
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

277

Manuscript received April 5, 2009
Manuscript revised April 20, 2009

Development of the Conceptual Tool for Complete Software
Architecture Visualization: DArch (DA)

K. Delhi Babu
Research Scholar

Department of Computer Science
S.V. University, Tirupati,

Andhra Pradesh, India

Dr. P. Govindarajulu
Professor

Department of Computer Science
S.V. University, Tirupati,

Andhra Pradesh, India

A.N. Aruna Kumari
Assistant Professor

Department of Computer Science & Engg.
Sree Vidyanikethan Engineering College,

Tirupati, Andhra Pradesh, India

Summary
Software architecture visualization refers to the process of
mapping entities in a software system domain to their graphical
representation to aid comprehensive and development. Software
visualization can be done based on seven key areas. There are
mainly seven visualization tools to satisfy the attributes of seven
key areas. Some of the attributes related to dynamic aspects
should not supported by the existing tools. In order to support
those aspects a new conceptual tool called DArch is proposed.
By this we can achieve the properties related to dynamic
perspectives. Every tool doesn’t support all the attributes related
to key areas. So the comprehensive framework was designed to
acquire all the key area attributes for complete software
architecture visualization.
Key words:
DArch, DA, Architecture Visualizatione.

1. Introduction

Architecture Visualization is the way of understanding the
software system clearly and used to enhance information
understanding by reducing cognitive overload. Using
visualization tools, people are often able to understand the
information presented in a shorter period of time or to a
greater depth. The term “visualization” has two
connotations. Visualization can refer to the activity that
people undertake when building an internal picture about
real-world or abstract entities. Visualization can also refer
to the process of determining the mappings between
abstract or real-world objects and their graphical
representation; this process includes decisions on
metaphors, environment, and interactivity. This work uses
the term “visualization” in the latter sense: the process of
mapping entities to graphical representations. Evaluating a
particular visualization technique or tool is problematic.
Common practice is that some set of guidelines is
followed and a qualitative summary is produced. As the
guidelines may have been used to produce the
visualization, there is some bias in such an evaluation.
Moreover, these summaries do

not usually allow a comparison of competing techniques
or tools. A comparison is important because it identifies
possible “holes” in the research area or development
market. Therefore, for example, a software organization
may have the requirement that it needs to visualize their
current system with an emphasis on being able to obtain
multiple views for multiple users and should also allow
querying. Other aspects of the visualization may be less
important at this point in time.
Thus, a framework for describing the attributes of tools is
needed. Once the tools have been assessed in this common
framework, a comparison is possible. Such a framework
will not be complete and indeed may never be. However, a
framework can be used for comparison, discussion, and
formative evaluation. In this environment, we present a
framework for software architecture visualization
evaluation and over come the limitations of previous tools.

1.1 Result Summary and Contribution

The framework is used to develop the new software
architecture visualization tool. It helps to visualize
software architecture completely. It is also used to assess
tool appropriateness from a variety of stakeholder
perspectives. The framework can also be used to design an
“ideal” tool, for visualization of software architecture
through all key attributes.

2. Related Work

This background section briefly surveys the three main
areas of the contribution: architecture, visualization, and
evaluation.

2.1 Architecture

Architecture can take two roles: one describing how the
software system’s architecture should be and the other
describing how a software system’s architecture is. In
section 3.1.describing how a software system’s

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

278

architecture is. Part of the usefulness of architecture
analysis is to measure the discrepancy between the
prescribed architecture and the architecture that describes
the software produced.
There are many definitions of architecture [6], [9],
[22].For this work, the IEEE 1471 standard [15] is
adopted, where architecture is defined as “the fundamental
organization of a system embodied in its components,
their relationships to each other and to the environment,
and the principles guiding its design and evolution.” This
is used as the starting definition in this work as it has been
agreed upon through a community vetting process. As the
framework evolved, other aspects, for example, the
dynamic aspects of architecture, needed to be incorporated
into the framework.
For any software system, there are a number of individuals
who have some interest in the architecture. These
stakeholders have differing requirements of the software
architecture depending on the role that they take. The left
column in Table 1, from the IEEE 1471 standard [15],
identifies a minimal collection of stakeholders that an
architectural description must address.
Communication and understanding of the architecture is
essential in ensuring that each stakeholder can play their
role during the design, development, and deployment of
that software system.
Software engineering research has examined the use of
specific languages to describe software architecture (see
Medvidovic and Taylor’s taxonomy [19]). These
languages are referred to as Architecture Description
Languages (ADLs). Rather than focusing on ADLs for
capturing and representing architectural information, the
framework presented is more concerned with the
visualization of architectures in the large, whether they
have been encoded with an ADL or not [10].
Visualizations may indeed use the paradigm of
components and connectors, but this is at a lower level.

