
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

149

Manuscript received April 5, 2009
Manuscript revised April 20, 2009

Dynamic BLAST – a Grid Enabled BLAST

Enis Afgan† and Purushotham Bangalore†,

†University of Alabama at Birmingham, Dept. of Computer and Information Sciences,
1300 University Blvd., AL 35294, USA

Summary
Basic Local Alignment Search Tool (BLAST) is a heavily
used bioinformatics application that has gotten significant
attention from the high performance computing
community. The authors have taken BLAST execution a
step further and enabled it to execute on grid resources.
Adapting BLAST to execute on the grid brings up
concerns regarding grid resource heterogeneity, which
inevitably cause difficulty with application availability,
fault tolerance, interoperability, and variability in
performance of individual segments that are being
distributed across grid resources. This paper describes a
BLAST-specific metascheduler, named Dynamic BLAST,
a multithreaded, master-worker type application that
handles all aspects of a BLAST job submission on the grid
for the user. The main contribution realized with Dynamic
BLAST is minimization of user job turnaround time
through understanding and leveraging of resource
heterogeneity found across grid computing environments.
Experiments with Dynamic BLAST on UABgrid resources
show reduction in total execution time of BLAST jobs up
to 50% while improving resource utilization by
approximately 40%.
Key words:
Grid computing, scheduling, load balancing, BLAST.

1. Introduction

Grid computing [1] can be described as being the
culmination of distributed computing and high-
performance computing where networking,
communication, computation and information are
integrated in order to provide a virtual platform for
unlimited compute power and data management [2].
Realizing benefits enabled through grid computing (e.g.,
shorter job runtime, increased resource utilization,
improved and seamless collaboration, easier information
and resource sharing) is typically done by joining a Virtual
Organization (VO) [3] and increasing utilization of readily
available resources through more continuous use. VOs
represent aggregations of communities that may share
national and international boundaries but have common
objectives. Through these VOs, grid computing is capable
of aggregating heterogeneous resources that belong to

different administrative domains and thus create a unique
and valuable resource for the collaborating community.

Once a VO exists, applications need to be deployed
on available resources. Grid application deployment is a
non-trivial task and it includes transfer of the entire
application (i.e., source code, dataset, scripts) to a remote
site, compiling the application on a remote host, and
making it available for execution. Even before an
application is deployed and can realize desired goals, it
must be grid enabled [4]. Grid-enabling is the process
through which an application that is currently executing on
a standalone computer (examples of standalone resource
being any of the following: single CPU workstation, server,
cluster, storage unit, task specific machine with a network
interface, etc.) is reorganized and/or refactored so that the
application can execute on any given set of resources that
are dynamically discovered. Today however, most of the
applications are developed for standalone resources and
are thus not in a position to execute on the grid.

As one can imagine, grid-enabling an application
often requires significant effort. The amount of effort
required is greatly influenced by the application that is
being grid-enabled. Some application categories are more
suitable for grid-enablement than others, mainly because
of the parallelization methods and modes employed by
those applications. Based on application communication
patterns and thus the parallelization model, applications
can be divided into in the following general categories [5]:

1. Sequential applications
2. Parametric Sweep applications
3. Master-Worker applications
4. All-Worker applications
5. Loosely coupled parallel applications
6. Tightly coupled parallel applications
7. Workflow applications
Applications belonging to categories 1 through 4 are,

in decreasing order, the easiest to grid-enable, while
applications belonging to remaining application categories
may require rewriting of the complete application before it
can be adopted to execute on the grid (some efforts [6] are
under way to remove some of the involved difficulties).

After gaining access to a grid environment through a
VO and grid-enabling an application, users immediately
expect an increase in performance of application jobs that
is proportional to the number of grid resources available.
However, vast but raw grid resource availability does not

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

150

necessarily warrant increased application performance. An
example for a specific application, highlighting the effects
an approach and methodology of consuming available
resources can have on performance of an application job,
will be shown in this paper. This can be contributed to the
high degree of variability individual applications impose
on underlying resources in terms of their requirements
making generalized or standardized approaches fall short
of realizing set goals. Because of such variability, general-
purpose metaschedulers (e.g, [7]) do no focus on
understanding application-specific requirements and thus
cannot realize application-specific job scheduling and job
performance. In order to realize such behavior,
application-specific schedulers are needed that focus on
specific needs of an individual application [8] [9].

