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Summary 
In a hard disk media manufacturing, engineers rely on inspection 
machine to generate production yield temporal data that can be 
used for future analysis. To proactively perform process 
maintenance on the equipment in order to avoid unnecessary 
unplanned down time, they have to be able to predict the yield 
outcome before products arrive at the inspection machine. In this 
paper, we propose to predict the yield outcome by visualizing the 
historical data pattern generated from the inspection machine, 
transform the data pattern and trained it with machine learning 
algorithms. The trained visualized datasets can automatically 
generate a prediction model without the visual interpretation 
needs to be done by human. However, due to the nature of 
manufacturing process, majority class instances of the good yield 
are extremely outnumbers minority class instances of the bad 
yield. Comparison between the random under-sampling, over- 
sampling, and SMOTE + VDM sampling technique indicate that 
the sampling combination of SMOTE + VDM and random under-
sampling dataset produced a robust classifier performance. 
Furthermore, the integration of K* entropy base similarity 
distance function with SMOTE, CNN+Tomek, and our novel 
SMOTE and SMaRT combination, extend the improvement of the 
classifiers F-Score robustness. Experimental results have indicated 
that the proposed approaches are viable to be applied to generate a 
predictive model, hence promoting the implementation of 
predictive maintenance in hard disk media industries. 
Key words: 
Yield prediction; Predictive Maintenance, Pattern visualization, 
Data re-sampling, Robust classifier. 

1. Introduction 

 
    Manufacturing yield predictive system may help the 
production engineers to identify the source of a certain 
deficiency or shortcoming of manufacturing yields. The 
outcome (i.e. patterns, trends and correlation identified) 
will also help the production engineers to achieve several 
breakthroughs such as improve the efficiency of 
production lines; increase the production targeted yield 
and  prevent future problems. As mentioned by [1], the 
proactive type of predictive maintenance method improves 
the efficiency of the maintenance, optimizes the 
maintenance planning and reduces the usage of resources 
such as labor and materials. 

    This paper is not focusing in the manufacturing yield 
issue by learning from a specific process equipment 
behavior or to learn and find the best combination of 
process parameters, but to predict the likelihood of 
manufacturing yield outcome before it is actually detected. 
Typical manufacturing processes such as hard disk media 
industries implementing statistical process control where 
the yield outcome of the manufacturing process is 
determined by the inspection machine at the end of the 
process. Historical temporal data generated by the 
inspection machine are normally visualized by engineers 
with bi-variate dimensional chart to identify selective 
attributes trend and pattern relationships. However, it is 
almost impossible to manually interpret and identify the 
pattern that can be used for prediction because of the vast 
amount of multi-variate relationships and underlying 
structure in the data.  
    To deal with this issue, we proposed an approach [16] 
to transform inspection machine generated temporal data 
from the nature that the data can only be used to learn the 
inspection machine behavior into a binary visualized 
datasets that can be trained to predict “one step ahead” 
manufacturing yield outcome (whether it will be good or 
bad yield). The study shows that instance base learning K* 
algorithm and 12 bit binary visualized datasets performs 
the best. However, due to the imbalance of the yield 
temporal datasets produced by manufacturing, the 
classification performance biased towards the majority 
(good yield) class instances.  
    Therefore, we introduced the integration of Value 
Difference Metric (VDM) and K* entropy based similarity 
distance function [22] [23] with SMOTE [15] (Synthetic 
Minority Over-sampling Technique). On the other hand, 
the majority class instances were made balanced by 
applying random under-sampling and our novel SMaRT 
(Synthetic Majority Replacement Technique) techniques. 
The combination of over-sampling and under-sampling 
techniques produced robust prediction model that was 
capable to predict different batches of test dataset. In 
contrast, one sided sampling (ONESS) random over-
sampling and under-sampling were failed to perform due 
to over-fitting. Our novel approach of SMaRT and 
SMOTE with the integration of K* based entropy 
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similarity distance function, Tomek, and CNN algorithm 
[27] further extend the classifiers F-score robustness.  The 
study also shows that those classifiers generated from 
several different visualized datasets have their own 
superiority in performance with several different test 
datasets. This paper is organized as follows; Section 2 
addresses related work, Section 3 presents our proposed 
approaches, Section 4 presents the study results and the 
conclusion of the study is presented in Section 5. 
 
2.  Related work 
 
2.1 Visualizing data pattern 
 
    Without the capability of automatically searching for 
structure in data, engineers will face difficulties viewing 
endless list of charts and scatter plot to looks for 
relationships. The success rate of this manual approach is 
depending on sufficient time, patience, stamina and luck 
[2]. [3] [4] have emphasized that data mining technology 
applied to data analysis can increase production yield into 
higher level by quickly finding and solving the problem. 
This is because the data mining technology is capable of 
searching from very huge spaces to efficiently find the 
hypothesis that fits the data. They claimed that, they were 
able to solve the yield problem 10 times faster than 
conventional method, and the yield increases from 3% to 
15%. The manufacturing data collected by semiconductor 
industries is constantly growing, but it is still difficult to 
locate important data. Without the automated yield 
management system, the collected data cannot be utilized 
for a more an effective control process [6]. Therefore, 
automated yield management system is needed to be able 
to predict yield issue by using sophisticated data mining 
techniques.  
    Theoretically, one could perform testing for every 
possible combination of the collected data attributes for 
correlation with yield. But, the computation time would be 
very expensive. Therefore, algorithms that can search the 
hypothesis much more quickly are a must. [3] used 
combination of neural networks and rule induction to 
identify the critical poor yield factor from collected 
manufacturing data. The approach is flexible, easy to use 
and suitable to be used with complex manufacturing 
process. [5] have developed a method for specifying 
failure cause automatically. They applied a regression tree 
analysis system, a data mining tools co-developed by 
Fujitsu Laboratories Ltd and Fujitsu LSI Technologies 
Limited. Without depending on experience and skills of 
the engineer the result takes at the speed of six times faster 
than before. 
    [10] [11] stated that the basic of visualization technique 
is to represent the data into certain visual form that human 

being can directly interact with the data to gain insight 
from the pattern recognition and come out with hypotheses.  
    In [9] [10] [11] [14] highlighted that information 
visualization will be able to help to identify the important 
pattern and trend from the large datasets more effectively 
from the natural cognitive skill and intuitive power of 
human mind.  [10] also emphasized that visual data 
exploration has the advantages of handling very non-
homogenous and noisy data; it requires human intuition 
without the need of understanding complex mathematical 
or statistical algorithm. 
    However, [11] [14] stated that human perception 
through the visual representation is capable of 
straightforwardly identify the data relationships when it is 
2 or 3 dimensional. As for multivariate data, it is very 
difficult to identify the relationships manually. 
Furthermore, [12] added that the manual visual data 
exploration is time consuming and may produce incorrect 
conclusion. Finding the right parameter is often very 
tedious and often it is almost impossible to find the 
optimal setting manually. [14] also highlighted that the 
ability of a human to understand what the visualization 
shows and to perceive the identified pattern into 
meaningful hypothesis are depending on a person’s 
background and culture. 
    Therefore, [10] [14] suggested the integration of 
established techniques such as machine learning and 
statistical approach. The combination of automatic and 
visual data mining exploration utilize the human intuitive 
cognitive skills and computer efficiency for efficient 
detection of interesting patterns and trends in data. [14] 
[12] [13] have been achieved on the implementation the 
combination of both technique on geospatial data, pixel 
base visualization and Internet routing anomalies 
discovery. 
 
