
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

230

Manuscript received April 5, 2009
Manuscript revised April 20, 2009

Efficient Testing of Database Applications

Mirza Mahmood Baig† and Ansar Ahmad Khan††

NED University of Engineering & Technology, Karachi Pakistan

Summary
This concept is quite recent provides a technique for more
efficient testing of database applications. In the testing technique
the original database remains intact throughout the experiment.
When tester tests the test suites insert, delete, and modify updates
are physically stored in another file or database called
“Differential Table. The joint operation on Original database and
differential table by sql query language together forms another
database called, “Hypothetical database state”. In this paper, we
have designed a computer aided formula for test suites which
make “decision”, that the test requirement be executed
hypothetically or traditionally. We have also designed pseudo
code for hypothetical inserting and deleting tuple in the database
without changing the originality of the database.

Key words:
Software Testing, Hypothetical database, Differential Table,
Parent Table, traditional database

1. Introduction

The concept of hypothetical relation and differential file
was first explored by Michael Stonebraker as described in
[1, 2, and 3]. The implementation of hypothetical relation
supports “what-if database” which is implemented using
differential file. As per description in [4, 5, 6], a new
concept in the field of hypothetical database namely
“Independent Update Views” popularly known as IUV for
database has been presented. As describe in [7] introduces
terminology and basic concept to extend IUVs for version
management. It forms a version hierarchy and called it
version tree like B tree and represents each node (or child)
is an IUV change version of its parent.

 The advantage of hypothetical database testing is that
it is cost effective and time reducing strategy and the
additional benefit of this proposed technique is that the
original database remains intact throughout the process.
As compared to traditional database testing which is also
cost effective and time reducing approach but numbers of
observations prove that the cost and time increase when at
any stage forced reset is used. It takes enough time to reset
desired database state as compared to hypothetical
database testing (HDT) as hypothetical rollback takes
lesser time to reach desired database state. Another main
disadvantage of traditional database testing is that original
database no longer maintains its originality after executing

test suites, whereas in the proposed technique it remains
intact.

In this paper we have presented the concept of
hypothetical data base in software testing, which is quite a
new concept in the field of software testing. The proposed
technique consists of: we have developed a new Computer
aided formula for hypothetical database testing which
checks the test suites requirements whether test suites
executed hypothetically or traditionally, designed pseudo
code of proposed technique have been presented. An
example system, results achieved and conclusions are
presented.

2. Computer Aided Formula

We have developed a formula for hypothetical database
testing by using test suites requirements. When tester
executes test suites requirements one by one, the formula
automatically decides, whether the test suites say ti, where
i=1, 2, 3,…, k is executed hypothetically or traditionally.
In other words the computer aided formula (or
Mathematical function) which tells us when to update-in-
place and when to rollback according to the environment
of input requirements of test suites. For designing the
formula below using the concept of “Functional Analysis”
a well known branch of Mathematics, it is claimed that the
said formula of this type has not been used in current state
of art and may be regarded a novelty in the field of
software testing.

The formula is:
 f(n,mi,ri+1)=2ri+1–(n+mi) (I)

There are three main cases which we will elaborate here.
First we will discuss the functionality of above function or
formula. In this function ‘n’ refer to the number of records
or tuples present in our base table or Parent table which is
retrieved from original database, ‘mi’ refers to number of
records or tuples present in updated databases state (or
current database state). It may be hypothetical, chain
hypothetical (i.e. sequence of hypothetical state) or
traditional database state, and ‘ri+1’ refer to the test suites
requirements which will be executed one after the other.
Now, we deal each of the cases as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

231

Case 1 for n = mi
If d(n,mi) = 0, it means both the database states have equal
number of records and attributes. It means there is no
difference between the two states. So in this scenario our
current state is updated database state which is ‘mi’ than
execute test case update in place. Keeping in mind the
situation remember that we are always in current state
whenever trying to execute test suites. The advantage of
update in place is that we have saved time and cost. On the
contrary if we execute test in our base table or parent table
first we have to rollback to PT which will give required
more time as compared to update in place.