With such multiple factors contributing to the
difficulty of not only executing applications across grid
resources, but also executing an application efficiently, it
can be concluded that a typical grid user will be hard-
pressed to realize desired behavior for their jobs. In order
to alleviate a user form these low-level, infrastructure
details, help of specialized, higher-end tools that mange
grid infrastructure details on user’s behalf is needed.

To that extent, this paper presents design and
implementation details of a widely spread bioinformatics
application, namely Basic Local Alignment Search Tool
(BLAST) [10]. BLAST is a sequence analysis tool that
performs similarity searches between a short query
sequence and a large database of infrequently changing
information such as DNA and amino acid sequences. With
the rapid development of sequencing technology of large
genomes for several species, the sequence databases have
been growing at exponential rates [11, 12]. Facing rapidly
expanding target databases and more complex search
queries, the BLAST programs take significant time to find
a match. Initially, parallel computing techniques have
helped BLAST to gain speedup on searches by distributing
searching jobs over a cluster of computers. Several parallel
BLAST search tools have been demonstrated to be
effective at improving BLAST’s performance. mpiBLAST
[13] and TurboBLAST [14] use database segmentation to
distribute a portion of the sequence database to each
cluster node. In the database segmentation method, each
cluster node only needs to search a query against its
portion of the sequence database. Alternatively, query
segmentation can be applied to alleviate the burden of
searching jobs. In the query segmentation method, a subset
of queries, instead of the database, is distributed to each
cluster node, which has access to the whole database.
Figure 1 points at the differences and the execution modes
of the two BLAST parallelization models.

Figure 1. Two models for parallelizing BLAST: (A) query

segmentation and (B) database segmentation

Because of the physical limitations encountered when
parallelizing BLAST, using only traditional high
performance computing technologies and techniques, a
logical next step was to grid-enable BLAST. The BLAST
application has a broad community whose grid-enablement
was clearly going to bring significant benefit to the
scientific community (in terms of resource availability as
well as job turnaround time). This effort is described in
this paper by providing details on developing Dynamic
BLAST – a grid-enabled BLAST. As such, there are three
key contributions of this work:

1. Enabling BLAST application to execute across
grid environments through a simple user interface,
thus hiding all complexities of underling
infrastructure

2. Developing a BLAST execution model for
heterogeneous grid environments, which
analytically captures dependencies between an
application and a resource

3. Incorporating a BLAST-specific metascheduler
into the execution model that implements the
BLAST execution model and is capable of
understanding and leveraging heterogeneity of
compute resources found across a grid to
minimize BLAST job runtime

Other similar efforts of grid-enabling BLAST have
been undertaken by various researchers [15] [16] but the
one described in this paper is the only one that has made
extensive use of available grid standards and other
available tools to modularize the code as well as
incorporate a BLAST specific scheduler directly into the
job submission process, thus enabling the application to
exploit the dependencies that exist between individual
resources and the application to optimize job performance.

The remainder of the paper is organized as follows:
Section 2 provides an overview of the architecture,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

151

BLAST execution model and implementation details of
Dynamic BLAST. Results of executing Dynamic BLAST
and comparing it to basic query segmentation
parallelization model are provided in Section 3. Section 4
suggests some future work and summarizes the paper.

2. Implementation Details

This section provides an overview of Dynamic BLAST
architectural features ranging from high level technologies
employed to the lower level, implementation details.

2.1 High Level Architecture

Implementation of Dynamic BLAST was done with
maximum flexibility and high end-user applicability in
mind. This was realized through adoption of standards as
soon as those became available as well as modularization
of the code to separate isolated functionality into easy-to-
update modules. In particular, Dynamic BLAST was
developed using Java on top of the Globus Toolkit [17]
and has adopted the Distributed Resource Management
Application API (DRMAA) [18] standard for all job
invocation operations. Furthermore, Dynamic BLAST was
built on top of GridWay [19], a grid job management
system, for all job submission activities. A high level
overview of Dynamic BLAST’s interaction with grid
components is given in Figure 2.