2.2 Handling Imbalance Datasets 
 
     What actually occurred in our previous work had been 
explained in [19] where a classifier induced from an 
imbalanced data set has typically a low error rate for the 
majority class and an unacceptable error rate for the 
minority class. The problem occurs when the 
misclassification cost for the minority class is much higher 
than the misclassification cost for the majority class.      
     Random over-sampling that randomly replicates the 
minority class and the random under-sampling that 
removes majority class instances was applied by [17] [18] 
in order to obtain a balanced distribution. However, as 
mentioned by [17] [18] [21], random under-sampling did 
not provide significant improvement over the original data 
set whereby random over-sampling was able to reduce 
significantly the FN rate, but it also increased the FP rate. 
Both have known drawbacks. Under-sampling causes lost 
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of potential valuable information from the removed 
instances while over-sampling increases the likelihood of 
over-fitting issue due to the methods of making exact 
copies of the minority class examples. 
     However, despite its limitation, [17] emphasized that 
over-sampling technique have the advantage because there 
is no information loss incur as what will potentially occur 
in under-sampling technique. However over-sampling 
consumes higher computational cost. Furthermore, [17] 
also highlighted that the combination of over-sampling 
and under-sampling do not provide a significant 
improvement compared to the over-sampling alone. 
However, our previous study [22] shows that over-
sampling alone was subject to over-fitting when tested 
with different badges of test data, whilst combination of 
over-sampling and under-sampling produced a robust 
classifier. 
     In order to benefit the advantage and minimize the 
disadvantage of over-sampling technique in handling 
imbalance dataset, [15] [19] [20] proposed the SMOTE 
method which is an over-sampling technique by 
synthetically creates the instances rather than replicates the 
exact copies from the minority class examples. The 
SMOTE and combination of SMOTE and under-sampling 
as proposed by [15] which was performed by using C4.5, 
Ripper and a Naive Bayes classifier, performs better over 
other previous re-sampling method. SMOTE forces a bias 
towards the minority class because the synthetically 
generated instances cause the classifier to create generalize 
and less specific decision regions as compare to the 
replication of minority instances which creates a very 
specific decision region and leading to over-fitting issue. 
     SMOTE over-sampling [15] application claimed to 
yield results by obtained the lowest FN rate, 2.50%, but 
also the highest FP rate, 15.24%. Compare with random 
oversampling, which present a 200% improvement in FN 
rate, with an increase of the FP rate in approximately 21%.  
    [24] claimed that those borderline instances that are 
close to the boundaries between the positive and negative 
region are unreliable because even a small amount of them 
can shift decisions surface into wrong side. Those that are 
redundant majority instances can be taken over safely in 
order to reduce the computation cost of Tomek Links 
algorithm. Hence, they proposed an under sampling 
method called one-sided selection (ONESS), which 
exploits the concept of Tomek links [25]. They also 
suggested to remove a majority instances in a Tomek link 
that is measured to be borderline and/or noisy. 
Furthermore, [24] delete the redundant majority instances 
with CNN algorithm based on a 1-nearest neighbor 
classification as following algorithm:-  
 
CNN algorithm; 
 

1. Let S be the original training set. 
2. Initially, C contains all minority examples from S 

and one randomly selected majority example. 
3. Classify S with the 1-NN rule using the examples 

in C, and compare the assigned concept labels 
with the original ones.  

4. Move all misclassified examples into C that is 
now consistent with S while being smaller. 

 
Tomek links algorithm; 
 

5. Remove from C all negative examples 
participating in tomek links. This removes those 
negative instances those are believed at 
borderline and/or noisy. All minorities’ instances 
are retained. The resulting set is referred to as T. 

 
    Our previous study [16] have shown that the visualized 
pattern data sets performs best with K* learning algorithm 
[23]. K* is the instance based learning algorithm where 
computing of the distance between two instances is 
motivated by information theory. The distance between 
instances is defined as the complexity of transforming one 
instance into another instance. The computation of the 
transformation complexity is done in two steps. Firstly, a 
finite set of transformations which map instances to 
instance is defined. A “program” to transform one instance 
(a) to another (b) is a finite sequence of transformations 
starting at a and terminating at b.  
    The K* distance function defined tries to deal with this 
problem by summing over all possible transformations 
between two instances. K* approach is not focus on the 
distance between two instances that can be defined as the 
length of the shortest string connecting the two instances 
from many possible transformation (as what kolmologrov 
complexity theory suggested). The result of the shortest 
string is a distance measure which is very sensitive to 
small changes in the instance space and which does not 
solve the smoothness problem quite well.  
 
3.  Proposed Approaches 
 
3.1 Binary Visualized Datasets 
 

3.1.1 Approach 
 
    As automatic visual data exploration conjunction is very 
important to achieve speed, repeatability and consistency 
pattern learning for future yield prediction. Thus, we 
combined the visual aspect with machine learning 
algorithm. 
    Since that the temporal data is keep generating from 
time to time and the pattern learning always happens in 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009 
 

 

126 

batch, the pattern trend relating to the yield outcome might 
change. Without the combination with the automatic data 
exploration, engineers will periodically needs to manually 
verify by visual whether previous pattern still valid. They 
may need to identify new pattern and updating it for 
consistent outcome of prediction performance and 
accuracy. Thus, we need the visual pattern to be learned 
automatically and updating it from time to time into a 
learning repertory engine.  
    The visualization technique explains below is the case 
for generating an up and down pattern from 8 intervals of 
historical data attributes or 8 bit pattern from each 
attributes (8 bit binary pattern). Each generated instance 
consists of 8 bit pattern attributes relates to good or bad 
yield classes. 
 
