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Summary 
Basic Local Alignment Search Tool (BLAST) is a heavily 
used bioinformatics application that has gotten significant 
attention from the high performance computing 
community. The authors have taken BLAST execution a 
step further and enabled it to execute on grid resources. 
Adapting BLAST to execute on the grid brings up 
concerns regarding grid resource heterogeneity, which 
inevitably cause difficulty with application availability, 
fault tolerance, interoperability, and variability in 
performance of individual segments that are being 
distributed across grid resources. This paper describes a 
BLAST-specific metascheduler, named Dynamic BLAST, 
a multithreaded, master-worker type application that 
handles all aspects of a BLAST job submission on the grid 
for the user. The main contribution realized with Dynamic 
BLAST is minimization of user job turnaround time 
through understanding and leveraging of resource 
heterogeneity found across grid computing environments. 
Experiments with Dynamic BLAST on UABgrid resources 
show reduction in total execution time of BLAST jobs up 
to 50% while improving resource utilization by 
approximately 40%. 
Key words: 
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1. Introduction 

Grid computing [1] can be described as being the 
culmination of distributed computing and high-
performance computing where networking, 
communication, computation and information are 
integrated in order to provide a virtual platform for 
unlimited compute power and data management [2]. 
Realizing benefits enabled through grid computing (e.g., 
shorter job runtime, increased resource utilization, 
improved and seamless collaboration, easier information 
and resource sharing) is typically done by joining a Virtual 
Organization (VO) [3] and increasing utilization of readily 
available resources through more continuous use. VOs 
represent aggregations of communities that may share 
national and international boundaries but have common 
objectives. Through these VOs, grid computing is capable 
of aggregating heterogeneous resources that belong to 

different administrative domains and thus create a unique 
and valuable resource for the collaborating community.  

Once a VO exists, applications need to be deployed 
on available resources. Grid application deployment is a 
non-trivial task and it includes transfer of the entire 
application (i.e., source code, dataset, scripts) to a remote 
site, compiling the application on a remote host, and 
making it available for execution. Even before an 
application is deployed and can realize desired goals, it 
must be grid enabled [4]. Grid-enabling is the process 
through which an application that is currently executing on 
a standalone computer (examples of standalone resource 
being any of the following: single CPU workstation, server, 
cluster, storage unit, task specific machine with a network 
interface, etc.) is reorganized and/or refactored so that the 
application can execute on any given set of resources that 
are dynamically discovered. Today however, most of the 
applications are developed for standalone resources and 
are thus not in a position to execute on the grid.  

As one can imagine, grid-enabling an application 
often requires significant effort. The amount of effort 
required is greatly influenced by the application that is 
being grid-enabled. Some application categories are more 
suitable for grid-enablement than others, mainly because 
of the parallelization methods and modes employed by 
those applications. Based on application communication 
patterns and thus the parallelization model, applications 
can be divided into in the following general categories [5]:  

1. Sequential applications 
2. Parametric Sweep applications 
3. Master-Worker applications 
4. All-Worker applications 
5. Loosely coupled parallel applications 
6. Tightly coupled parallel applications 
7. Workflow applications 
Applications belonging to categories 1 through 4 are, 

in decreasing order, the easiest to grid-enable, while 
applications belonging to remaining application categories 
may require rewriting of the complete application before it 
can be adopted to execute on the grid (some efforts [6] are 
under way to remove some of the involved difficulties).  

After gaining access to a grid environment through a 
VO and grid-enabling an application, users immediately 
expect an increase in performance of application jobs that 
is proportional to the number of grid resources available. 
However, vast but raw grid resource availability does not 
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necessarily warrant increased application performance. An 
example for a specific application, highlighting the effects 
an approach and methodology of consuming available 
resources can have on performance of an application job, 
will be shown in this paper. This can be contributed to the 
high degree of variability individual applications impose 
on underlying resources in terms of their requirements 
making generalized or standardized approaches fall short 
of realizing set goals. Because of such variability, general-
purpose metaschedulers (e.g, [7]) do no focus on 
understanding application-specific requirements and thus 
cannot realize application-specific job scheduling and job 
performance. In order to realize such behavior, 
application-specific schedulers are needed that focus on 
specific needs of an individual application [8] [9]. 

With such multiple factors contributing to the 
difficulty of not only executing applications across grid 
resources, but also executing an application efficiently, it 
can be concluded that a typical grid user will be hard-
pressed to realize desired behavior for their jobs. In order 
to alleviate a user form these low-level, infrastructure 
details, help of specialized, higher-end tools that mange 
grid infrastructure details on user’s behalf is needed.  