Figure 2. High level diagram of interactions between grid
components and Dynamic BLAST.

As can be seen in the Figure 2, authentication and
authorization are moved outside the Dynamic BLAST

where the user is required to have valid X.509 GSI proxy
credentials [20] before job invocation. Resources available
for job submission are discovered dynamically through
GIS/MDS [21]. GridAtlas [22] is a locally developed
utility that monitors application related (in this case,
BLAST related) parameters across various resources. This
includes application installation and input data locations
on various resources. Interaction with GridWay is
performed through DRMAA API and is used for all job
submission and monitoring activities. As discussed in the
next section, Dynamic BLAST handles resource selection
and data distribution but resource allocation, data transfer,
and job monitoring are all delegated directly to GridWay.
Adoption of GridWay in Dynamic BLAST development
was a cornerstone with respect to Dynamic BLAST
modularity and portability. GridWay provides a
streamlined platform for high-level grid application
development. Before adopting GridWay, the majority of
development and maintenance effort within Dynamic
BLAST was devoted to low level resource interactions and
upkeep with ever-changing technologies (e.g., pre-WS to
WS). Adoption of DRMAA standard within GridWay has
even alleviated direct dependencies of Dynamic BLAST to
GridWay, thus even further increasing modularity of
developed application.

2.2 Dynamic BLAST Architecture

Analysis of BLAST parallelization methods and grid
resource characteristics have led Dynamic BLAST to be
internally developed under the master-worker
communication model, by embedding needed components
into a hierarchical framework. The master-worker model
allows a single process to control the resource selection,
data distribution, job submission and parameterization, as
well as job monitoring. Thus, selected application model
maximizes execution flexibility, code modularity, and
fault tolerance. Going hand in hand with the master-
worker model is the choice regarding the parallelization
model of BLAST jobs (i.e., query segmentation or
database segmentation). Suitability of one method over
another is both data and resource dependent [13, 23, 24,
25]. As such, based on current resource availability, one
method can often be found more appropriate than the other.
In order to maximize flexibility of Dynamic BLAST in
this aspect, as well and allow advanced scheduling
techniques to be applied on user’s behalf, the master-
worker model has, once again, shown to provide the most
flexibility. Selected model (i.e., master-worker) allows
different BLAST algorithms to be invoked on available
resources even within a single job. This has the potential
of increasing the suitability of available resources,
maximizing resource utilization while minimizing job
turnaround time.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

152

Internal dataflow for Dynamic BLAST closely
follows architectural components and consists of several
key layers/steps. A diagram of the components and
dataflow is provided in Figure 3. The main components of
given architecture are:

• Data Analysis (analyzes input files)
• Create Job Plan (decide on resource selection,

data distribution, algorithm, and job parameter
selection)

• File Parsing and Fragmentation Module (based on
job plan, splits the input query file)

• Thread creation (each resource and dataset is
assigned a thread)

• Threads (manage all job submission related tasks
for assigned resource)

• Post processing (wait on threads to complete,
transfer data to local machine and join it into a
single results file)

Figure 3. Internal dataflow for Dynamic BLAST.

Data Analysis performs statistical analysis of user
input query file to extract some parameters needed in later

steps of data processing. This information includes the
number of queries, the average query length, the standard
deviation, and similar. Described module also extracts
current resource availability information and stores it in an
internal, Dynamic BLAST specific format.

Create Job Plan module uses information retrieved
by the Data Analysis module to perform on-line
scheduling and job parameterization. This module is the
very core of Dynamic BLAST and it implements a BLAST
performance model for resource selection and data
distribution. The model implemented aims at generating
query fragments based on relative resource performance in
order to minimize load imbalance. The model is realized
by implementing Eq. (1) for resource selection and Eq. (4)
for data distribution.

