: 
      (15) 

 It is assumed that during consumption of the incoming traffic, 
the processor does not make coherency request.  

  Speedup is computed using the formula: 
)/( intint wccNc + . It is graphically illustrated in Fig. 3.a 

and Fig. 3.b. 
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The difference between maximal and minimal 
performance could be significant. For the worst case 
scenario, saturation might set in, while the maximal 
performance still increases linearly (Fig. 3.a). Use of 
nonblocking caches leads to essential improvement of the 
overall performance. Even when the bus utilization is 
close to 1, the system is still scalable (Fig. 1 and Fig. 3.b). 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
        The vector of the state probabilities after n transitions 

)(nΠ  can be expressed as )(nΠ =Π )0( P n   (16), 
whereΠ )0( = (1, 0,…, 0) is the initial vector. Transient 
waiting time now can be obtained by replacing the values 
of Π  with )(nΠ in (13) and (14). The number of 
transitions needed to reach equilibrium strongly depends 
on the transfer time (Fig. 4).  
    

4 Concluding Remarks 
      This work presented a model for a shared bus, shared 
memory multiprocessor with private caches and captures 
the whole spectrum of Invalidate type cache coherence 
protocols. We focused on two extreme cases: all cache 
requests are satisfied from the main memory, and all cache 
requests are satisfied from another cache. We used the 
technique of the Imbedded Markov Chains to construct the 
state transition matrix in terms of the architectural and 

applications parameters with the waiting time as unknown. 
This system of nonlinear equations is solved numerically 
in a meaningless time. The model eliminates the need for 
approximating times by continuous distributions. Another 
merit is that it gives insight both into the stationary and 
transient behavior.  
      The model can be put to good use for evaluating the 
protocols more thoroughly and efficiently at the early 
design phase.     
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