3.1.2 Eight bit binary pattern visualization 
         technique 
 
    Figure 1 is an example of pattern, trend and relationship 
between the yields and attributes; CL is the control limit 
set in percentage by the requirement of process control. A, 
B and C are the example of attributes continuous values 
used to relate the relationship with the yield. YD is the 
point of example where the yield drops below the control 
limit. The a, b and c are the continuous value from the 
attributes at the point of yield is below control limit. R1, R2, 
R3, R4, R5, R6, R7, R8 are the attributes continuous value 
between the time interval of day or hour. 
    Since engineers plot a chart to visualize and analyze the 
trend and pattern from multi-variate data bi-variately, the 
focus is to study the attributes of non-continuous value 
pattern and trend. The continuous value for each attributes 
will be visualized with 2 bits values of UP and DOWN 
pattern from each attributes A, B and C. Every single 
attributes A, B and C will have the combination of 8 
numbers of UP or DOWN pattern for 8 bits visualization 
case. 
    At YD dotted line on the figure 1, the yield drop down 
below the control limit, A=a, B = b and C = c; where a, b 
and c are continuous numbers. The up and down pattern 
set will be:- 
 

 
Ryd (n) = {R1, R2, R3, R4, R5, R6, R7, R8}                       (1)
      
To obtain UP and DOWN pattern of attribute A:- 
 

R8 > a then R8 = UP;  
R7 < R8 then R7 = DOWN;  
R6 > R7 then R6 = UP;  
R5 > R6 then R5 = UP;  
R4 < R5 then R4 = DOWN; 
R3 > R4 then R3 = UP;  

R2 < R3 then R2 = DOWN; 
R1 < R2 then R1 = UP. 

 

 
              Fig. 1. Yield and attributes pattern relationships 

 
 
 
From the above method, the nominal values UP and 
DOWN patterns for each attributes A, B and C are:- 
 
Ryd (A) = {UP, DOWN, UP, UP, DOWN, UP, DOWN, 
UP} 
Ryd (B) = {UP, DOWN, DOWN, UP, UP, DOWN, UP, 
DOWN} 
Ryd (C) = {DOWN, DOWN, DOWN, DOWN, DOWN, UP, 
DOWN, DOWN}                                               
                                                                                        (2) 
 
Since each attributes will have 8 bits or 256 possibilities of 
pattern, the entire look-up pattern will be defined into a 
pattern set P:- 
 
P0={DOWN, DOWN, DOWN, DOWN, DOWN, DOWN, 
DOWN, DOWN} 
P1={DOWN, DOWN, DOWN, DOWN, DOWN, DOWN, 
DOWN, UP} 
P3={,,..,},P4={..},…...,…..,,, 
P255= {UP,UP,UP,UP,UP,UP,UP,UP} 
  
P={P0,P1,P2,…,P255}                                                  (3)                           
 
    Finally, we convert the 8 bit binary UP, DOWN pattern 
generated from each attribute A, B and C into visualized 
pattern set of 256 elements. The generated instance of case 
YD indicates that:-  
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If R1 (A) = P181 And R1 (B) = P154 And R1 (C) = P4 
Then Yield = BAD 
    The example of visualized data instances are tabulated 
as indicates in Table 1 for the training process with 
machine learning algorithm. A threshold level was set at a 
certain level of control limit, for example at yield of 85%. 
If the yield result is below 85% on a certain day, it will be 
 

Table 1: Bad and Good yield visualized pattern dataset 

Case  Attribute A Attribute B Attribute C Yield 
1 P181 P154 P4 BAD  
2 P106 P52 P9 BAD  
3 P172 P201 P37 GOOD
4 P89 P147 P75 GOOD 
5 P179 P38 P150 GOOD 
6 P103 P76 P45 GOOD
7 P207 P153 P90 GOOD 
8 P158 P50 P180 GOOD 
9 P61 P101 P105 GOOD 

10 P122 P202 P211 GOOD 
11 P244 P148 P166 GOOD 
12 P232 P40 P76 GOOD
13 P209 P81 P153 GOOD
14 P162 P162 P51 GOOD 
15 P69 P69 P102 GOOD
16 P139 P138 P205 GOOD 
17 P22 P20 P155 GOOD
18 P45 P41 P54 GOOD 
19 P91 P83 P109 GOOD 
20 P182 P166 P218 GOOD 

 
considered as BAD yield. The BAD yield class is then 
correlates with the pattern from its attributes trend with 16, 
14, 12, 10, 8, 6 or 4 bits value of UP and DOWN pattern. 
Similarly, if the yield result is above 85% at a certain time, 
it is also correlates the GOOD yield class with UP and 
DOWN attributes pattern. In order to obtain the visualized 
pattern number, the UP and DOWN attributes pattern are 
converted with the element in the P set of Eq. (3) as 
shown in Table 1.  The process of generating the instances 
was done by repeating the abovementioned process 
backward to the time axis. 
 
3.2 Handling Imbalance Datasets Techniques 
 

3.2.1 Random Under-sampling and Over-sampling 
 
    The implementation of these non-heuristic approaches 
is very simple. We generated new datasets for training 
from original dataset by randomly select the instances to 
under-sampling the majority class instances, over-
sampling the minority class instances and combination of 
both under-sampling and over-sampling with specific 
percentage of sampling process.  
 

3.2.2 SMOTE with VDM technique 
 
    SMOTE technique [15] was proposed to over-sample 
the minority class by selecting k minority class nearest 
neighbor instances and producing synthetic instances. 
Depending on the percentage of over-sampling required, 
neighbors from the k nearest neighbors are randomly 
chosen and the synthetic instances were generated by 
calculating the nearest neighbor numerical dataset with 
Euclidean distance function.   
   In this study, we are dealing only with nominal value 
dataset generated by our novel data visualization 
technique [16]. Therefore, we applied SMOTE over-
sampling technique with modified Value Distance Metric 
(VDM) distance function as suggested by [15] to measure 
and obtain the k nearest neighbor instances. In our case we 
are using k=5 and to k=1, by selecting 5 and 1 nearest 
neighbor instances from minority class dataset to generate 
a synthetic instance. Total numbers of synthetic instances 
were generated according to the number of over-sampling 
percentage specified in our experiment procedure.  
    The Value Difference Metric (VDM) distance δ, [19] 
between two corresponding feature values is defined as 
follows. 