To that extent, this paper presents design and 
implementation details of a widely spread bioinformatics 
application, namely Basic Local Alignment Search Tool 
(BLAST) [10]. BLAST is a sequence analysis tool that 
performs similarity searches between a short query 
sequence and a large database of infrequently changing 
information such as DNA and amino acid sequences. With 
the rapid development of sequencing technology of large 
genomes for several species, the sequence databases have 
been growing at exponential rates [11, 12]. Facing rapidly 
expanding target databases and more complex search 
queries, the BLAST programs take significant time to find 
a match. Initially, parallel computing techniques have 
helped BLAST to gain speedup on searches by distributing 
searching jobs over a cluster of computers. Several parallel 
BLAST search tools have been demonstrated to be 
effective at improving BLAST’s performance. mpiBLAST 
[13] and TurboBLAST [14] use database segmentation to 
distribute a portion of the sequence database to each 
cluster node. In the database segmentation method, each 
cluster node only needs to search a query against its 
portion of the sequence database. Alternatively, query 
segmentation can be applied to alleviate the burden of 
searching jobs. In the query segmentation method, a subset 
of queries, instead of the database, is distributed to each 
cluster node, which has access to the whole database. 
Figure 1 points at the differences and the execution modes 
of the two BLAST parallelization models.  

 
 

 
Figure 1. Two models for parallelizing BLAST: (A) query 

segmentation and (B) database segmentation 

Because of the physical limitations encountered when 
parallelizing BLAST, using only traditional high  
performance computing technologies and techniques, a 
logical next step was to grid-enable BLAST. The BLAST 
application has a broad community whose grid-enablement 
was clearly going to bring significant benefit to the 
scientific community (in terms of resource availability as 
well as job turnaround time). This effort is described in 
this paper by providing details on developing Dynamic 
BLAST – a grid-enabled BLAST. As such, there are three 
key contributions of this work: 

1. Enabling BLAST application to execute across 
grid environments through a simple user interface, 
thus hiding all complexities of underling 
infrastructure 

2. Developing a BLAST execution model for 
heterogeneous grid environments, which  
analytically captures dependencies between an 
application and a resource 

3. Incorporating a BLAST-specific metascheduler 
into the execution model that implements the 
BLAST execution model and is capable of 
understanding and leveraging heterogeneity of 
compute resources found across a grid to 
minimize BLAST job runtime  

Other similar efforts of grid-enabling BLAST have 
been undertaken by various researchers [15] [16] but the 
one described in this paper is the only one that has made 
extensive use of available grid standards and other 
available tools to modularize the code as well as 
incorporate a BLAST specific scheduler directly into the 
job submission process, thus enabling the application to 
exploit the dependencies that exist between individual 
resources and the application to optimize job performance. 

The remainder of the paper is organized as follows: 
Section 2 provides an overview of the architecture, 
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BLAST execution model and implementation details of 
Dynamic BLAST. Results of executing Dynamic BLAST 
and comparing it to basic query segmentation 
parallelization model are provided in Section 3. Section 4 
suggests some future work and summarizes the paper. 

2. Implementation Details 

This section provides an overview of Dynamic BLAST 
architectural features ranging from high level technologies 
employed to the lower level, implementation details. 

2.1 High Level Architecture 

Implementation of Dynamic BLAST was done with 
maximum flexibility and high end-user applicability in 
mind. This was realized through adoption of standards as 
soon as those became available as well as modularization 
of the code to separate isolated functionality into easy-to-
update modules. In particular, Dynamic BLAST was 
developed using Java on top of the Globus Toolkit [17] 
and has adopted the Distributed Resource Management 
Application API (DRMAA) [18] standard for all job 
invocation operations. Furthermore, Dynamic BLAST was 
built on top of GridWay [19], a grid job management 
system, for all job submission activities. A high level 
overview of Dynamic BLAST’s interaction with grid 
components is given in Figure 2. 

 

 
Figure 2. High level diagram of interactions between grid 
components and Dynamic BLAST. 