(1)

Ej from Eq. (1) represents the set of resources to be
selected for execution of job j and it is further described
through Eq. (2) and (3). In respective equations, Rj refers
to the set of available resources capable of executing job j,
while refers to the performance rate of individual
resource from the perspective of BLAST job j. is
calculated as a combination of the size of resource i,
namely ni representing the total number of processing
elements (i.e., cores), and the performance rate of
individual processing element on resource i for the specific
job j. Job performance rate is obtained from historical
analysis of performance of BLAST application on a
specific resource. Alternatively, a generic resource
benchmark, such as SPEC [26] can be used to obtain
performance value of a given resource or even the
theoretical resource peak performance with a small
adjustment [27].

(2)

 (3)

For Eq. (4), di represents the size of a task data chunk
assigned to resource i; ni represents the number of
processing elements on resource i, D is the total size of
user input and is the normalized weight or
performance rate of the resource i. The result of executing
the Job Plan module is a concrete plan for resource
assignment and data distribution that is followed during
the remainder of the job execution.

(4)

File Parsing and Fragmentation module reads the
generated Job Plan and proceeded in two steps. Initially, it

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

153

splits the original user query file into chunks, one for each
resource, whose size is available from the Job Plan as
derived from Eq. (4). Each data chunk di is is then further
subdivided divided into fragments fi. This is done
according to equation (5), i.e., proportionally to the
number of processing elements (ni) within any one
resource:

(5)

Thread Creation takes place when the master thread
creates worker threads; one thread is created for each
resource. Individual Threads read their respective part of
the Job Plan to parameterize given task. Because of such
granular approach to job plan generation and execution, as
stated earlier, different BLAST algorithms and parameters
can be used for different resources. This provides needed
customization and allows for maximization of resource
utilization as well as very high level of user support and
Quality of Service (QoS). Jobs are submitted directly by
threads to individual resources through DRMAA and
GridWay while the master thread waits on the threads to
complete. Individual threads initiate output file transfer
back to the initial job submission resource before
completing their execution. If a resource fails or a task
does not complete its execution as planned, the master
thread could resubmit just the given task to another
resource.

Post Processing module is part of the master thread
and its primary task is combining all the output and result
files into a single result file presented to the end user. Any
cleanup and additional task, such as bookkeeping of
performance results, are performed in this step as well.

3. Experimental Results

 This section presents the experimental setup and
performance results of Dynamic BLAST across UABgrid1
resources. Performance comparison is performed as an
iterative process starting with the basic query segmentation
model for parallelizing BLAST and building the BLAST-
specific metascheduler model described in the previous
section to derive application-specific customizations that
yield improved BLAST job performance.

3.1 Environment Setup

The experiments testing performance of Dynamic
BLAST were conducted on three resources available on
UABgrid. These resources are located across three
independent departments, each locally administered with
applicable policies and procedures in place. All of the

1 http://uabgrid.uab.edu/

resources had a version of BLAST application installed
and required input data available for use. Technical
resource details are provided in Table 1. We used the
popular 1.6 GB nr database to search against. The nr
database is a non-redundant protein database with entries
from GenPept, Swissprot, PIR, PDF, PDB, and RefSeq.
The version used was 1.6 GB in size and available from
the National Center for Biotechnology Information
(NCBI)2. The input file used consisted of 4096 search
queries randomly selected from the Viral Bioinformatics
Resource Center (VBRC)3 database. The VBRC database
contains the complete genomic sequences for all viral
pathogens and related strains that are available for about
half a dozen of virus families.

Table 1. Architectural details of resources used during
experiments with AIS.

Machine Cheaha Ferrum Olympus

Processor Intel
Xeon
E5450

Intel
Xeon
E5345

Intel
Xeon

Clock Frequency
(GHz) 3 2.33 3.2

Instructions/Cycle 4 4 2
No. of
Cores/Node 8 8 2

Memory per Node
(GB) 16 12 4

Interconnect
(Gbs) 10 10 1

No. of Nodes
Available 12 24 64

Total No. of
Cores Available 96 192 128

3.2 Performance Results and Analysis

Performance of Dynamic BLAST is compared to the
performance of the plain query segmentation variant of
BLAST job parallelization. The query segmentation
variant operates under the model of dividing the total
number of input queries across individual resources based
on those resources' relative size. As such, resource weight
factor, , from Eq. (4) is uniformly set to 1 and derived
equation can thus be used to derive proportional amount of
data that should be assigned to each resource. Given

2 http://www.ncbi.nlm.nih.gov/
3 http://www.biovirus.org/

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

154

resource availability from Table 1 and using Eq. (4), data
distribution shown in Figure 4 is obtained.