 
 
Above equation indicates that, V1 and V2 are the two 
feature values. C1 is the total number of occurrences of 
feature value V1, and C1i is the number occurrence of 
feature value V1 for classes i. C2 is the total number of 
occurrences of feature value V2, and C2i is the number 
occurrence of feature value V2 for classes i. k is a constant, 
normally set to 1. The equation is used to calculate the 
value differences for each nominal feature in the given set 
of feature vectors.  
    As in our study, SMOTE-VDM was not used for 
classification purposes, i is equal to 1 because we only 
focus on to produce new synthetic instances from minority 
class instances. To generate new minority class instances, 
[15] proposed to create new set instances values by taking 
the majority vote of the feature vector in consideration 
from its k nearest neighbors. Below shows an example of 
creating a synthetic instance by majority vote proposed. 
    Let F1 = P234 P1112 P3345 P975 P335 be the instance 
under consideration and let its 5 nearest neighbors as; 
 
     F2 = P675   P678    P2341 P1234 P2334 
     F3 = P234   P789    P2242 P3345 P2334 
     F4 = P776   P456    P3456 P987   P567 
     F5 = P1234 P3567  P1112 P3345 P453 
     F6 = P234   P1112  P3345 P765   P777 

(4)
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The application of SMOTE-Nominal would create the 
following instance: 
 
     FS = P234 P1112 P3345 P3345 P2334 
 
    However, we are dealing with poly-nominal data not 
with normal nominal value. The poly-nominal data which 
was visualized by 12 bit number creates 4096 possibility 
of nominal value for each attribute. Hence, there is a 
possibility that the majority vote technique to generate the 
synthetic value may not be feasible. This potentially was 
due to the high possibilities that there will be no redundant 
pattern number available for voting from the selected k 
nearest neighbors. Thus, we included an option in the 
VDM distance function by calculating the average of those 
5 nearest neighbor selected in the instances attributes by 
converting the pattern number into integer and then 
transform the calculated average number back to pattern 
number. Anyhow, in the case of k equal to 1, the synthetic 
instances were generated directly from the selected nearest 
neighbor instances. 
    The threshold for VDM distance value in this study is 
0.1. The VDM distance algorithm generates k nearest 
instance if the distance between two feature vectors which 
was randomly selected is less than 0.1. Zero is the ideal 
distance for similarity feature vector value but it is 
computationally expensive. 
 

3.2.3 SMOTE with K* Entropy 
 
    SMOTE technique [15] was proposed to over-sample 
the minority class by selecting k minority class nearest 
neighbor instances to produce synthetic instances. 
Depending on the percentage of over-sampling required, 
neighbors from the k nearest neighbors are randomly 
chosen and the synthetic instances were generated by 
calculating the nearest neighbor numerical dataset with 
Euclidean distance function. We integrates the K* entropy 
based similarity distance function. Total numbers of 
synthetic instances were generated according to the 
number of over-sampling percentage required in our 
experiment.  
 
3.2.4 SMOTE and Random Under-sampling 
  
    This approach was applied in our previous study [22] 
where Value Difference Metric (VDM) was implemented 
as similarity distance function for SMOTE. Random 
under-sampling sampled from majority class instances 
until the instances numbers exactly balance up with 
SMOTE percentage. The result from this approach will 

compare the significant of K* entropy based distance 
function with VDM. 
3.2.5 One Sided Selection Under-sampling 
 
    As suggested by [26], we applied the approach to verify 
the importance of balance distribution between majority 
and minority instances in order to produce robust 
classifiers. In this paper, we applied ONESS approach by 
under-sampling the majority instances with CNN and 
CNN+Tomek Links. The result from those algorithms 
verifies the relationships of redundant and borderline 
majority instances on our visualized data pattern on 
minority instances. 
 
3.2.6 SMOTE and CNN+Tomek Under-sampling 
 
    This approach applied K* bases entropy similarity 
distance function on the SMOTE and CNN+Tomek under-
sampling. The distribution of the minority and majority 
were made exactly balanced by limit the CNN+Tomek 
under-sampling process until it reach the SMOTE 
instances percentage. The lowest percentage of SMOTE 
allow CNN+Tomek under-sampling to process further 
deeper compare to the higher percentage of SMOTE. 
Since the Tomek process will push majority instances 
further lower than the number of available minority 
instances, this approach is actually equivalent to perform 
under-sampling with CNN algorithm alone without Tomek 
links. 
 
3.2.7 SMOTE and SMaRT (CNN+Tomek) 
 
    Our proposed SMaRT technique applied the under-
sampling with CNN+Tomek algorithm until it reaches to 
the end of the process. The number of majority instances 
left after the process is smaller compared with minority 
class instances. Thus, SMaRT used SMOTE algorithm and 
K* entropy similarity distance function to generate the 
synthetic majority instances until it is balanced with 
minority number of instances generated by specified 
percentage of SMOTE. 
   
3.2.8 SMOTE and SMaRT (CNN) 
 
    This approach is similar with aforementioned above, 
except that we only implemented SMaRT with CNN alone 
without the Tomek Links algorithm. The result between 
these 2 approaches indicates the relationships of redundant 
and borderline/noisy instances with our visualized data 
sets whether they carries significant differences.  
    Once the CNN process ended, the majority instances 
populated are bigger from minority instances. When 
SMOTE at smaller percentage, CNN generates the 
majority instances slightly bigger and SMaRT will not 
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generates synthetic majority instances. At the higher 
SMOTE percentage, SMaRT instances will get into the 
distribution.  
3.3  F-Score Performance Measure 
  
        We used F-Score to measure the overall performance 
of the sampled datasets studied. F-measure is a harmonic 
mean between recall and precision defined as:- 
 

 
 
 
The F-measure becomes zero if either R or P is zero and it 
will become 1 when both R and P are 1. R is recall and P 
is precision. Recall and precision are define as:- 
 

 
 

 
 
CP is the number of instances that are correctly predicted 
as positive and TP is the number of actual positive 
instances, where PP is total number instances predicted as 
positive. 
 
4.  Study results 
 
4.1 Visualized datasets 
 
4.1.2 Experimental procedure  
  
   The data fields used for the study were ID, Total Yield 
Percentage, RankA, G-NG, R-NG, Ring, Hit, MP1, MP2, 
MP3, Q3MP3 and Yield class instance. The visualized data 
into binary bits pattern number was generated from the 
same raw data. Prediction test was done with dataset 
which was visualized into binary bits pattern from the 
same test raw data. In this study we were using Decision 
Stump, J48, Naïve Bayes, IBk, K* and LWL algorithm for 
the learning process with confusion matrix and stratified 
10-fold cross validation. Firstly, we performed the training 
process with the raw data to clarify the attributes 
relationships strength amongst the class instance and to 
seek for the best algorithm. We then trained the 8 bit 
visualized dataset to check for prediction feasibility, 
performance and the best algorithm. 
   Since the results shows that lazy learning algorithm 
(instance base learner) perform the best compared to the 

greedy type learning algorithm, we only compare the 
prediction test between raw data and 8 bit visualized 
datasets with IBk, K* and LWL. We also visualized the 
raw dataset into 4,6,8,12,14 and 16 bits training and test 
datasets, and then trained them with the IBk, K* and LWL 
algorithms. This experiment purpose is to find for the best 
bit number for the visualization technique and to select a 
best classifier from those 3 algorithms. 
 
