
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

265

Manuscript received April 5, 2009
Manuscript revised April 20, 2009

A Security Model for Data Storing and Data Collecting
Agents

D.S.Adane1 and S.R.Sathe2

Department of Information Technology Department of Computer Science Engineering

Shri Ramdeobaba Kamla Nehru Enginnering college, Nagpur, India Visvesvaraya National Institute of Technology , Nagpur, India

Abstract

Communicating with confidential data requires special
attention in a Mobile Agents environment, especially when the
other hosts must be prevented from eavesdropping the
communication. We propose a communication model for
secured communication between the agents belonging to
Publishers and Consumers. Data confidentiality is ensured
using our on the fly Encryption-Decryption sequence using
ElGamal system to directly convert the message or plaintext
into one that is encrypted directly with the public key of
Consumer. The scheme ensures that the data possessed by the
agents is secured at all times when it is executing at any of the
untrusted hosts. We also explain how the homomorphic
property of ElGamal scheme can be integrated with our model
for a web based application like voting involving multiple
agents.
Keywords: Mobile Agents, ElGamal, Confidentiality.

1. Introduction

As the agent technology evolves, awareness of security
for this kind of technology is increasing. Providing
security to Agents code and the sensitive data it carries is
still a challenging task. The notion of an agent roaming
around the network carrying its code, state and data and
executing on foreign (often untrusted) host, makes it an
easy target for security violation as it completely at the
mercy of the foreign host on which it sits and execute.
Thus, main problem in providing security to Mobile
Agents is the fact that the execution environment does
not belong to the user who has created the agent. As such
after the agent is launched, the user does not have any
control over the agent. This aspect also makes it difficult
to apply the traditional security measures to this
computing paradigm. A security solution is therefore
required which would guarantee the security of agents
code and its personal data. Over the years research has
been done in the area of providing security to mobile
agent platform and the agents themselves [1]. Interesting
security measures, as mentioned in [1] and [2], for agent
platform include Software-Based Fault Isolation, Safe
Code Interpretation, Signed Code, State Appraisal, Path
Histories and Proof Carrying Code. Similarly, various
security mechanisms for protecting agent themselves
include Partial Result Encapsulation, Mutual Itinerary

Recording, Execution Tracing, Environmental key
Generation, Computation with encrypted functions and
Obfuscated Code. As, per survey [1], “the area of
mobile agent security is still in a somewhat immature
state. The traditional host orientation toward security
persists, and the focus of protection mechanisms within
the mobile agent paradigm remains on protecting the
agent platform. However, emphasis is moving toward
developing techniques that are directed towards
protecting the agent, a much more difficult problem.
Fortunately, there are a number of applications for agents
where conventional and recently introduced security
techniques should prove adequate, until further progress
can be made.”

With the above observation in mind in this paper we
are dealing with providing security to agents personal
(confidential) data using standard ElGamal encryption
[3] and we also propose a communication model for the
proposed security scheme. We feel that this model would
be useful for many real world applications such as
publishing and collecting the data on the web, voting or
polling. Next section describes the assumption of our
mobile agent model. This is followed by brief description
of our encryption scheme [4]. Lastly, we give the details
of our model and the integration of our encryption
scheme with it. We then elaborate on how the
homomorphic property of ElGamal system can be
utilized with our model for specific web based
application like voting.

2. Mobile Agent Model

A number of models exist for describing agent systems
[5, 6, 7], however, for discussing security issues it is
sufficient to use a very simple one, consisting of only
two main components: the agent and the agent platform.
An agent comprises the code, state and data needed to
carry out some computation. Multiple agents cooperate
with one another to carry out some application. Mobility
allows an agent to move or hop among agent platforms.
The agent platform provides the computational
environment in which an agent operates. The platform
where an agent originates is referred to as the home

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

266

platform, and normally is the most trusted environment
for an agent. It is assumed that the platform can
eavesdrop on the agents data and communication hence
confidentiality is required for both. It is also assumed
that the platforms would not collude to compromise the
data. An agent platform may support multiple locations
or meeting places where agents can interact. Figure 1,
which depicts the movement of an agent among several
agent platforms.