Having obtained job parameters for the basic query
distribution parallelization model, we executed the job
across available resources and obtained runtime data for
the basic query segmentation model, as shown in Figure 5.
Under the master-worker parallelization model employed,
the overall job is considered complete only after the
longest running task has completed. As such, the aim is to
minimize load imbalance across individual resources;
however, in obtained results, a considerable level of load
imbalance across resources is exhibited.

Figure 4. Initial input data distribution based on the size of
resources alone

Exhibited performance and associated load imbalance
can be explained by two properties. The first is a property
of BLAST algorithm where, as shown in [28], runtime of
BLAST algorithm is significantly affected by the length of
the input query as opposed to the number of queries alone.
By simply taking obtained input file provided and dividing
it into a number of chunks at predetermined data points
(e.g., using UNIX split utility), the type of data that gets
assigned to individual nodes within a resource can vary
greatly and can thus result in the load imbalance problem.
Figure 6 shows a profile view of query lengths that were
used during performed experiments. As is evident from the
(A) portion of the figure, lengths of individual queries vary
greatly and are unevenly spread across the provided input
file. When Eq. (4) is applied to this input data set,
corresponding to the three available resources, three well
defined data chunks are created; each of those data chunks
is relative to the resource size. Furthermore, each of those
data chunks is further divided among available nodes on a
particular resource (according to Eq. (5)). As can be seen
from the figure, a disproportionate type of queries (in
terms of length) is assigned to individual nodes resulting
in observed load imbalance.

Dynamic BLAST addresses this issue by reorganizing
the input data so that a proportional number of short,
medium and long queries are assigned to each individual
node. This problem can be generalized into a bin-packing

problem where the number and size of bins is
predetermined (i.e., number of chunks and number of
queries assigned to each individual resource). A simple yet
effective and efficient heuristic implementation for this
problem is the first fit decreasing algorithm (complexity is
Θ(n log n) where n is the number of queries), which
assigns data elements across individual bins in a
decreasing order for as long as there is input [29]. Note
that under the constraints of the heterogeneous and
distributed environment where this algorithm is applied, a
need for an optimal solution is minimal and, instead, focus
should be put on efficiency. Therefore, the File Parsing
module of Dynamic BLAST implements the first fit
decreasing algorithm as a two-step progress: first, input
file is divided into chunks of proportional type of data as
dictated by the Job Plan, and secondly, each chunk is
divided into a number of proportional fragments, as
indicated in the Job Plan again. The result is that load
balance among tasks will be achieved and thus resource
comparison used to derive the job plan and the data
distribution will actually hold during runtime (see Figure 7
under first-fit decreasing data re-distribution). By applying
the first-fit decreasing algorithm to reorganize assignment
of individual queries to corresponding nodes, data
distribution shown in Figure 6 (B) can be obtained,
showing a much more even distribution of comparative
queries across individual compute nodes.

Figure 5. Runtime results across the three resources for the basic
query segmentation parallelization model.

The final BLAST-specific contribution implemented
as part of Dynamic BLAST, and also the second property
affecting performance of BLAST jobs, is the resource
benchmark for the BLAST application. This is
implemented as the resource weight factor in Eq. (4) and it
is realized by performing an application-specific
benchmark on a given resource. The benchmark can be
explicitly executed when a resource joins a largely static
resource pool, alternatively, a short running benchmark
can be executed prior to the submission of the real job, or
information about historical runs of BLAST across
resources can be kept in a local repository and then a
resource-specific look can be performed prior to job
submission. Current implementation of Dynamic BLAST

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

155

relies on availability of such application-specific
information from Application Performance Database
(AppDB) from the Application Information Services (AIS)
[30] where runtime characteristics of previous application
executions are stored and made available for extraction
and analysis.