4.1.3 Result analysis 
 
   Training result with the raw dataset in Table 2 shows 
that IBk and J48 were the best performers where the 
others algorithm had problem with the bad yield 
(minority) class prediction and recall at the average of 
70.2%. With IBk and J48, the average class precision is 
95.2% and 94% and the average class recall is 92.6% and 
92.6%. The result shows that the selected datasets 
attributes indicates the strong relationships with the 
manufacturing yield.  
 
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Anyhow, Table 3 shows that the decision tree classifier 
Decision Stump and J48 failed to classify the training data 
with the 8 bit visualized dataset. IBk, K* and LWL 
algorithm training result performs at acceptable 
performance where the average class precision for K* is 

(5)

(6)

(7)

Table 2: Raw dataset training result 

Weka Decision Stump Weka J48 

  
true 

BAD

true 
GOO

D 

class 
preci
sion 

true 
BAD 

true 
GO
OD 

class 
preci
sion

pred. 
BAD 316 255 

55.3
4% 799 100 

88.8
8% 

pred. 
GOOD 613 13490

95.6
5% 130 

1364
5 

99.0
6% 

class 
recall 

34.02
% 

98.14
%  

86.01
% 

99.2
7%  

Weka IBk Weka KStar 

  
true 

BAD

true 
GOO

D 

class 
preci
sion 

true 
BAD 

true 
GO
OD 

class 
preci
sion

pred. 
BAD 796 76 

91.2
8% 276 23 

92.3
1% 

pred. 
GOOD 133 13669

99.0
4% 653 

1372
2 

95.4
6% 

class 
recall 

85.68
% 

99.45
%  

29.71
% 

99.8
3%  

NaïveBayes Weka LWL 

  
true 

BAD

true 
GOO

D 

class 
preci
sion 

true 
BAD 

true 
GO
OD 

class 
preci
sion

pred. 
BAD 809 435 

65.0
3% 336 277 

54.8
1% 

pred. 
GOOD 120 13310

99.1
1% 593 

1346
8 

95.7
8% 

class 
recall 

87.08
% 

96.84
%  

36.17
% 

97.9
8%  
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97.1%, IBk is 75.7% and LWL is 95.3%. The average 
class recall for K* is 62.4%, IBk is 63% and LWL is 
55.8%. The results from the experiment indicates that the 
proposed technique of the binary 8 bits visualized dataset 
is feasible to be considered for the “one step ahead” future 
prediction of the yield. 
    The prediction test with raw dataset in Table 4 shows 
that IBk is the best learner algorithm to predict the raw 
data yield outcome with the average of 99% for class 
76.7%. 

 
 

 
     
.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
precision and recall, where K* average class precision and 
recall is 85.4% and LWL is 84.5%. On the other hand, 8 
bit visualized datasets test result in table 5 shows that both 
IBk and K* giving good result where the average class 
precision and class recall is 95.9%. LWL produce the 
worst result where the average class precision and recall is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: 8 Bit visualized datasets  training result 

Weka Decision Stump Weka J48 

  
true 

BAD 
true 

GOOD 

class 
preci
sion

true 
BAD 

true 
GO
OD 

class 
preci
sion

pred. 
BAD 0 0 ? 0 0 ? 
pred. 
GOOD 785 12408 

94.0
5% 785 

1240
8 

94.0
5% 

class 
recall 

0.00
% 

100.00
%  0.00% 

100.
00%  

Weka IBk Weka KStar 

  
true 

BAD 
true 

GOOD 

class 
preci
sion

true 
BAD 

true 
GO
OD 

class 
preci
sion

pred. 
BAD 215 170 

55.8
4% 196 32 

85.9
6% 

pred. 
GOOD 570 12238 

95.5
5% 589 

1237
6 

95.4
6% 

class 
recall 

27.3
9% 98.63%  24.97% 

99.7
4%  

NaïveBayes Weka LWL 

  
true 

BAD 
true 

GOOD 

class 
preci
sion

true 
BAD 

true 
GO
OD 

class 
preci
sion

pred. 
BAD 146 240 

37.8
2% 92 4 

95.8
3% 

pred. 
GOOD 639 12168 

95.0
1% 693 

1240
4 

94.7
1% 

class 
recall 

18.6
0% 98.07%   11.72% 

99.9
7%   

 Table 4: Raw dataset prediction test result 

Weka IBK 

  
true 

GOOD true BAD class precision 
pred. 

GOOD 203 1 99.51% 
pred. 
BAD 0 28 100.00% 
class 
recall 100.00% 96.55%  

Weka KStar 
pred. 

GOOD 203 15 93.12% 
pred. 
BAD 0 14 100.00% 
class 
recall 100.00% 48.28%  

Weka LWL 
pred. 

GOOD 179 1 99.44% 
pred. 
BAD 24 28 53.85% 
class 
recall 88.18% 96.55%  

 

Table 5: 8 Bit visualized prediction test result 

Weka IBK 

  
true 

GOOD true BAD class precision 
pred. 
GOOD 185 4 97.88% 
pred. 
BAD 0 24 100.00% 
class 
recall 100.00% 85.71%  

Weka KStar 
pred. 
GOOD 185 4 97.88% 
pred. 
BAD 0 24 100.00% 
class 
recall 100.00% 85.71%  

Weka LWL 
pred. 
GOOD 185 23 88.94% 
pred. 
BAD 0 5 100.00% 
class 
recall 100.00% 17.86%  

 

Table 6: Multiple bit value visualized training result  

    Weka IBk Weka KStar Weka LWL 

Bit
Class class 

recall

class 
preci
sion

class 
recall 

class 
precisi

on 

class 
recal

l 

class 
preci
sion

BAD 0.34 0.47 0.12 0.68 0.00 ? 