As can be seen in the Figure 2, authentication and 
authorization are moved outside the Dynamic BLAST 

where the user is required to have valid X.509 GSI proxy 
credentials [20] before job invocation. Resources available 
for job submission are discovered dynamically through 
GIS/MDS [21]. GridAtlas [22] is a locally developed 
utility that monitors application related (in this case, 
BLAST related) parameters across various resources. This 
includes application installation and input data locations 
on various resources. Interaction with GridWay is 
performed through DRMAA API and is used for all job 
submission and monitoring activities. As discussed in the 
next section, Dynamic BLAST handles resource selection 
and data distribution but resource allocation, data transfer, 
and job monitoring are all delegated directly to GridWay. 
Adoption of GridWay in Dynamic BLAST development 
was a cornerstone with respect to Dynamic BLAST 
modularity and portability. GridWay provides a 
streamlined platform for high-level grid application 
development. Before adopting GridWay, the majority of 
development and maintenance effort within Dynamic 
BLAST was devoted to low level resource interactions and 
upkeep with ever-changing technologies (e.g., pre-WS to 
WS). Adoption of DRMAA standard within GridWay has 
even alleviated direct dependencies of Dynamic BLAST to 
GridWay, thus even further increasing modularity of 
developed application. 

 

2.2 Dynamic BLAST Architecture 

Analysis of BLAST parallelization methods and grid 
resource characteristics have led Dynamic BLAST to be 
internally developed under the master-worker 
communication model, by embedding needed components 
into a hierarchical framework. The master-worker model 
allows a single process to control the resource selection, 
data distribution, job submission and parameterization, as 
well as job monitoring. Thus, selected application model 
maximizes execution flexibility, code modularity, and 
fault tolerance. Going hand in hand with the master-
worker model is the choice regarding the parallelization 
model of BLAST jobs (i.e., query segmentation or 
database segmentation). Suitability of one method over 
another is both data and resource dependent [13, 23, 24, 
25]. As such, based on current resource availability, one 
method can often be found more appropriate than the other. 
In order to maximize flexibility of Dynamic BLAST in 
this aspect, as well and allow advanced scheduling 
techniques to be applied on user’s behalf, the master-
worker model has, once again, shown to provide the most 
flexibility. Selected model (i.e., master-worker) allows 
different BLAST algorithms to be invoked on available 
resources even within a single job. This has the potential 
of increasing the suitability of available resources, 
maximizing resource utilization while minimizing job 
turnaround time. 
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Internal dataflow for Dynamic BLAST closely 
follows architectural components and consists of several 
key layers/steps. A diagram of the components and 
dataflow is provided in Figure 3. The main components of 
given architecture are: 

• Data Analysis (analyzes input files) 
• Create Job Plan (decide on resource selection, 

data distribution, algorithm, and job parameter 
selection) 

• File Parsing and Fragmentation Module (based on 
job plan, splits the input query file) 

• Thread creation (each resource and dataset is 
assigned a thread) 

• Threads (manage all job submission related tasks 
for assigned resource) 

• Post processing (wait on threads to complete, 
transfer data to local machine and join it into a 
single results file) 

 

 
Figure 3. Internal dataflow for Dynamic BLAST. 

Data Analysis performs statistical analysis of user 
input query file to extract some parameters needed in later 

steps of data processing. This information includes the 
number of queries, the average query length, the standard 
deviation, and similar. Described module also extracts 
current resource availability information and stores it in an 
internal, Dynamic BLAST specific format.  

Create Job Plan module uses information retrieved 
by the Data Analysis module to perform on-line 
scheduling and job parameterization. This module is the 
very core of Dynamic BLAST and it implements a BLAST 
performance model for resource selection and data 
distribution. The model implemented aims at generating 
query fragments based on relative resource performance in 
order to minimize load imbalance. The model is realized 
by implementing Eq. (1) for resource selection and Eq. (4) 
for data distribution.  

 

(1)

Ej from Eq. (1) represents the set of resources to be 
selected for execution of job j and it is further described 
through Eq. (2) and (3). In respective equations, Rj refers 
to the set of available resources capable of executing job j, 
while refers to the performance rate of individual 
resource from the perspective of BLAST job j. is 
calculated as a combination of the size of resource i, 
namely ni representing the total number of processing 
elements (i.e., cores), and the performance rate of 
individual processing element on resource i for the specific 
job j. Job performance rate is obtained from historical 
analysis of performance of BLAST application on a 
specific resource. Alternatively, a generic resource 
benchmark, such as SPEC [26] can be used to obtain 
performance value of a given resource or even the 
theoretical resource peak performance with a small 
adjustment [27]. 