Case 2 for n > mi,
Number of records in base table or Parent table is greater
than the current state. In this scenario we have to elaborate
it into three different sub cases as given below:

Subcase 1 if ri+1 < mi, applying computer aid
formula (A) to show that the distance between test
requirements and current database state is less than zero
which shows ‘ri+1’ is closer to ‘mi’,(i.e. current state). Now
we define mathematically

d(ri+1, mi) < 0 or || ri+1, mi || < 0 , update in place
(i.e. current state satisfies the requirement of test suite)

This subcase condition shows that the current state is the
most suitable to execute test suites requirements because a
test suites requirement is closer to ‘mi’. Keeping in mind
the situation remember that we are always in current state
whenever trying to execute test suites. It is possible that
both states will fulfill the requirements of test suites. Now
numbers of observations prove that if we execute test suite
from the current state, this will produce the same result as
we execute from parent state, but in this case it is rather
convenient to use current state as compared to PT, because
it gives us the saving of time and cost.

Subcase 2 if ri+1 > n, applying computer aid
formula to show that the distance between test
requirements and parent database state is greater than zero
which show ‘ri+1’ is closer to ‘n’,(i.e. current state does
not satisfy requirements of test suite and implies that we
should rollback hypothetically).

 d(ri+1, n) > 0 or || ri+1, n || > 0 ,

Roll Back Hypothetically

In this subcase condition shows that the current state
is not suitable to execute test suites requirements because a
test suites requirement is closer to ‘n’. So rollback
hypothetically to parent state or base table and execute test
suites. In the scenario the current state is not fulfilling the
requirements of test suites or simply test case requirement
is not included in the current state but it is present in

parent state. If we execute test suites in the current state it
will take much time for preparation. So, hypothetical roll
back is convenient to use parent table because it takes
lesser time as compared to current state.

Subcase 3 if mi < ri+1 < n, after applying computer
aided formula we have faced two conditions. One
condition shows that a test suites requirement is near to the
current state which is ‘mi’ so execute test suite update in
place. Second condition shows that the test suites
requirement is closer to parent state which is ‘n’ so first
rollback hypothetically to the PT and after that execute test
suite, the same as symbolically defined as follows:

(i) if f(n,mi,ri+1) < 0, test execute update in
place

d(ri+1, n) > d(ri+1, mi) or
 || ri+1, n || > || ri+1, mi ||

(ii) if f(n,mi,ri+1) > 0, test execute Roll back
hypothetically
d(ri+1, n) < d(ri+1, mi) or
 || ri+1, n || < || ri+1, mi ||

The subcase 3 is the combination of subcase 1 and subcase
2

Case 3 for n < mi
Number of records in base table or Parent table is less than
the current database state. To remedy the said complexity
we have distributed the said case into three different sub
cases as given below:

 Subcase 1 if ri+1 > mi, after applying computer
aided formula ‘A’ we see that the distance between test
requirements and current database state is greater than
zero. According to the condition of said case (i.e. case 3),
it clearly shows that ‘ri+1’ is closer to ‘mi’, symbolically
defined as:

d(ri+1, mi) > 0 or || ri+1, mi || > 0, (i.e. update in place)

This sub case condition shows that current state is the
most suitable to execute test suites requirements because a
test suites requirement is closer to ‘mi’. Keeping in mind
the situation we are always in current state whenever
trying to execute test suites.

Subcase 2 if ri+1 < n, after applying computer
aided formula ‘A’ we see that the distance between test
requirements and parent database state is less than zero,
i.e.‘ri+1’ is closer to ‘n’, formally defined as:

d(ri+1, n) < 0 or || ri+1, n || < 0, roll back hypothetically

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

232

This sub case condition shows that current state is not
suitable to execute test suites requirements because a test
suites requirement is closer to ‘n’. So, rollback
hypothetically to parent state (or base table) and execute
test suites requirement. In the scenario current state is does
not fulfill the requirement of test suites or simply test case
requirement is not included in current state but of course,
included in parent state. If we execute test suites in current
state it will take much time for preparation. So,
hypothetical roll back is convenient to use parent table
because it takes lesser time as compared to current state.