4 GOOD 0.97 0.96 1.00 0.94 1.00 0.94

BAD 0.31 0.51 0.20 0.73 0.01 0.78

6 GOOD 0.98 0.96 1.00 0.95 1.00 0.94

BAD 0.27 0.56 0.25 0.86 0.12 0.96

8 GOOD 0.99 0.96 1.00 0.95 1.00 0.95

BAD 0.27 0.50 0.26 0.95 0.24 0.80

10 GOOD 0.98 0.96 1.00 0.96 1.00 0.95

BAD 0.29 0.68 0.27 0.98 0.28 0.57

12 GOOD 0.99 0.96 1.00 0.96 0.99 0.96

BAD 0.27 0.65 0.26 0.97 0.28 0.58

14 GOOD 0.99 0.96 1.00 0.96 0.99 0.96

BAD 0.30 0.62 0.28 0.92 0.29 0.68

16 GOOD 0.99 0.96 1.00 0.96 0.99 0.96
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Training with multiple bit value visualized datasets results 
in table 6 shows that the class precision and class recall 
improving with the higher number of bits value. K* is the 
best performer and 12 bit visualized pattern is the best bits 
value where the average class precision is 96.6% and 
average class recall is 63.6%. IBk result is better with 
average class precision of 81.97% and average class recall 
is 63.9% compare to LWL with an average class precision 
of 76.3% and class recall of 63.4%. 
    However, even though K* produced the best prediction 
accuracy result compare to the other algorithm, the class 
recall for the BAD yield (minority class) is still not 
achieving significant improvement, it was not able to 
surplus 30% even with higher bit visualized datasets. 
 
4.2 Handling imbalance datasets 
 
4.2.1 Experimental Procedure 
  
 We were using the same data from our previous study 
[16]. The data fields used for the study are ID, Total Yield 
Percentage, RankA, G-NG, R-NG, Ring, Hit, MP1, MP2, 
MP3, Q3MP3 and Yield class instance. 12 bit visualized 
training dataset was used as the original dataset to 
generate the new training datasets.  
    For plain random under-sampling training dataset, they 
were generated by 30%, 40%, 50%, 60%, 70% and 80% 
from the original majority class dataset. We created 50%, 
100%, 150%, 200%, 250% and 300% training datasets for 
random oversampling as well as SMOTE oversampling 
from the original minority class dataset. As for the 
combination sampling of random oversampling + under-
sampling and SMOTE + random under-sampling datasets, 
the datasets were created by over-sampling the original 
dataset minority class by 50%, 100%, 150%, 200%, 250% 
and 300% and then randomly under-sampling the original 
majority class instances until the  distribution will be 
exactly balanced with over-sampled instances. 
    Combination sampling of SMOTE+Random_Under-
sampling, SMOTE+SMaRT (CNN+Tomek), 
SMOTE+SMaRT (CNN), SMOTE+CNN Under-sampling 
datasets were created by over-sampling the original dataset 
minority class by 50%, 100%, 150%, 200%, 250% and 
300% and then under-sampling or SMaRTing the original 
majority class instances until it is reached to the exactly 
balanced distribution with over-sampled instances. We 
also generate ONESS datasets by under-sampled the 
majority instances with [8] CNN (Condense Nearest 
Neighbor)+Tomek Links and CNN to verify the 
importance of the exact balance distribution between 
majority and minority instances for our visualized data 
sets. 

    Training datasets were trained with K* algorithm as 
recommended [16] for the learning process with confusion 
matrix and stratified 10-fold cross validation configured. 
The classifiers generated from the training data were then 
being tested with a test dataset from the same batch of 
training dataset. The classifiers once again been tested 
with different batches test dataset to test the robustness of 
the generated classifiers. The result of the training and 
prediction test are compared to verify the effectiveness of 
the integration of VDM and K* entropy base similarity 
distance function and also the improvement of the F-Score 
measure on the robustness of the generated classifiers.  
 
4.2 Result analysis 
 
Training result in table 7 shows that random under-
sampling the majority class instance did not giving 
significant improvement to the class recall and precision 
as compared to the original dataset. Over-sampling results 
indicates that by over-sampling the minority class 
instances randomly, the class recall increases 
proportionally with 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sampling percentage without significantly affecting the 

Table 7: Training result for under-sampling,  
over-sampling and its combination 

Data Sets  Performance 

  R P F 

Original data set 0.273 0.976 0.427
Undersampling    
30% 0.273 0.990 0.428
40% 0.265 0.975 0.417
50% 0.274 0.922 0.422
60% 0.281 0.945 0.434
70% 0.257 0.887 0.399

80% 0.282 0.777 0.414

Oversampling    
50% 0.684 0.991 0.810
100% 0.827 0.991 0.902
150% 0.914 0.989 0.950
200% 0.955 0.984 0.969
250% 0.975 0.981 0.978

300% 0.981 0.976 0.978

Over+Undersampling    
50% 0.826 0.739 0.780
100% 0.907 0.791 0.845

150% 0.957 0.975 0.966

200% 0.975 0.807 0.883
250% 0.986 0.815 0.892

300% 0.993 0.829 0.903
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class precision. Hence, the F value shows significant 
improvement proportionally with higher number of the 
minority class instance oversampling. The combination of 
balance random over and under-sampling result shows that 
the class recall increases proportionally with the number 
of sample but inconsistently affecting the precision. Even 
though the F value shows significant improvement 
compare to the original data set, over-sampling minority 
class instances produce the best result between these three 
sampling method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 8 shows the training result of proposed technique 
SMOTE+VDM with nearest neighbor k=5. The result 
indicates that the sampling method was not able to 
improve the class recall. The result was even worse than 
the original datasets training outcome. Combination 
SMOTE+VDM with k=5 and under-sampling shows 
better performance. However, the result was still not able 
to overwhelm the plain over-sample and over + under-
sampling method outcome.  
    Anyhow, Table 9 shows that the SMOTE+VDM with 
k=1 result performs better than k=5 for both with or 
without under-sampling the majority class instances. The 
SMOTE+VDM and k=1, with and without under-sampling 
both showed better performance from each other at 
difference sampling percentage. However, the result still 
underperforms the simple plain random over-sampling 
method. 

 
 
 
 
 
 

 
     

 
 
 
 
 
 

 
 
 
 

   
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Table 8: Training result of SMOTE-VDM with k=5 and 
combination with under-sampling 

Data Sets  Performance 

  R P F 

SMOTE-VDM k=5    

50% 0.193 0.964 0.322
100% 0.146 0.947 0.252

150% 0.117 0.926 0.208
200% 0.137 0.921 0.239
250% 0.165 0.934 0.280
300% 0.187 0.913 0.310
SMOTE+VDM k=5 and 
Undersampling                     
50% 0.539 0.741 0.624
100% 0.612 0.816 0.700
150% 0.656 0.851 0.741
200% 0.627 0.828 0.714
250% 0.592 0.871 0.705
300% 0.731 0.897 0.805
   

 

Table 9: Training result of SMOTE-VDM with k=1 and 
combination with under-sampling 

Data Sets  Performance 

  R P F 

SMOTE+VDM k=1    
50% 0.211 0.967 0.346
100% 0.438 0.992 0.608
150% 0.729 0.965 0.831
200% 0.663 0.977 0.790
250% 0.822 0.957 0.884
300% 0.846 0.958 0.898
SMOTE+VDM                  
k=1and Undersampling    
50% 0.798 0.790 0.794
100% 0.881 0.773 0.823
150% 0.895 0.835 0.864
200% 0.962 0.731 0.831
250% 0.934 0.823 0.875