Figure 6. Difference in query distribution between (A) basic
query segmentation model and (B) Dynamic BLAST data
distribution model

For presented experiments, the benchmark data we
used was the entire 4096 query input file otherwise divided
across multiple resources. Benchmarked version was
reordered by the first-fit decreasing algorithm prior to
being used to provide even workload distribution to all
processing elements within a resource. Although such a
large benchmark is typically not necessary, we used it in
presented scenario to show the relationship and impact of
using any single resource versus a combination of several
grid resources. Obtained runtime results, calculated
normalized resource performance and newly derived data
distribution based on Eq. (4) that incorporates resource
weight factor is provided in Table 2.

Table 2 – Resource benchmark values, calculated resource
weights and newly derived job data distribution

Resource Cheaha Ferrum Olympus
Benchmark
Runtime Data (sec) 1595 1025 2234

Normalized
Resource
Performance

0.643 1.00 0.458

Query Distribution 1255 1949 892

Final runtime results of BLAST-specific

optimizations implemented as part of Dynamic BLAST are
shown in Figure 7. Obtained performance results are
shown along with the runtime performance characteristics
of the basic query segmentation model and the data re-
distribution model resulting from the application of the
first-fit decreasing algorithm. As stated earlier, for the
master-worker paradigm, the runtime of the overall job is
determined by the longest running component (i.e.,
Maximum). As such, results obtained in Figure 7 show a
reduction in runtime of using the BLAST-specific data re-
distribution model on the order of 50%.

Incorporating the BLAST-specific resource weight
factor into the data distribution model, and thus
implementing the Dynamic BLAST algorithm, results in
additional 15% reduction of the overall job runtime.
Furthermore, the overall load imbalance across multiple
resources has been significantly reduced; standard
deviation for the basic query segmentation model is 427
seconds while the standard deviation obtained by Dynamic
BLAST is approximately 25 seconds showing the ability
of devised BLAST-specific optimizations not only to cope
with the heterogeneity of grid resources but also to
leverage present heterogeneity.

Figure 7 - Runtime characteristics of (1) basic query
segmentation parallelization (this is the same data as what was
shown in Figure 5), (2) first-fit decreasing data re-distribution,
and (3) Dynamic BLAST (weighted first-fit decreasing).
Maximum refers to the max runtime of any one resource and thus
the overall runtime of a job.

3.3 Discussion

In this section, we present a brief discussion on the
importance of the BLAST-specific, and more generally,
application-specific optimization in the context of
simultaneous distribution and submission of a job across
multiple grid resources. As stated in Section 3.2, the
selected input data for the BLAST benchmark
unnecessarily consisted of the entire 4096 input queries.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

156

This was done with the intention to highlight the impact
and difficulty a typical grid user may experience when
submitting a job to grid resources. Analyzing performance
of individual resources that performed BLAST search on
selected input file, as presented in Table 2, point at a great
level of resource heterogeneity present across grid
resources. If performance of the basic query distribution
model shown in Figure 7 is compared to the performance
of Ferrum resource presented in Table 2, it can be
observed that the performance of the single resource
outperforms the combination of three resources by
approximately 20%. As such, it is easy to envision a
typical user that is presented with an opportunity to
execute their job across multiple resources to do just that:
consume all of the available resources and at the same
time realize subpar job performance. From the computer
science perspective, it is therefore important to not only
realize potential deficiencies in existing tools and
infrastructures but also to enable users of available
technologies to overcome potential hurdles without having
to delve over low-level, accidental complexities introduced
by the infrastructure. Dynamic BLAST provides a solution
in that direction for one specific application and realizes a
significantly improved experience for the end user without
requiring manual user intervention.

4. Conclusions and Future Work

Development of end user applications is critical for
success of grid computing. More so, those applications
must execute efficiently and effectively. This paper
presents the details regarding architecture, implementation
and performance results of Dynamic BLAST, a true grid-
enabled application. Dynamic BLAST is a powerful tool
used to perform BLAST searches on widely available grid
resources. The continuous goals of Dynamic BLAST are
to extract potential capabilities from available grid
resources as well as offer higher QoS to the users.
Described application achieves set goals by exploiting
BLAST-specific characteristics to better meet job
requirements to resource capabilities, resulting in
performance improvements exceeding 50%. At the same
time, given approach enables efficient execution of
BLAST jobs across general grid resources in a simple
fashion resulting in significantly easier access to otherwise
individual and heterogeneous grid resources that a user
may have to deal with.