 
 

(2)

 
 (3)

For Eq. (4), di represents the size of a task data chunk 
assigned to resource i; ni represents the number of 
processing elements on resource i, D is the total size of 
user input and  is the normalized weight or 
performance rate of the resource i. The result of executing 
the Job Plan module is a concrete plan for resource 
assignment and data distribution that is followed during 
the remainder of the job execution.  

 

 
(4)

File Parsing and Fragmentation module reads the 
generated Job Plan and proceeded in two steps. Initially, it 
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splits the original user query file into chunks, one for each 
resource, whose size is available from the Job Plan as 
derived from Eq. (4). Each data chunk di is is then further 
subdivided divided into fragments fi. This is done 
according to equation (5), i.e., proportionally to the 
number of processing elements (ni) within any one 
resource:  

 

 
(5) 

Thread Creation takes place when the master thread 
creates worker threads; one thread is created for each 
resource. Individual Threads read their respective part of 
the Job Plan to parameterize given task. Because of such 
granular approach to job plan generation and execution, as 
stated earlier, different BLAST algorithms and parameters 
can be used for different resources. This provides needed 
customization and allows for maximization of resource 
utilization as well as very high level of user support and 
Quality of Service (QoS). Jobs are submitted directly by 
threads to individual resources through DRMAA and 
GridWay while the master thread waits on the threads to 
complete. Individual threads initiate output file transfer 
back to the initial job submission resource before 
completing their execution. If a resource fails or a task 
does not complete its execution as planned, the master 
thread could resubmit just the given task to another 
resource.  

Post Processing module is part of the master thread 
and its primary task is combining all the output and result 
files into a single result file presented to the end user. Any 
cleanup and additional task, such as bookkeeping of 
performance results, are performed in this step as well. 

3. Experimental Results 

 This section presents the experimental setup and 
performance results of Dynamic BLAST across UABgrid1 
resources. Performance comparison is performed as an 
iterative process starting with the basic query segmentation 
model for parallelizing BLAST and building the BLAST-
specific metascheduler model described in the previous 
section to derive application-specific customizations that 
yield improved BLAST job performance. 

3.1 Environment Setup 

The experiments testing performance of Dynamic 
BLAST were conducted on three resources available on 
UABgrid. These resources are located across three 
independent departments, each locally administered with 
applicable policies and procedures in place. All of the 

                                                           
1 http://uabgrid.uab.edu/ 

resources had a version of BLAST application installed 
and required input data available for use. Technical 
resource details are provided in Table 1. We used the 
popular 1.6 GB nr database to search against. The nr 
database is a non-redundant protein database with entries 
from GenPept, Swissprot, PIR, PDF, PDB, and RefSeq. 
The version used was 1.6 GB in size and available from 
the National Center for Biotechnology Information 
(NCBI)2.  The input file used consisted of 4096 search 
queries randomly selected from the Viral Bioinformatics 
Resource Center (VBRC)3 database. The VBRC database 
contains the complete genomic sequences for all viral 
pathogens and related strains that are available for about 
half a dozen of virus families.  
 
Table 1. Architectural details of resources used during 
experiments with AIS. 

Machine Cheaha Ferrum Olympus

Processor Intel 
Xeon 
E5450  

Intel 
Xeon 
E5345 

Intel 
Xeon 

Clock Frequency 
(GHz) 3 2.33 3.2 

Instructions/Cycle 4 4 2 
No. of 
Cores/Node 8 8 2 

Memory per Node 
(GB) 16 12 4 

Interconnect 
(Gbs) 10 10 1 

No. of Nodes 
Available 12 24 64 

Total No. of 
Cores Available 96 192 128 

 
 
3.2 Performance Results and Analysis 

Performance of Dynamic BLAST is compared to the 
performance of the plain query segmentation variant of 
BLAST job parallelization. The query segmentation 
variant operates under the model of dividing the total 
number of input queries across individual resources based 
on those resources' relative size. As such, resource weight 
factor, , from Eq. (4) is uniformly set to 1 and derived 
equation can thus be used to derive proportional amount of 
data that should be assigned to each resource. Given 

                                                           
2 http://www.ncbi.nlm.nih.gov/ 
3 http://www.biovirus.org/ 
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resource availability from Table 1 and using Eq. (4), data 
distribution shown in Figure 4 is obtained.  

Having obtained job parameters for the basic query 
distribution parallelization model, we executed the job 
across available resources and obtained runtime data for 
the basic query segmentation model, as shown in Figure 5. 
Under the master-worker parallelization model employed, 
the overall job is considered complete only after the 
longest running task has completed. As such, the aim is to 
minimize load imbalance across individual resources; 
however, in obtained results, a considerable level of load 
imbalance across resources is exhibited.  