300% 0.963 0.774 0.858

Table 10: Prediction test result with same batch test data 

Data Sets  Performance 

  R P F 
Original data set 0.920 1.000 0.958
Undersampling 60% 0.960 1.000 0.980
Oversampling 300% 1.000 1.000 1.000
Over+Undersampling 300% 1.000 0.481 0.649
SMOTE+VDM, k=1 300% 0.880 1.000 0.936
SMOTE+VDM,k=1 
Undersampling 250% 1.000 0.532 0.694
SMOTE+VDM k=5 50% 0.840 1.000 0.913
SMOTE+VDM,k=5 
Undersampling 300% 0.960 0.686 0.800
  

Table 11: Prediction test result with difference batch test data 

Data Sets  Performance 

  R P F 
Original data set 0.000 0.000 0.000 
Undersampling 60% 0.000 0.000 0.000 
Oversampling 300% 0.000 0.000 0.000 

Over+Undersampling 300% 0.571 0.281 0.376

SMOTE+VDM k=1 300% 0.071 1.000 0.133
SMOTE+VDM k=1 
Undersampling 250% 0.500 0.286 0.364
SMOTE+VDM k=5 50% 0.000 0.000 0.000
SMOTE+VDM k=5 
Undersampling 300% 0.536 0.333 0.411
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Table 10, 11 and 12 show the result of the prediction test 
with the classifiers generated by the training data. The 
results were based from the best performer classifiers 
selected from each sampling method. Table 10 indicates 
the prediction test with the testing dataset from the same 
batch of training data. The result shows that over-sampling 
performs the best result while the combination type of 
sampling method did not really perform better as 
compared to the other single type sampling method. 
    Both Table 11 and 12 results were tested with data from 
different batches. The results indicated that sampling 
method that uses combination of over-sampling and 
under-sampling is capable to perform the prediction 
compared to the single type sampling methods which were 
totally failed. SMOTE+VDM and under-sampling method 
shows better result than the combined plain over-sampling 
and under-sampling method. 
    Table 13, 14, 15 and 16 show that SMOTE+Random 
Under-sampling with K* based entropy similarity distance 
function performs better compared to the integration of 
SMOTE with VDM distance function.  
    The results in Table 13 also indicates that 
SMOTE+SMaRT training result significantly performs 
better than the other double sided sampling techniques and 
also outperform the ONESS Over-sampling method 
resulted in our previous study [22]. While significantly 
improving the training result, SMOTE+SMaRT remain its 
robustness, and also performs better from previous study 
[22], a result which is in contrast behavior compared to 
over-sampling technique.  Comparing SMOTE+SMaRT 
with CNN and CNN+Tomek, Table 14 and 16 indicates 
that SMOTE+SMaRT(CNN) outperforms 
SMOTE+SMaRT(CNN+Tomek), while Table 13 and 15 
show a contrast result. Table 13, 15 and 16 also show that 
SMOTE+SMaRT(CNN) perform better with the increase 
of SMOTE percentage (SMaRT instances distribution also 
increased). 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The implementation of CNN alone compared with 
CNN+Tomek did not indicate significant different, except 
that the Table 14 shows the implementation of CNN 
algorithm performs significantly better especially with 
ONESS approach. Table 14 also indicates that the F-Score 
with CNN decrease when the SMOTE percentage increase. 
This shows that, CNN at the lower percentage of SMOTE 
causing the majority instances distribution slightly 
outnumbered the minority instances (but the SMaRT with 
CNN is better than under-sampling with CNN). However, 
the trend was not true in Table 13, 15 and 16. 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 13: Classifiers training result of bad yield class instances 

  Performance 

  R P F 

Tomek+CNN 0.99 0.79 0.879

Under-sampling    

CNN Under-sampling 0.30 0.58 0.399
SMOTE+Random  
Under-sampling     

50% 0.83 0.77 0.798

100% 0.91 0.79 0.847

150% 0.95 0.80 0.869

200% 0.97 0.80 0.880

250% 0.98 0.81 0.891

300% 0.99 0.82 0.897
SMOTE+CNN 
 Under-sampling     

50% 0.78 0.67 0.720

100% 0.88 0.64 0.745

150% 0.97 0.61 0.751

200% 0.98 0.64 0.771

250% 0.99 0.65 0.788

300% 0.99 0.68 0.807
SMOTE+SMaRT 
(TOMEK+CNN)      

50% 0.84 1.00 0.914

100% 0.91 1.00 0.955

150% 0.96 1.00 0.979

200% 0.98 1.00 0.990

250% 0.99 1.00 0.993

300% 1.00 1.00 0.998

SMOTE+SMaRT(CNN)      

50% 0.74 0.66 0.698

100% 0.88 0.66 0.755

150% 0.95 0.69 0.798

200% 0.98 0.76 0.855

250% 0.99 0.83 0.901

300% 0.99 0.87 0.924
 

Table 12: Prediction test result with another difference 
 batch test data 

 

Data Sets  Performance 

  R P F 
Original data set 0.000 0.000 0.000
Undersampling 60% 0.000 0.000 0.000
Oversampling 300% 0.000 0.000 0.000
Over+Undersampling 300% 0.346 0.180 0.237
SMOTE+VDM k=1 300% 0.000 0.000 0.000
SMOTE+VDM k=1 
Undersampling 250% 0.385 0.196 0.260
SMOTE-VDM k=5 50% 0.000 0.000 0.000
SMOTE-VDM k=5 
Undersampling 300% 0.346 0.220 0.269
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    For the ONESS approach, even though CNN under-
sampling shows significant better result (Table 14), but it 
did not produce robust classifier as indicated in Table 13, 
15 and 16. CNN+Tomek under-sampling produce quite a 
robust classifier accepts for the result indicates in Table 14, 
where the result is at the lowest level compared to the 
other approaches. We also can see that CNN+Tomek 
under-sampling is producing the best performance for 
class recall in overall result but lower in class precision, 
while 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
the other approaches sacrificing class recall to raise up the 
class precision in order to improve the F-Score.  A result 
of ONESS approach shows that, it is crucial to remove the 
borderline and noisy instances in order to produce a robust 
classifier. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 14: Classifiers same batch data test result of  
bad yield class instances 

  Performance 

        R P F 

Tomek+CNN 1.00 0.13 0.230

Under-sampling    
CNN Under-sampling 0.92 0.82 0.868
SMOTE+Random  
Under-sampling  