Fig. 1 Agent System Model

3. Encryption Scheme Used

In this section we briefly describe our encryption
scheme [4] based on ElGamal system, to be used in the
communication model. The typical problems in
communicating confidential data through agents are:
a) It is not known beforehand who the agent will
communicate with, thus the data cannot be encrypted
with the proper key of communicating partner.
b) The environment in which the agent is working may
be untrustworthy. Thus the data agent carries must be
kept confidential all the time.

In conventional Client-Server systems the data is
usually encrypted with the data owner’s key to keep it
confidential and when the data is needed in
communication it is .first decrypted and then again
encrypted using the public key of communication partner
or the session key used during the communication. In an
agent environment this is not an acceptable solution as
the data is at one moment unencrypted and accessible by
the host (untrusted host on which the agent resides). In
our scheme, the data is first encrypted using the
encryption key of the agent. At the moment data must be
exchanged to another party, the data is again encrypted,
but this time with the encryption key of the
communicating partner. A decryption process then
follows where the decryption key of the agent is used,
such that the overall result is encrypted data, which can
only be deciphered by the communicating party. This
solution is referred as E-E-D. The process is depicted in
figure 2 below:

Fig. 2 Confidentiality in agent communication.

A necessary condition for an encryption algorithm to

be used as E-E-D is:
DSK1 (EPK2 (EPK1 (M))) = EPK2 (M)

(1)
where, PK1 and PK2 are the public keys of the agent and
communicating party respectively. SK1 and SK2 are
their corresponding private keys. It is assumed that there
are more than one secret keys generated by the agent
corresponding to different types of data. Initially the data
to be encrypted is stored at the users computer and in
order to encrypt it, the user .first generates a key pair for
the agent according to the ElGamal system depending on
type of data. The user generates a large random prime p
and a generator α of the multiplicative group Z*

p of the
integers modulo p.
The user selects a random integer a1, 1<=a1<= p - 2, and
computes :

y1 = αa1 mod p
(2)

The agent’s public key is (p, α, y1) and its private key is
a1.

The user encrypts the data (represented by parameter
m) as follows. He first selects a random integer k1, 1<=
k1 <= p – 2 and computes:

γ1 = αk1 mod p; δ1 = my1
k1 mod p

(3)

The cipher text is c1 = (γ1, δ1). This is stored in the
agent and can be run on any platform at any host. At the
moment that the agent needs to give the personal data to
another entity in the system, the following process is
started. The agent collects the communicating partner’s
(from here on called Bob) public key y2, which is
formed in the same way as the user’s public key (y2 = αa2
mod n). Bob’s private key is a2. It must be noted here
that in order to fulfill equation (1), Bob must use the
same generator and prime number for generating its key
pair as the user. The agent encrypts the cipher text c1
using Bob’s public key y2, by the following
computations:
γ2 = αk2 mod p; δ2 = δ1y2

k2 mod p
(4)

Where, k2, 1 <= k2 <= p - 2, is an integer chosen at
random by Bob. The second cipher text c2 is then formed
by the pair (δ2, γ1).
It is now possible to decrypt it once using the agent’s
private key:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

267

m’=(γ1-a1) δ2 mod p = my2
k2 mod p

(5)
The result is an encryption of m based on PK2, e.g. y2.
This is sent to Bob, who can decrypt according to the
normal AlGamal decryption:

m= (γ2
-a2) m’ mod p

(6)

Decryption of m’ (6) should occur at different place than
the one where E-E-D operation took place as decryption
of m’ results in the plain text.