Subcase 3 if mi < ri+1 < n, after applying
computer aided formula we have faced two conditions.
One condition shows that test suite requirement is near to
current state which is ‘mi’ so execute test suite update in
place. Second condition shows that the test suites
requirement is closer to parent state which is ‘n’ so first
rollback hypothetically to the PT and execute test suite.
Formally we define it as follows:

(i) if f(n,mi,ri+1) > 0, test suite execute update
in place
 d(ri+1, n) > d(ri+1, mi) or
 || ri+1, n || > || ri+1, mi ||

 (ii) if f(n,mi,ri+1) < 0, test suite execute
rollback hypothetically
d(ri+1, n) < d(ri+1, mi)
 or || ri+1, n || < || ri+1, mi ||

The above discussion can be summarized as: “This
subcase 3 is the combination of subcase 1 and subcase 2”.

3. Pseudo Code of Proposed Technique

 SetCurrentState (String StateName)

a. If a state exists in Hsmetadata with the name
“State name”

(i) Set the ‘Current state’ column of the
actual current state to false (or ‘0’).

(ii) Set the ‘Current state’ column of the state
 called ‘State name’ to true (or ‘1’).

CreateNewHypState (String Parentstatename,
String newHypstatename)

a. Get the names of the tables of type TABLE

 through getTables() of the DatabaseMetaData
object.

 b. Using a while loop, iterate through each
 table name stored in the resultset obtained in step
 2a and performed the following action in each
 iteration for the current table name.

(i) Get the name of the table from the metadata
 result set.
(ii) Obtained the maxIndex from the SeqMetaData
 table for the corresponding table name acquired
 in step i.
(iii) Set index = maxIndex +1
(iv) Obtained a unique Differential name for the
 current table name using the unique index.
(v) Call CreateDT() by passing the tableName and
 the unique DT name.
(vi) Execute an insert statement to insert a row
 containing table name, state name, and DT name
 in the Metadata table.
c. Set the ‘Current state’ column of the actual

current state to false (or ‘0’).
d. Execute a sql insert statement to insert a row in

the HS Metadata table. (Parentstate = parent state
name. Current state = ‘1’, HSname = new
Hypstate.)

CreateDT (String tableName, String dtName)

a. Using the getColumns() of DatabaseMetaData

object, retrieve all the columns of the given
tableName.

b. Iterate using a while loop for each column in the
obtained resultset and perform the following
actions in each iteration.

(i) Retrieve column name and its type from
the resultset and append this information
to the columnNames string to
dynamically create the column field of
the CREATE TABLE statement.

c. Add Action field to the columnName to capture
action in DT

d. Complete the CREATE TABLE statement by
appending missing information.

e. Create a statement object and call its
executeUpdate () to run the create table Query
constructed in step d.

DeleteHypState (String stateName)

a. Select ParentState, current state, StateName from
HSMetaData where StateName is equal to the given
stateName.
b. If the row found in the HSMetaDataTable then
performed the following actions

i. Execute an Update Statement to set
CurrentState =true where StateName is equal to
the retrieved ParentState in step f.
ii. Delete the HSMetaData table row with
StateName = given state name by calling

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

233

DeleteMetaDataRow(). The function will also
drop all the corresponding DTs.
iii. Select ParentState, StateName from
HSMetaData where ParentState is equal to the
given stateName. This is to search child HS.
iv. If child HS exists then call deleteHypState()
recursively by giving the child HS as an
argument.
v. Set global currentState to given stateName.