In conclusion, it can be stated that Dynamic BLAST
represents an implementation of the query segmentation
BLAST parallelization model that far supersedes
performance of the basic query segmentation model. This
achievement is possible due to the specific ties that have
been made to understand and leverage BLAST execution
characteristics across heterogeneous resources. Based on

obtained experience and as part of future work, we plan on
extending derived functionality into a general framework
that would enable easier development of application-
specific grid wrappers or applications where benefits
observed in case of Dynamic BLAST can be easily
realized.

Acknowledgments

This work was made possible in part by funding from
the Department of Computer and Information Sciences at
the University of Alabama at Birmingham, a grant of high
performance computing resources from the CIS at UAB,
the NSF Award CNS-0420614 and NIH/NIAID Contract
No. HHSN266200400036C – Viral Bioinformatics
Resource Center (VBRC).

References

[1] The Grid: Blueprint for a New Computing Infrastructure:

Morgan Kaufmann Publishers, 1998.
[2] F. Berman, G. Fox, and T. Hey, "The Grid: past, present,

future," in Grid Computing - Making the Global
Infrastructure a Reality, F. Berman, G. Fox, and T. Hey,
Eds., Hoboken, NJ: John Wiley & Sons Inc., 2003, pp. 9-51.

[3] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of
the Grid," Lecture Notes in Computer Science, 2150(2001,
pp. 1-28.

[4] C. Mateos, A. Zunino, and M. Campo, "A survey on
approaches to gridification," Software—Practice &
Experience, 38(5), April 2008, pp. 523-556.

[5] E. Afgan, P. Bangalore, and J. Gray, "A Domain-Specific
Language for Describing Grid Applications," in Designing
Software-Intensive Systems: Methods and Principles, P. F.
Tiako, Ed., 2007.

[6] M. Halappanavar, J.-P. Robinson, E. Afgan, M. F. Yafchak,
and P. Bangalore, "A Common Application Platform for the
SURAgrid (CAP)," in Workshop on Grid-Enabling
Applications, Mardi Gras Conference 2008, New Orleans,
LA, 2007.

[7] A. Kertesz and P. Kacsuk, " A Taxonomy of Grid Resource
Brokers," in Distributed and Parallel Systems from Cluster
to Grid Computing, 1 ed, P. Kacsuk, T. Fahringer, and Z.
Németh, Eds.: Springer, 2007, pp. 201-210.

[8] F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G.
Shao, "Application-Level Scheduling on Distributed
Heterogeneous Networks," in Supercomputing '96,
Pittsburgh, PA, 1996, p. 28.

[9] H. Dail, F. Berman, and H. Casanova, "A Decoupled
Scheduling Approach for Grid Application Development
Environments," Journal of Parallel and Distributed
Computing, 63(5), May 2003, pp. 505-524.

[10] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, "Basic local alignment search tool," Mol Biol,
215(3), 1990, pp. 403-410.

[11] B. Bergeron, Bioinformatics Computing Upper Saddle River,
New Jersey: Prentice Hall PTR, 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

157

[12] NCBI, "GenBank Statistics," February 3, 2009, Available at
http://www.ncbi.nlm.nih.gov/Genbank/ genbankstats.html,
Retrieved: March 17, 2009.

[13] A. E. Darling, L. Carey, and W.-c. Feng, "The Design,
Implementation, and Evaluation of mpiBLAST," San Jose,
CA, 2003.

[14] R. D. Bjomson, A. H. Sherman, S. B. Weston, N. Willard,
and J. Wing, "TurboBLAST: A Parallel Implementation of
BLAST Built on the TurboHub," Ft. Lauderdale, FL, 2002.

[15] A. Krishnan, "GridBLAST: a Globus-based high-throughput
implementation of BLAST in a Grid computing
framework," Concurrency and Computation: Practice and
Experience, 17(13), November 2005, pp. 1607–1623.