 

Figure 4. Initial input data distribution based on the size of 
resources alone 

Exhibited performance and associated load imbalance 
can be explained by two properties. The first is a property 
of BLAST algorithm where, as shown in [28], runtime of 
BLAST algorithm is significantly affected by the length of 
the input query as opposed to the number of queries alone. 
By simply taking obtained input file provided and dividing 
it into a number of chunks at predetermined data points 
(e.g., using UNIX split utility), the type of data that gets 
assigned to individual nodes within a resource can vary 
greatly and can thus result in the load imbalance problem. 
Figure 6 shows a profile view of query lengths that were 
used during performed experiments. As is evident from the 
(A) portion of the figure, lengths of individual queries vary 
greatly and are unevenly spread across the provided input 
file. When Eq. (4) is applied to this input data set, 
corresponding to the three available resources, three well 
defined data chunks are created; each of those data chunks 
is relative to the resource size. Furthermore, each of those 
data chunks is further divided among available nodes on a 
particular resource (according to Eq. (5)). As can be seen 
from the figure, a disproportionate type of queries (in 
terms of length) is assigned to individual nodes resulting 
in observed load imbalance.  

Dynamic BLAST addresses this issue by reorganizing 
the input data so that a proportional number of short, 
medium and long queries are assigned to each individual 
node. This problem can be generalized into a bin-packing 

problem where the number and size of bins is 
predetermined (i.e., number of chunks and number of 
queries assigned to each individual resource). A simple yet 
effective and efficient heuristic implementation  for this 
problem is the first fit decreasing algorithm (complexity is 
Θ(n log n) where n is the number of queries), which 
assigns data elements across individual bins in a 
decreasing order for as long as there is input [29]. Note 
that under the constraints of the heterogeneous and 
distributed environment where this algorithm is applied, a 
need for an optimal solution is minimal and, instead, focus 
should be put on efficiency. Therefore, the File Parsing 
module of Dynamic BLAST implements the first fit 
decreasing algorithm as a two-step progress: first, input 
file is divided into chunks of proportional type of data as 
dictated by the Job Plan, and secondly, each chunk is 
divided into a number of proportional fragments, as 
indicated in the Job Plan again. The result is that load 
balance among tasks will be achieved and thus resource 
comparison used to derive the job plan and the data 
distribution will actually hold during runtime (see Figure 7 
under first-fit decreasing data re-distribution). By applying 
the first-fit decreasing algorithm to reorganize assignment 
of individual queries to corresponding nodes, data 
distribution shown in Figure 6 (B) can be obtained, 
showing a much more even distribution of comparative 
queries across individual compute nodes.  

 

 
Figure 5. Runtime results across the three resources for the basic 
query segmentation parallelization model.  

The final BLAST-specific contribution implemented 
as part of Dynamic BLAST, and also the second property 
affecting performance of BLAST jobs, is the resource 
benchmark for the BLAST application. This is 
implemented as the resource weight factor in Eq. (4) and it 
is realized by performing an application-specific 
benchmark on a given resource. The benchmark can be 
explicitly executed when a resource joins a largely static 
resource pool, alternatively, a short running benchmark 
can be executed prior to the submission of the real job, or 
information about historical runs of BLAST across 
resources can be kept in a local repository and then a 
resource-specific look can be performed prior to job 
submission. Current implementation of Dynamic BLAST 
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relies on availability of such application-specific 
information from Application Performance Database 
(AppDB) from the Application Information Services (AIS) 
[30] where runtime characteristics of previous application 
executions are stored and made available for extraction 
and analysis.  

 

 

 
 
Figure 6. Difference in query distribution between (A) basic 
query segmentation model and (B) Dynamic BLAST data 
distribution model 

For presented experiments, the benchmark data we 
used was the entire 4096 query input file otherwise divided 
across multiple resources. Benchmarked version was 
reordered by the first-fit decreasing algorithm prior to 
being used to provide even workload distribution to all 
processing elements within a resource. Although such a 
large benchmark is typically not necessary, we used it in 
presented scenario to show the relationship and impact of 
using any single resource versus a combination of several 
grid resources. Obtained runtime results, calculated 
normalized resource performance and newly derived data 
distribution based on Eq. (4) that incorporates resource 
weight factor is provided in Table 2.  