TABLE 1 Stakeholders

2.2 Software Visualization

The most prominent types of visualization defined in the
literature are

1. Scientific Visualization
2. Information Visualization
3. Software Visualization

Scientific Visualization is concerned with creating
visualizations for physically-based systems. Information
Visualization is concerned with abstract nonphysical data.
Software Visualization has been defined as a discipline
that makes use of various forms of imagery to provide
insight and understanding and to reduce complexity of the
existing software system under consideration.
The motivation for visualizing software is to reduce the
cost of software development and its evolution. Software
visualization can support software system evolution by
helping stakeholders to understand the software at various
levels of abstraction and at different points of the software
life cycle. Software Visualization can be seen as the
application of Information Visualization techniques to
software, as the data collected from all areas of a system
development, such as code, documentation, and user
studies, is abstract and, hence, has no associated physical
structure.
Software Visualization is the process of mapping entities
in a software system domain to graphical representations
to aid comprehension and development. It has traditionally
been focused on aiding the understanding of software
systems by those who perform development and
maintenance tasks on that software. Although Software
Visualization supports the software development and
maintenance process, this focus excludes other valid
stakeholders such as Users and Acquirers as listed in
Table 1. Software Architecture Visualization can help all
stakeholders to understand the system at all points of the
software life cycle.

2.3 Evaluating Software Visualizations

A number of taxonomies have been developed for
classifying software visualizations. Taxonomies define a
number of features that visualizations can be measured
against. A commonly used method for evaluating software
visualizations is to apply these taxonomies as an
evaluation framework. Price et al. [20] present a taxonomy
of Software Visualization with six distinct categories:
Scope (the range of systems that can be visualized,
platform for system, and scalability), Content (the subset
of data from Scope that is actually used in the
visualization: control flow, data flow, and algorithms),
Form (the characteristics of the visualization: medium,
level of detail, and synchronized views),Method (how the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

279

data for the visualizations is gathered: automatically
generated visualization, code instrumentation, and
noninvasive probes), Interaction (user interaction and
control: use of buttons and menus and navigation), and
Effectiveness (how well the visualizations meet their
objectives: purpose of the visualizations, clarity, and
degree of empirical evaluation). These categories are
structured hierarchically, with each category expanded
into subcategories. The categories were derived bottom-up,
first by surveying existing taxonomies, then examining
current tools, and finally letting these observations suggest
a new formulation.
Bassil and Keller [17] use Price et al.’s framework to
qualitatively analyze a collection of software visualization
tools. Maletic et al. [18] enhance the Price framework with
regard to task orientation. Task orientation is similar to
our use of stakeholders; however, we have a larger scope
of task than that presented by Maletic et al.

3. Evaluation Framework

Before describing the framework itself, the motivation for
its development is given. Next, the framework itself is
described while indicating the process by which it was
derived.

3.1 Motivation for an Architecture Framework

A number of frameworks and taxonomies exist for the
evaluation of software visualizations [20], [1], [7]. As
software visualization has tended to appeal to its roots in
program comprehension, these visualizations are typically
concerned with the representation of software at code
level, supporting programmers and maintainers. Existing
frameworks and taxonomies reflect this focus by looking
at low-level areas such as source code, algorithms, and
data structures [5], [12], [20], [26]. The proposed
framework will provide a mechanism to discuss key areas
and related features of tools and will indicate the trade-
offs made by the stakeholders. This is similar to the trade-
off technique applied in the cognitive dimensions
discussed by Green and Petre [12] in their work on visual
programming environments.
In supporting developers and maintainers, software
visualization has been largely concerned with representing
static and dynamic aspects of software at the code level.
Architecture visualizations require a larger set of
stakeholders.
Stakeholders prescribed by IEEE 1471 are general classes
of users. For the purpose of software architecture
visualization, the list of stakeholders from the left column
in Table1 can be expanded to the list in the right column
in Table 1.The extended list on the right in Table 1
illustrates the point that architecture visualization must
support a larger number of stakeholders than that

supported by traditional software visualization. The right
column in Table 1 could also be extended to include other
intended stakeholders, such as suppliers, configuration
management staff, chief information officers, and auditors.