DeleteMetaDataRow(String stateName)

a. Execute a delete SQL statement to delete a row
from the HSMetaData table with StateName equal
to given stateName
b. Drop all the corresponding Differential tables by
calling dropHsDTs();

 DropHsDTs(String stateName)

a. Select all DT Name from the DTMetaData table
with the HSName equal to given stateName.
b. Iterate using a while loop through the DTNames
resultSet and drop each table using the SQL drop
statement.

 RollBackCurrentState ()

a. Execute a select SQL statement to fetch the list of
DTables from the DT metadata table.
b. Execute a drop sql statement for each of the
DTtable name obtained in a.

3.1 Hypothetical Inserting tuple in differential Table

If we have to insert a tuple in Differential Table (DT), then
the following precautions are to be considered.

• Check first the desired input tuple if it does not
exist in parent table (PT)

• Check the desired input tuple if it does not exist
in DT

In other words the desired inserted tuple should not be
seen in PT as well as DT.

If the above precautions are satisfied by tester
requirements, then insert a desired input tuple in DT with
action column ‘i’, and applying IUV query which
hypothetically updates the PT with the given inserted tuple.

In general, if we have to insert a tuple in PT through
DT, we have been facing following eight conditions as
given in the form of Table or Matrix below:

Table 1

The above tabular form clearly indicates the results of
eight conditions (where condition means the location of
rows and columns) which will be elaborated one by one.
In these conditions only one result is normal, some are
abnormal, and some required preparation. In location first
row and first column which is condition 1 shows result
‘Malformed Hypothetical state’ in this condition
inserted tuple is already present in Parent table as well as
in Differential table with action ‘i’,so this is abnormal
request. In condition 2 first row second column in this
condition inserted tuple is already present in PT as well as
in DT with action‘d’, so this condition requires some
preparation. After preparing, delete tuple from DT and
the request is valid or normal. In condition 3 first row
third column, inserted tuple is already present in PT as
well as in DT with action‘m’, applying same preparation
as in condition 2. In condition 4 first row fourth column,
the inserted tuple is already present in PT but not in DT,
showing error request because already existing tuple does
not insert in DT. In condition 5 second row first column,
the inserted tuple does not exist in PT but exists in DT
with action ‘i’, showing error request, because tuple exist
in DT with action ‘i’, after fire a IUV query 5.3.8 which is
join PT and DT tuples the required request is present in PT.
In condition 6 second row second column inserted tuple
does not exist in PT but exists in DT with action‘d’ so
abnormal request is sent by tester. Because we intend to
insert tuple in DT but the said tuple already exists in DT
with action delete. In condition 7 second row third
column, the inserted tuple does not exist in PT but exists
in DT with action ‘m’ so abnormal request is sent by
tester because modified tuple must be present in PT. In
condition 8 second row fourth column, inserted tuple
does not exist in PT as well as in DT, so this is legal
condition and as such insert tuple in DT with action ‘i’.

Insert
tuple

Exists in DT

with ‘i’

Exists in DT

with ‘d’

Exists in DT

with ‘m’

Does not
exist in
‘DT’

Exists
in PT

Malformed

Hypothetical
table

Delete Tuple

from DT

Delete tuple

from DT.

Already
exist
tuple

does not
insert in

DT

Does
not

exist
in PT

Error tuple

already
exists in DT

Malformed

Hypothetical
table

Malformed

Hypothetical
table

Insert

into DT
with

action =
‘i’

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

234

3.2 Hypothetical deleting tuple in differential Table

If we have to delete a tuple in PT via DT, then the
following precautions are to be considered.

• The desired deleted tuple must be present in PT

• The desired deleted tuple must not exist in DT.

In other words the desired input deleted tuple must be
seen in PT and could not be seen in DT

If the above precautions are satisfied by tester
requirements, retrieved the desired input tuple from PT
and insert this tuple into DT with action column‘d’.

In general, if we have to delete a tuple in PT through
DT, we have been facing following eight conditions as
given in the form of Table or Matrix below:

Table 2

The above tabular form clearly indicates the results of
eight conditions (where condition means the location of
rows and columns) which will be elaborated one by one.
In these conditions only one result is normal, some are
abnormal, and the rest require preparation.