[16] D. Sulakhe, A. Rodriguez, M. D’Souza, M. Wilde, V.
Nefedova, I. Foster, and N. Maltsev, "GNARE: An
Environment for Grid-Based High-Throughput Genome
Analysis," Cardiff, UK, 2005 pp. 455 - 462.

[17] I. Foster and C. Kesselman, "The Globus toolkit," in The
Grid: Blueprint for a New Computing Infrastructure, I.
Foster and C. Kesselman, Eds., San Francisco, California:
Morgan Kaufmann, 1999, pp. 259--278.

[18] H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardiner, A. Haas,
B. Nitzberg, and J. Tollefsrud, "Distributed Resource
Management Application API (DRMAA) Specification 1.0
GFD-R-P.022," Global Grid Forum (GGF) 2004.

[19] E. Huedo, R. S. Montero, and I. M. Llorente, "A Framework
for Adaptive Execution on Grids," Journal of Software -
Practice and Experience, 34(2004, pp. 631-651.

[20] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, "A
Security Architecture for Computational Grids," in 5th ACM
Conference on Computer and Communication Security
Conference, San Francisco, CA, 1998, pp. 83-92.

[21] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
"Grid Information Services for Distributed Resource
Sharing," in 10 th IEEE Symp. On High Performance
Distributed Computing (HPDC), Los Alamitos, CA, 2001,
pp. 181-195.

[22] E. Afgan, P. Bangalore, and S. Mukkai, "GridAtlas,"
December 18, 2008, Available at
http://www.cis.uab.edu/ccl/index.php/GridAtlas, Retrieved:
February 1, 2009.

[23] E. Afgan and P. Bangalore, "Performance Characterization
of BLAST for the Grid," Boston, MA, 2007.

[24] C. Wang and E. J. Lefkowitz, "SS-Wrapper: a package of
wrapper applications for similarity searches on Linux
clusters," BMC Bioinformatics, 5(171), 2004,

[25] C. Dwan, "Bioinformatics Benchmarks on the Dual Core
Intel Xeon Processor," The BioTeam, Inc., Cambridge, MA
2006.

 [26] "Standard Performance Evaluation Corporation," March 10,
2009, Available at http://www.spec.org/, Retrieved: March
19, 2009.

[27] F. Sanchez, E. Salami, A. Ramirez, and M. Valero,
"Performance Analysis of Sequence Alignment
Applications," in 2006 IEEE International Symposium on
Workload Characterization, San Jose, CA, 2006, pp. 51-60.

[28] E. Afgan and P. Bangalore, "Performance Characterization
of BLAST for the Grid," in IEEE 7th International
Symposium on Bioinformatics & Bioengineering (IEEE
BIBE 2007) Boston, MA, 2007, pp. 1394-1398.

[29] J. Y.-T. Leung, Ed. Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, 1st ed., vol. 1: CRC
Press, 2004.

[30] E. Afgan and P. Bangalore, "Assisting Efficient Job
Planning and Scheduling in the Grid," in Handbook of
Research on Grid Technologies and Utility Computing:
Concepts for Managing Large-Scale Applications, E. Udoh
and F. Z. Wang, Eds.: IGI Global, 2009.

Enis Afgan is currently a Ph.D.
candidate in the Department of
Computer and Information Sciences at
the University of Alabama at
Birmingham, under the supervision of
Dr. Purushotham Bangalore. His
research interests focus around Grid
Computing with the emphasis on user-
level scheduling in heterogeneous
environments. His other interests

include distributed computing, optimization methods, and
performance modeling. He received his B.S. degree in computer
science from the University of Alabama at Birmingham in 2003.

Dr. Purushotham Bangalore is an
Assistant Professor in the Department of
Computer and Information Sciences at
the University of Alabama at
Birmingham (UAB) and also serves as
the Director of Collaborative
Computing Laboratory. He has a Ph.D.
in Computational Engineering from
Mississippi State University where he
also worked as a Research Associate at

the Engineering Research Center. His area of interest includes
programming environments for parallel and grid computing,
scientific computing, and bioinformatics. More information
about his research activities can be found at:
http://www.cis.uab.edu/puri.