4. The Communication Model

In order to adopt the above encryption scheme we
propose a model for communication which confirms to
agent system model given in section 2. First we
introduce the concept of Publisher and Consumer agents.
Publisher agents belong to the user who wants to publish
or put some important data on the web. It can be
anything like product information or an important
message which the user wants to share with particular
group of people. To publish the data, the user first
creates two agents P1 and P2. The agent P1 stores the
data to be shared and agent P2 contains the secret key of
the user. It is extremely important that P1 and P2 reside
on two different hosts. This is required because; the last
step of our encryption scheme is decryption using the
secret key of the user. If a single agent is used then we
will be forced to send the secret key with that agent. This
secret key then becomes vulnerable for attack by the
untrusted host. Before dispatching the agents on the
untrusted hosts, UH1 and UH2 respectively, the data in
the agent P1 is first encrypted using the public key of the
Publisher. This corresponds to the first step of our
encryption scheme. Agent P1 also carries with it the
location of P2. Thus the Publisher launches its agents P1
and P2 so that they reside on two different untrusted
hosts(UH1 and UH2). The Consumers are the users who
would like to get the data published by the Publisher. In
order to access the data published by the Publisher, the
consumer launches its agent C which roams around the
network looking for appropriate Publisher agent who can
provide it with the required information. When it
encounters one it first authenticates itself to the agent and
also checks its authenticity. Once the agents authenticate
themselves, Publisher agent P1 sends the encrypted
message, encrypted using the public key of Publisher, to
the agent C. The agent C first reencrypts the encrypted
message with the public key of Consumer. This
corresponds to the second step of our encryption scheme.
Agent C alsoreceives the location of P2 from P1. The
location information is used by the agent C to move from
the current untrusted host, UH1, to other which is hosting
the agent P2, UH2. The agents P2 and C authenticate

themselves. After that, agent C sends a doubly encrypted
message to P2 which holds the private key of Publisher.
P2 in turn decrypts the message once with the private
key of the Publisher. This corresponds to the last step of
our encryption scheme. The resulting message which is
encrypted in the public key of Consumer is sent back by
P2 to C. The untrusted platform, UH2 cannot get
anything out of this communication as the message is
encrypted both ways. Similarly, assuming that the
platforms do not collude, it is difficult for the platform
UH2 to guess anything out of the secret key stored in P2.
Thus the scheme provides total confidentiality, as far as
the communication is concerned and maintains data
privacy in the agents.
Once the agent gets the encrypted message from P2, it
can go back to its home platform, a trusted platform,
where it can either store the message in the encrypted
form in the database for future reference or it can be
decrypted by the host. Figure 3 gives the complete
communication model of our scheme. The numbers on
the edges gives the sequence of operations performed.
Thus, 1 and 2 indicates that the agents P1 and P2 are
launched by the Publisher. Similarly, 3 corresponds to
launch of Consumer agent C. The order of operations
corresponds to the sequence numbers. As such, sequence
3 cannot come before 1 and 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

268

Fig. 3 The communication model for Publisher and Consumer

The algorithms for Publisher and Consumer using java
notations of IBM Aglets platform can be thus
summarized as follows:

Algorithm_Publisher
{
//Create agent P1 attach an encrypted message and
address //of P2 to it and sends it to an untrusted platform
specified //by the URL1 in URL List

Slave.create(getCodeBase(),SlaveClassName,
getAgletContext(), this, getURLList(), new String());

//Create agent P2 attach a private key of Publisher to it
and //send it to an untrusted platform specified by the
URL2 in //URL List

Slave.create(getCodeBase(),SlaveClassName,
getAgletContext(), this, getURLList(), new String());

}

// P1 waits for the Consumer Agent to send a request
//message to it. If message received, it can handle it
using //simple statement like:

public boolean handleMessage(Message msg) {
 if (msg.sameKind("request")){
// authenticate the Consumer agent
// on successful authentication send the request grant
 message
// on receiving ready message from Consumer agent,
send
 the stored encrypted message and address of P2 to it
 }
}
Algorithm_Consumer
{
 // Consumer creates an agent C1 containing required
// preferences of Publisher and request and sends it to
an
// untrusted platform specified by the URL1 in URL List

 UH1
Authentication and
Message Exchange
 4
C P1

 Publisher
 Agents P1 and P2

Consumer
Agent C

 UH2
Authentication and
Message Exchange

 6
C P2

P1 P2

P1 contains message
encrypted using public
key of Publisher
P2 contains private key
of Publisher