50% 0.96 0.38 0.539
100% 0.96 0.42 0.585
150% 0.96 0.47 0.632
200% 1.00 0.39 0.562
250% 1.00 0.43 0.602
300% 0.92 0.42 0.575

SMOTE+CNN  
Under-sampling     

50% 0.96 0.57 0.716
100% 1.00 0.52 0.685
150% 0.96 0.25 0.400
200% 0.96 0.22 0.356
250% 1.00 0.20 0.333
300% 1.00 0.19 0.325

SMOTE+SMaRT 
(TOMEK+CNN)      

50% 0.96 0.32 0.485
100% 1.00 0.32 0.481
150% 0.96 0.31 0.471
200% 0.96 0.30 0.462
250% 1.00 0.32 0.481
300% 0.96 0.29 0.444

SMOTE+SMaRT 
(CNN)      

50% 0.88 0.79 0.830
100% 0.96 0.34 0.505
150% 1.00 0.46 0.633
200% 0.96 0.43 0.593
250% 1.00 0.34 0.510

300% 1.00 0.35 0.521
 

Table 15: Classifiers different badge data test result of 
 bad yield class instances 

  Performance 

  R P F 

Tomek+CNN 1.00 0.26 0.415

Under-sampling    
CNN Under-sampling 0.07 0.22 0.108
SMOTE+Random  
Under-sampling  

50% 0.61 0.29 0.391
100% 0.64 0.30 0.405
150% 0.43 0.24 0.304
200% 0.57 0.30 0.395
250% 0.39 0.20 0.265
300% 0.64 0.33 0.434

SMOTE+CNN  
Under-sampling    

50% 0.71 0.33 0.449
100% 0.54 0.27 0.361
150% 0.75 0.30 0.424
200% 0.79 0.30 0.436
250% 0.86 0.29 0.432
300% 0.82 0.29 0.426

SMOTE+SMaRT 
(TOMEK+CNN)     

50% 0.71 0.32 0.440
100% 0.68 0.29 0.409
150% 0.71 0.32 0.440
200% 0.75 0.35 0.477
250% 0.71 0.29 0.412
300% 0.68 0.32 0.432

SMOTE+SMaRT 
(CNN)     

50% 0.29 0.31 0.296
100% 0.54 0.32 0.400
150% 0.61 0.29 0.391
200% 0.54 0.26 0.353
250% 0.61 0.29 0.391

300% 0.61 0.33 0.430
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5.  Conclusion and Further Research 
 
   The combination of K* learning algorithm with 12 bit 
pattern visualized datasets produces the best class 
precision and recall result. This indicates that the method 
of visualizing the pattern with the proposed binary bit 
pattern method is feasible to be used with machine 

learning algorithm in order to predict future manufacturing 
yield. Since most of the temporal data learning performs 
batch by batch basis, this data visualization technique can 
be used for automatic data exploration to learn the pattern 
and trend and then updating them from time to time into a 
learning repertory engine. The Bad yield (minority 
instances) class recall performance issue due to the 
imbalance datasets (due to the nature of manufacturing 
process) can be improved by identifying the pattern and 
trend that has strong relationships with the bad (minority) 
and good (majority) class instances. Combination with 
other technique such as [15] SMOTE (Synthetic Minority 
Over Sampling Technique), conventional over sampling 
minority class or under sampling majority class can be 
applied to further improve the Bad yield (minority) class 
recall drawback. 
    Handling the imbalance datasets merely by under-
sampling alone was not able to give any significant 
improvement; but in contrast, the over-sampling method 
has produced the best performance. Furthermore, over-
sampling result outperformed our proposed SMOTE-
VDM and SMOTE-VDM + under-sampling. However, the 
prediction test result indicates that, the combination of 
under-sampling and over-sampling was able to deal wider 
range of test datasets. As such, SMOTE+VDM and under-
sampling produced the most robust classifier performance 
which is capable to perform better with all those three 
different batches of prediction test data.  
     In comparison of the similarity distance function, K* 
based entropy similarity distance function perform better 
than VDM for the visualized data sets. Our suggested 
approach of SMOTE+SMaRT also improved the 
classification robustness compared to the previous 
approaches.  
    Well balanced number of instances in the datasets 
produces robust classifier but further improvement on the 
performance is required. However, the exact balance of 
minority and majority classes are not the main concern to 
handle the imbalance data sets. The most important matter 
to focus is the balance distribution of the relevant 
information carried by each class instances. This is 
because the random under-sampling has the potential of 
information loss which affecting the class precision, whilst 
over-sampling method will improve the class recall with 
mild impact to the precision but carry the risk of over-
fitting. 
    Hence, we conclude that over-sampling with 
appropriate synthetic minority instance is important to 
improve the class recall with minimum impact to over-
fitting. On the other hand, because under-sampling causes 
the information loss and reducing the class precision, an 
approach such as SMaRT selectively sampling out the 
majority class instances is also important for future study. 
A study to improve the class precision without sacrificing 

Table 16: Classifiers different badge data test result of 
 bad yield class instances 

  Performance 

  R P F 

Tomek+CNN 1.00 0.22 0.361

Under-sampling    
CNN Under-sampling 0.04 0.20 0.065
SMOTE+Random  
Under-sampling  

50% 0.54 0.21 0.301
100% 0.35 0.15 0.209
150% 0.42 0.21 0.278
200% 0.46 0.20 0.279
250% 0.46 0.24 0.320
300% 0.31 0.16 0.211

SMOTE+CNN  
Under-sampling     

50% 0.58 0.21 0.303
100% 0.58 0.25 0.345
150% 0.77 0.25 0.377
200% 0.88 0.26 0.407
250% 0.77 0.24 0.364
300% 0.92 0.26 0.410

SMOTE+SMaRT 
(TOMEK+CNN)      

50% 0.58 0.21 0.306
100% 0.62 0.23 0.330
150% 0.50 0.20 0.289
200% 0.58 0.22 0.323
250% 0.62 0.23 0.333
300% 0.65 0.22 0.330

SMOTE+SMaRT 
(CNN)      

50% 0.27 0.24 0.255
100% 0.38 0.21 0.270
150% 0.62 0.25 0.352
200% 0.42 0.20 0.268
250% 0.42 0.20 0.272

300% 0.46 0.23 0.304
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class recall of the minority instances is very crucial in 
order to further extend the classifiers robustness and 
predicting performance. Hence, a method on how to 
handle with the redundant, borderline, noisy instances and 
also to effectively generate synthetic instances (both for 
over-sampling and under-sampling) should be the main 
focus. Another approach that can be considered for the 
improvement is to select the best trained classifiers 
performer at respective area and combine them into one.   
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