3.2 Framework Derivation

The primary goal of the proposed framework is to assess
system architectures. The framework was derived from an
extensive analysis of the literature in the area of software
visualization with special emphasis on software
architecture. Each of the seven key areas is a conceptual
goal which the framework must satisfy. It is this that
makes the application of the Goal Question Metric
paradigm [21] straightforward.
Rather than describing the complete GQM derivation for
each subgoal of the framework, its application in the Static
Representation subgoal/key area is demonstrated only. A
goal needs a purpose, issue, object, and viewpoint. Thus,
here, the need is to assess (the purpose) the adequacy (the
issue) of static representation (the object) from the
researcher’s perspective (viewpoint). Then, the question
“Does the visualization support a multitude of software
architectures?” is posed. This process yields the first
question in Table 2 and feature SR 1 in Table 3.
Continuing in a like manner yields the other three
questions in Table 2 and items SR 2-4 in the Static
Representation portion in Table 3. Following this process
in all key areas provides a straightforward way to generate
questions for use in GQM. The metric for the GQM used
is the Likert scale with four ordered values plus two
nonvalues as this does not overcomplicate the application
of the framework, and the responses have intrinsic
meaning.

3.3 Framework Details

There are some aspects of software architecture
visualization that are not addressed at all in existing
software visualization evaluation frameworks. This
presents an opportunity to develop a framework for the
comparison of such architecture visualizations. The
proposed framework is divided into seven key areas.
Static Representation characterizes the size and
accessibility of the architectural information. Dynamic
Representation characterizes the support for runtime
collection and observation of architectural information.
Views characterize the perspective of the observer.
Navigation Interaction characterizes the ease of use of the
tool. Task Support characterizes the operational use of the
visualization. Implementation assesses the suitability of
the information for the particular computational
environment. Representation Quality characterizes the
quality of the information presented to the observer.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

280

In the following sections, parenthetical references refer to
the leftmost column in Table 3. The intent is to point the
discussion of a key area to the embodiment of the feature
in the framework by including the GQM questions.
We can evaluate the visualization tools based on the key
areas that are required in the derivation of the framework.
Evaluating the visualization tools based on key areas

TABLE2

TABLE 3: Possible Responses to the items in table2

3.3.1 Static Representation (SR)

Static Representation is the architectural information
which can be extracted before runtime, for example,
source code, test plans, data dictionaries, and other
documentation.
It is possible that a visualization system will be restricted
to a small number of possible architectures. A
Visualization need not support a multitude of software

architectures if that is not the intention of the visualization.
(SR 1: Does the visualization support a multitude of
software architectures?) In some cases, the software
architecture is clearly defined and a single data source
exists from which the visualization can take its input.
Often, architectural data does not reside in a single
location and must be extracted from a multitude of sources.
(SR 2: Does the visualization support the appropriate
types of static software architecture data sources?) An
architecture visualization certainly benefits from the
ability to support the recovery of data from a number of
disparate sources. Moreover, with multiple data sources,
there should be a mechanism for ensuring that the data can
be consolidated into a meaningful model for the
visualization.
Architectural information may not be available directly
but is recovered from sources that are nonarchitectural.
(SR 3: Does the visualization support the recovery of
architectural information from sources that are not directly
architectural?) For example, file systems may not be
directly architecturally related, but they can contain
important information that relates to architecture. Even
more so, namespaces, modules, classes, methods, and
variables can all contribute to a view of the software
architecture and, so, a visualization system should support
language-specific constructs.
If architectural data is to be retrieved from
nonarchitectural data, there is a potential for the data
repository to contain large amounts of data from lower
levels of abstraction. (SR 4:Can the visualization
accommodate large amounts of architectural data?) If this
is the strategy employed by the visualization,then the
visualization should be able to deal with large volumes of
information, that is, the system should be scalable.

3.3.2 Dynamic Representation (DR)

Dynamic Representation is the architectural information
that can be extracted during runtime. Some relationships
between components of a system will be formed only
during execution due the nature of late-binding
mechanisms such as inheritance and polymorphism.
Runtime information can indicate a number of aspects of
the software architecture. (DR 1:Does the visualization
support an appropriate set of dynamic data sources?)
Visualizations should support the collection of runtime
information from dynamic data sources in order to relay
runtime information. Typically, for smaller software
systems, this runtime information will only be available
from one source, but, for larger distributed software
systems, the visualization may need the capability of
recovering data from a number of different sources. These
data sources may not reside on the same machine as the
visualization system, so the ability to use remote dynamic
data sources is useful. Some sources may produce data of

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

281

one type, where another source produces different data. In
this case, the visualization should provide a mechanism by
which this data is made coherent.
When dynamic events occur, the visualization should be
able to display these events appropriately and within the
context of the architecture. (DR 2:Does the visualization
support association of dynamic events with elements of
the software architecture, during execution of the
software?) The visualization must therefore be able to
associate incoming events with architectural entities.
Any method of recording dynamic information from a
software system will affect that software system in some
way. (DR 4:Does the visualization allow live collection of
dynamic data?) At one extreme, there is the directly
invasive approach of adding lines to the software source
code. At the other extreme, there is retrieval of
information from a virtual machine. The visualization
system should support a suitable approach to recovery of
dynamic architecture data in the least invasive way;
disruptive behavior is not desirable. (DR 3:Does the
visualization support noninvasive collection of dynamic
data?)
By visualizing the dynamic data as it is generated, there
may be an affect on the software being visualized. A
“postmortem style” has the benefit of knowing the period
of time over which the visualization occurs. This is useful
to a visualization in that it can render a display for a
particular instance in time while knowing what will occur
next. (DR 5: Does the visualization allow recording
of dynamic data for subsequent replay?)