C
On lookout of
Publisher agent

1 2

3

5

C encrypts the message
twice and goes to UH2

C returns back with the
message encrypted in
public key of Consumer

7

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

269

Slave.create(getCodeBase(),SlaveClassName,
getAgletContext(), this, getURLList(), new String());

// On receiving request grant from P1, authenticate P1
// send ready message to P1
//receive encrypted message and reencrypt it using its
public key
// extract URL2 of P2 from the message and move to
URL2
// authenticate itself as above to P2
// send the doubly encrypted message to P2
// get back the message which is once decrypted using
the private key of Publisher, contained in P2 (or the
message directly encrypted in public key of Consumer)
// get back to the home platform
}
4.1 Using Homomorphic Properties of
ElGamal Encryption

An additional property of E-E-D is the ability to add two
different but similarly encrypted messages while
preserving confidentiality. When it is possible to
compute E(m1 + m2) from E(m1) and E(m2) without
decrypting any of these values, the encryption algorithm
is denoted as being homomorphic in addition. This is
possible in ElGamal given that the security parameter k
is equal for E(m1) and E(m2). In that case, if two
messages m1 and m2 are encrypted using an equal k, the
ciphertexts will look as follows:
γ1 = αk mod p ; δ1 = m1yk mod p
γ2 = αk mod p ; δ2 = m2yk mod p
where y is the public key. Note that here δ2 is computed
using the original ElGamal encryption scheme [3] and
not by the E-E-D scheme. Adding δ1 and δ2 gives δ1 +
δ2 = (m1 +m2)yk mod p, which is equal to the direct
encryption of m3 where m3 = m1 + m2, hence it is
possible to add two numbers without having to decrypt
one of the messages.
One of the conditions for using ElGamal is randomly
choosing a new security parameter k for each encryption.
Only in certain cases it is allowed to use one k twice.
When one message is encrypted twice, separately, using
an equal k will result in two equal ciphertexts.
Furthermore, given two ciphertexts and equal values for
k, it is possible to derive the ratio of the plaintexts
i.e.(δ1/δ2=m1/m2 mod p). Two parties that each encrypt
a message use equal values for k and the public key.
Then both parties can compute the other party’s plaintext
without knowing the corresponding private key. Taking
these risks into account, ElGamal encryption can only be
used with equal values for k when either the encrypting
parties are one single entity or when the encrypting
parties fully trust each other, e.g. when protection is only
necessary towards a third party. The use of homomorphic

property of ElGamal scheme is desribed in the next
section.

4.2 A Model with Multiple Agents for Voting
Application

The figure 3 below depicts the general model for a data
collecting agent T which collects data from multiple
agents, A and B and performs operation on that data. In
this case, the security requirements are to provide
confidentiality when the data is collected and the ability
to perform an operation on this collected data.
Homomorphic addition on the collected data is
performed, as was described in the previous section to
preserve confidentiality during the operation at an
untrusted host. In the figure below UH and TH indicates
Untrusted and Trusted hosts respectively. The order of
operations is indicated by the roman numerals.
A user wishes to know exactly how many other users are
interested in talking with him. Such a scenario can be
useful in applications such as voting where it is only
required to count the number of votes in favor of a given
user, X. Hence the user agent S on its own trusted
platform THt launches another agent T which roams
around in the network collecting information from all the
agents interested in voting the user. This operation is not
shown in the above figure to avoid complication. As was
explained in previous model the different users (voters in
this context) A and B communicate with T using our
EED scheme by launching two agents each A1,A2, B1
and B2. In this model it is assumed that the agents A1
and B1 has certain priority set in their messages
regarding the agents with which they wish to
communicate (vote). For the willingness the message can
be 1 or else it is 0. Thus, agent T receives either 1 or 0 as
a message from other agents. Moreover these messages
are encrypted on the fly using our EED scheme described
previously. Now the agent T can collect all the messages
so received from other agents and perform the
homomorphic addition of messages at any other
untrusted host (UH5) as shown in the figure 4. After
performing the addition it can return back to its parent
agent S which then decrypts the result to know exactly
how many users voted for it.