 
Table 2 – Resource benchmark values, calculated resource 
weights and newly derived job data distribution 

Resource  Cheaha  Ferrum  Olympus 
Benchmark 
Runtime Data (sec) 1595 1025 2234 

Normalized 
Resource 
Performance  

0.643 1.00 0.458 

Query Distribution  1255 1949 892 

 
Final runtime results of BLAST-specific 

optimizations implemented as part of Dynamic BLAST are 
shown in Figure 7. Obtained performance results are 
shown along with the runtime performance characteristics 
of the basic query segmentation model and the data re-
distribution model resulting from the application of the 
first-fit decreasing algorithm. As stated earlier, for the 
master-worker paradigm, the runtime of the overall job is 
determined by the longest running component (i.e., 
Maximum). As such, results obtained in Figure 7 show a 
reduction in runtime of using the BLAST-specific data re-
distribution model on the order of 50%. 

Incorporating the BLAST-specific resource weight 
factor into the data distribution model, and thus 
implementing the Dynamic BLAST algorithm, results in 
additional 15% reduction of the overall job runtime. 
Furthermore, the overall load imbalance across multiple 
resources has been significantly reduced; standard 
deviation for the basic query segmentation model is 427 
seconds while the standard deviation obtained by Dynamic 
BLAST is approximately 25 seconds showing the ability 
of devised BLAST-specific optimizations not only to cope 
with the heterogeneity of grid resources but also to 
leverage present heterogeneity. 

 

 
Figure 7 - Runtime characteristics of (1) basic query 
segmentation parallelization (this is the same data as what was 
shown in Figure 5), (2) first-fit decreasing data re-distribution, 
and (3) Dynamic BLAST (weighted first-fit decreasing). 
Maximum refers to the max runtime of any one resource and thus 
the overall runtime of a job. 

3.3 Discussion 

In this section, we present a brief discussion on the 
importance of the BLAST-specific, and more generally, 
application-specific optimization in the context of 
simultaneous distribution and submission of a job across 
multiple grid resources. As stated in Section 3.2, the 
selected input data for the BLAST benchmark 
unnecessarily consisted of the entire 4096 input queries. 
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This was done with the intention to highlight the impact 
and difficulty a typical grid user may experience when 
submitting a job to grid resources. Analyzing performance 
of individual resources that performed BLAST search on 
selected input file, as presented in Table 2, point at a great 
level of resource heterogeneity present across grid 
resources. If performance of the basic query distribution 
model shown in Figure 7 is compared to the performance 
of Ferrum resource presented in Table 2, it can be 
observed that the performance of the single resource 
outperforms the combination of three resources by 
approximately 20%. As such, it is easy to envision a 
typical user that is presented with an opportunity to 
execute their job across multiple resources to do just that: 
consume all of the available resources and at the same 
time realize subpar job performance. From the computer 
science perspective, it is therefore important to not only 
realize potential deficiencies in existing tools and 
infrastructures but also to enable users of available 
technologies to overcome potential hurdles without having 
to delve over low-level, accidental complexities introduced 
by the infrastructure. Dynamic BLAST provides a solution 
in that direction for one specific application and realizes a 
significantly improved experience for the end user without 
requiring manual user intervention. 

4. Conclusions and Future Work 

Development of end user applications is critical for 
success of grid computing. More so, those applications 
must execute efficiently and effectively. This paper 
presents the details regarding architecture, implementation 
and performance results of Dynamic BLAST, a true grid-
enabled application. Dynamic BLAST is a powerful tool 
used to perform BLAST searches on widely available grid 
resources. The continuous goals of Dynamic BLAST are 
to extract potential capabilities from available grid 
resources as well as offer higher QoS to the users. 
Described application achieves set goals by exploiting 
BLAST-specific characteristics to better meet job 
requirements to resource capabilities, resulting in 
performance improvements exceeding 50%. At the same 
time, given approach enables efficient execution of 
BLAST jobs across general grid resources in a simple 
fashion resulting in significantly easier access to otherwise 
individual and heterogeneous grid resources that a user 
may have to deal with. 

In conclusion, it can be stated that Dynamic BLAST 
represents an implementation of the query segmentation 
BLAST parallelization model that far supersedes 
performance of the basic query segmentation model. This 
achievement is possible due to the specific ties that have 
been made to understand and leverage BLAST execution 
characteristics across heterogeneous resources. Based on 

obtained experience and as part of future work, we plan on 
extending derived functionality into a general framework 
that would enable easier development of application-
specific grid wrappers or applications where benefits 
observed in case of Dynamic BLAST can be easily 
realized.  
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