 In location first row and first column i.e., condition 1,
shows the result ‘Malformed Hypothetical state’. In this
condition deleted tuple exists in Parent table but the same
tuple exist in Differential table with action ‘i’ also.
According to table 2, this is abnormal request. In condition
2 first row second column, deleted tuple is present in PT
which is right but the same tuple exists in DT with
action‘d’. According to table 2, there is error (i.e. tuple
does not exist). In condition 3 first row third column,

deleted tuple is present in PT as well as in DT with
action‘m’, According to table2, this condition requires
preparation. First delete tuple from DT and find tuple in
PT with same tuple ‘id’ as deleted tuple. Finally insert
deleted tuple into DT with action column‘d’. In condition
4 first row fourth column, the deleted tuple exists in PT
but does not exist in DT, According to table2, it is purely
legal condition i.e. insert deleted tuple in to DT with
action column‘d’. In condition 5 second row first column,
the deleted tuple does not exist in PT but exists in DT with
action ‘i’, According to table 2, request sent by tester
shows error. To remove the abnormality of the request, i.e.
delete the deleted tuple from DT. In condition 6 second
row second column deleted tuple does not exist in PT but
exists in DT with action ‘d’, According to table 2 it
implies an abnormal request sent by tester ‘Malformed
Hypothetical state’. In condition 7 second row third
column, the deleted tuple does not exist in PT but exists in
DT with action ‘m’ which constitutes the same as
condition 6. In condition 8 second row fourth column, the
deleted tuple does not exist in PT as well as in DT,
According to table 2, illegal request is sent by tester (i.e.
tuple does not exist).

4. Application on Example System

Example defined: The following example system has
been defined and then said technique applied to generate
different test-cases, on hypothetically i.e. insert, and delete
the records or tuples.

According to Hypothetical database the original table
remains intact throughout the experiment. We call the
original database refer to Parent table (PT). In PT we
cannot have any modification physically. Whatever we
change in the PT is stored in a separate table which we call
a differential table (DT). As we know DT is physically
storage table, which is used to update. Let us suppose PT
Staff is Parent Table and DT_Staff is Differential table.
Applying the proposed hypothetical database testing
strategy (HDTS) to given problem to update records or
tuples. (i.e. inserting the tuple, deleting the tuple, and
modifying the tuple by using SQL query).
 Given PT with following attributes, Staff number
(staffNo), First Name (fName), Last Name (LName),
Position, Sex, Date of Birth (DOB), Salary, branch
number (BNo). The PT retrieved from given database. The
difference between PT and DT are, the attributes of DT
same as PT except one attribute namely ‘Action’ column
which is in DT only. In other words the number of
attributes in PT is one less than DT. For example PT has
‘n’ attributes the corresponding DT has ‘n+1’ attributes.

Delet

e
tuple

Exists in

DT with ‘i’

Exists in

DT with ‘d’

Exists in
DT with

‘m’

Does not
exist in

‘PT’

Exists
in PT

Malformed
Hypothetic

al table

Error Tuple
does not

exist

Delete
tuple from

DT.
Find tuple
in PT with
same tuple
id as delete

tuple.
Insert this
tuple into
DT with
action

column ‘d’

Insert
tuple

into DT
with

action =
‘d’

Does
not

exist
in PT

Delete the
tuple from

DT

Malformed
Hypothetic

al state

Malformed
Hypothetic

al table

Error
Tuple

does not
exist.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

235

Table 3 (Before update)
This is called parent table (PT) or current state.

Table 4 (initial Differential table)

Test suite 1
Query: INSERT INTO DT_Staff
VALUES ('SG46', 'ARIF', 'JAMES', 'Assistant', 'M',
'5/25/1997', 9100, 'C003',’Insert’);

Explanation:

Step 1: According to test case 1, check all the
necessary conditions given in 3.1 and table 1 pseudo code
for inserting tuple into PT through DT. According to
pseudo code said query fulfills the requirement of
condition 8. As the tuple does not exist in PT as well as in
DT is purely a legal condition.