5 Conclusion

It is a major challenge to provide secured Mobile Agent
communication. The basic problems of code mobility
restrict the use of conventional security measures to be
adopted directly in this context. There is an urgent need
for new effective and efficient solutions in this area. We
have explicitly tried to provide data privacy to an agent.
We have proposed a secured communication model

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

270

based on our EED scheme. We have mathematically
proved the scheme and used it to ensure that the data
possessed by the agents is secured at all times when it is
executing at any of the untrusted hosts. Similarly, we
have also shown how the homomorphic property of the
ElGamal scheme can be incorporated with our model to
realize a typical secured web application like voting. We
are currently into the implementation phase of the

scheme. One important aspect that needs to be taken care
off is the agent authentication mechanism and ability to
detect tampering of agent data. In our scheme we have
assumed that the standard mechanism of blind digital
signatures is in place. Our future work includes
proposing a suitable digital signature technique using
ElGamal scheme, which happens to be our base system,
for the model.

Fig. 4 Model with multiple agents using homomorphic addition within untrusted environments.

References
[1] Mobile Agent Security, National Institute of Standards and

Technology, Special Publication 800-19, August 1999.
Wayne Jansen and Tom Karygiannis.
http://csrc.nist.gov/publications/nistpubs/800-19/sp800-
19.pdf

[2] Countermeasures for Mobile Agent Security, Computer

Communications, Special Issue on Advanced Security
Techniques for Network Protection, Elsevier Science BV,
November 2000. Wayne Jansen.
http://csrc.nist.gov/groups/SNS/mobile_security/documents
/mobile_agents/ppcounterMeas.pdf

[3] T. ElGamal. A public key cryptosystem and a signature

scheme based on discrete logarithms. IEEE Transactions on
Information Theory, 31(4):469–72, 1985.

[4] D.S.Adane, S.R.Sathe, P.D.Adane,’Data Privacy in Mobile
Agent Communication’, 3rd IEEE/IFIP International
Conference in Central Asia on Internet, ICI 2007. Tashkent,
26-28 Sept. 2007.

[5] Agent Management, FIPA ‘97 Specification, part 1, version

2.0, Foundation for Intelligent Physical Agents, October
1998. <URL: http://www.fipa.org/spec/FIPA97.html >

[6] Mobile Agent System Interoperability Facilities

Specification, Object Management Group (OMG)
Technical Committee (TC) Document orbos/97-10-05,
November 1997. <URL:
http://www.omg.org/techprocess/meetings/schedule/Techno
logy_Adoptions.html#tbl_MOF_Specification>

[7] J. E. White, Mobile Agents, in J. M. Bradshaw (Ed.)

Software Agents, AAAI/The MIT Press, 1997.

TH a
A1 A2

UH1
A1 T

A2 T
UH3

T
Homomorphic
addition

UH5

UH2
T B1

T B2
UH4

TH b
B2 B1

USER A USER B

T S
THt

I

II III

IV

V

VI

VII

VIII

IX

USER X

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

271

D.S.Adane received M.Tech degree in
Computer Science and Engineering
from I.I.T Guwahati. He is currently
doing his PhD in Computer Science
and Engineering from Visvesvaraya
National Institute of Technology,
Nagpur and working as Senior faculty
in Information Technology Department,
Shri Ramdeobaba Kamala Nehru
Engineering college, Nagpur. His

research interests include Distributed and Mobile Computing
and Mobile Agents. He is a Life Member of ISTE and a
Member of Institution of Engineers India (MIE).

S.R. Sathe received M.Tech. in
Computer Science from I.I.T. Bombay
and Ph.D. from Nagpur University. He
is currently working as Asstt. Prof. in
Computer Science and Engineering
Department at Visvesvaraya National
Institute of Technology, Nagpur. His
research interests include Parallel and
Distributed Systems, Mobile
Computing and Algorithms.