Table 5

Step 2: Insert tuple into DT_Staff with required
attributes and applying join query given in 4.2 (Query for
Established new Hypothetical State) Differential Table
after step 2

For completing the procedure of test 1, As a result the
current state changes from table 3 to table 6.

New hypothetical State table

Now we execute next test suite requirement say test case 2.
Test suite 2

Table 6

Query: DELETE FROM Staff where StaffNo=‘SA9’;
INSERT INTO DT_Staff
VALUES ('SA9', 'MARY', 'Howe', 'Assistant', 'F',
'2/19/1970', 9270, 'B007',’Delete’);

Explanation:

Step 1: According to test suite 2, check all the
necessary conditions given in 3.2 and table 2 pseudo code
for deleting tuple from PT through DT. In this case current
state is table 6, which is PT. According to said query
clearly shows that the given tuple exist in PT but not exists
in DT table 5. This is purely a legal condition of delete
tuple from PT through DT.

Step 2: Retrieved the desired tuple from PT table 6
and insert into DT_staff table 5 with action field‘d’.
Differential Table after step 2, as shown table 7.

Table 7

Table 8 (New hypothetical State table)

For completing the procedure of test 2, As a result the
current state changes from table 6 to table 8.

4.1 Analysis the application program results

The result of the application program clearly verifies that
in the example system we have considered only those test
suites, which follow the legal conditions of insert, and

PT Staff

Staff
No fName lName Position sex DOB salary BNo

SA9 Mary Howe Assistant F 2/19/1970 9270 B007

SG14 David Ford Manager M 3/24/1958 18000 B003

SG16 Alan Brown Assistant M 5/25/1957 8549 B003

SG37 Ann Beech Assistant F 10/11/1960 12360 B003

SG44 Anne Jones Assistant 8343 B003

SG5 Susan Brand Manager F 3/6/1940 25956 B003

SL21 John White Manager M 1/10/1945 32445 B005

SL41 julie Lee Assistant F 6/13/1965 9270 B005

DT_Staff
StaffNo fName lName Position sex DOB salary BNo Action

PT Staff

Staff
No fName lName Position sex DOB salary BNo

SA9 Mary Howe Assistant F 2/19/1970 9270 B007

SG14 David Ford Manager M 3/24/1958 18000 B003

SG16 Alan Brown Assistant M 5/25/1957 8549 B003

SG37 Ann Beech Assistant F 10/11/196
0

12360 B003

SG44 Anne Jones Assistant 8343 B003

SG46 Arif James Assistant M 5/25/1997 9100 C003

SG5 Susan Brand Manager F 3/6/1940 25956 B003

SL21 John White Manager M 1/10/1945 32445 B005

SL41 julie Lee Assistant F 6/13/1965 9270 B005

DT_Staff
Staff
No fName lName Position sex DO

B
salar

y BNo Action

SG46 ARIF JAMES Assistant M 5/25/
1997

9100 C003 Insert

DT_Staff
Staff
No fName lName Position sex DO

B
salar

y BNo Action

SA9 Mary Howe Assistant F 2/19/
1970

9270 B007 delete

SG46 ARIF JAMES Assistant M 5/25/
1997

9100 C003 Insert

PT Staff

Staff
No fName lName Position sex DOB salary BNo

SG14 David Ford Manager M 3/24/1958 18000 B003

SG16 Alan Brown Assistant M 5/25/1957 8549 B003

SG37 Ann Beech Assistant F 10/11/196
0

12360 B003

SG44 Anne Jones Assistant 8343 B003

SG46 Arif James Assistant M 5/25/1997 9100 C003

SG5 Susan Brand Manager F 3/6/1940 25956 B003

SL21 John White Manager M 1/10/1945 32445 B005

SL41 julie Lee Assistant F 6/13/1965 9270 B005

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

236

delete records (or tuples). All these test suites
requirements are successfully executed from proposed
application program. The example system clearly shows
that when the tester executes test suites requirements one
by one, the originality of the parent table (PT) cannot be
disappeared throughout the testing process.

In most of the cases test suites requirements do not
fulfill the valid conditions of insert/delete records. In other
words test suites requirements do not follow the legal
conditions. According to illegal condition of test suites
requirements, the application program throws an exception
or error. Some time we face “Bad request”/ “Malformed”
condition sent by tester.

Some time we need to roll back any hypothetical state
as per test suite requirements sent by the tester. We further
accelerate this application program by some precautions.

• First analyze the all test suites requirements
before executing the application program.

• Separate those test suites which have similar
requirements in form of group

4.2 Join Query for established new hypothetical state

 getIUV(TableName, DTName)
Following query will be dynamically created on the basis
of metadata of the given parent and differential table:

Select tb.Column 1, tb.Column 2, . . .from tableName as tb
Difference
Select tb.Column 1, tb.Column 2,… from tableName as tb,
DTName as DT where tb.Column 1 = DT.column 1 and
tb.Column 2= DT.Column2 … (check all unique columns)
Unoin
Select DT>Column 1, DT>Column 2, … from DTName
as DT where action =! Delete

5. Conclusion

The application program of proposed HDT has easily
tested the test suites requirements consisting of insert, and
delete.

If the tester sends request, to insert the record into
database, then application program automatically checks
the existence of the record in Parent Table (PT) as well as
in Differential Table (DT) to avoid any duplication of pre-
existed records. If the record exists, then generate
exception to the user with detail of the error. If the record
does not exist then application program inserts record
successfully.

If the tester sends request, to delete the record into
database, then application program automatically checks
the given record in Parent Table (PT) as well as in
Differential Table (DT) to avoid duplication. If the record

is not fulfilled the legal condition then generate exception
to the user with detail of the error. If the record fulfills the
legal condition, then application program deletes record
successfully.

The most significant feature of the Hypothetical
Database testing (HDT) is that the originality of the
database remains intact throughout the experiments. In
case of traditional database testing the originality of the
database disappears. The advantage of the HDTS is that, it
is useful for most business application, and other
important applications, where original database is required
to be intact

Acknowledgements

We acknowledged the all kind of support by NED
University of Engineering & Technology and specially the
Vice Chancellor as chairman of Advanced Studies
Research Board who always personally supported the
research project being undertaken.

References
[1] Michael Stone Braker, “Hypothetical DataBases as Views”,
 Proceedings of the 1981 ACM SIGMOD international
 conference on Management of data, 1981.
[2] Stone braker, M. and Keller, K., “Embedding Expert
 Knowledge and Hypothetical Databases into a Database
 System”, Proc. 1980 ACM-SIGMOD Conference on
 Management of Data. Santa Monoca, Ca, May 1980-Sep.
 1980.
[3] Woodfill, J., and Stonebraker, M., “An Implementation of
 hypothetical relational”, Proceedings of the ninth
 International very large database Conference, Florence, Italy.
[4] R. Agrawal and D.J. Dewitt, “Updating Hypothetical
 Databases”, Information processing Letter vol. 16 pp. 145-
 146. 1983.
[5] Richard G. Ramirez, Uday R. Kulkarni, Kathleen A. Moser.
 “The Cost of Retrievals in What-If Databases. Decision and
 Information Systems”, Arizona State University, IEEE,
 1991.
[6] Uday R. Kulkarni, Richard G. Ramirez. “Independently
 Updated Views”, IEEE Transaction on Knowledge
 and Data Engineering, vol. 9, September 1997.

[7] Kathleen A. Moser, Uday R. Kulkarni, Richard G. Ramirez.
 “Scenario Management in Organizational DSS”, IEEE,
 1994.