3.3.3 Views (V)

Kruchten [17] identifies four specific views of software
architecture, whereas the IEEE 1471 standard allows for
the definition of an arbitrary number of views. (V 1:Does
the visualization allow for multiple views of software
architecture?)A visualization may support the creation of a
number of views of the software architecture and may
wish to allow simultaneous access to these views. In the
IEEE 1471 standard, architectural views have viewpoints
associated with them. A viewpoint defines a number of
important aspects about that view, including the
stakeholders and concerns that are addressed by that
viewpoint, along with the language, modeling techniques,
and analytical methods used in constructing the view
based on that viewpoint. (V 2:Does the visualization
display a representation of the viewpoint definition?) A
visualization may make this information available to the
user in order to assist in their understanding of the view
they are using.

3.3.4 Navigation and Interaction (NI)

Interactive visualizations systems provide a means by
which users will move within, and interact with, the
graphical environment. (NI 1: Can users browse the
visualization by following concepts?) Common user
navigation techniques such as panning, zooming, book
marking, and rotating are usually offered in both 2D and
3D environments. Interaction with the environment can
involve selection, deletion, creation, modification, and so
on.
An important part of the comprehension process is the
formulation of relationships between concepts. Having the
ability to follow these relationships is fundamental. Storey
et al. [7] indicate that a software visualization system
should provide directional navigation. The visualization
should support the user being able to follow concepts in
order to gain an understanding of the software architecture.
Searching is the data-space navigation process that allows
the user to locate information with respect to a set of
criteria. (NI 2: Can users search for arbitrary
architectural information?) Storey et al. [7] label this as
arbitrary navigation—being able to move to a location that
is not necessarily reachable by direct links. Sim et al. [24]
identify the need for searching architectures for
information; so, the visualization should support this
searching for arbitrary information.
Query drilling is a term that describes a method of
dataspace navigation that is a particular hybrid of
browsing and searching. (NI 3:Can the user query-drill
architectural information?) It allows a user to search the
data space and then recursively search within the resulting
data set.
Architecture is often comprised of a number of views.
Moving between views is essential in order to understand
an architecture from different viewpoints. (NI 4: Can users
navigate between views?) Context should also be
maintained when switching between views so as to reduce
disorientation. Along with data-space navigation, the
movement within a view is also important. Shneiderman’s
mantra for visualization is overview first, zoom, and filter,
and then show details on demand [23]. A visualization
system should support this strategy. Also, the visualization
should allow the user to move around so as to focus on
and see the information they are looking for. Typical
navigational support would be pan and zoom. While
allowing the user to navigate, the visualization should
provide orientation clues in order to reduce disorientation.
(NI 5:Can users navigate appropriately within a view?)

3.3.5 Task Support (TS)

Task Support is crucial for any usable software
visualization system. This area of the framework explores
the ability of the visualization to support stakeholders

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

282

while they are developing and understanding the software
architecture. The visualization should support architectural
analysis tasks. As comprehension strategies are task
dependent, architecture visualizations should support
either of top-down or bottom-up strategies, or a
combination of the two.(TS 2:Does the visualization
support software architectural comprehension?) An
important comprehension task is the identification of
anomalies. Architectures may be broken or misused and
exhibit unwarranted behavior. (TS 1: Does the
visualization support the representation of anomalies?)
The ability to tag graphical elements in a visualization is
important for various activities. Annotation can allow
users to tag entities with information during the
formulation of a hypothesis. (TS 3: Does the
visualization support annotation?) Visualizations should
support any number of stakeholders.
In order to facilitate the communication of the architecture
to a stakeholder, the visualization must represent the
architecture in a suitable manner. (TS 4: Does the
visualization support the communication of the
architecture to intended stakeholders?) Stakeholders may
require very different views from other stakeholders.
Software architecture can evolve over time. Subsystems
may be redesigned; components replaced, new
components added, new connectors added, and so on.
(TS 5:Does the visualization show the evolution of
software architecture?) An architecture visualization
should provide a facility to show the evolution. This
support may be basic, showing architectural snapshots, or
the support may be more advanced by using animation.
Visualizations may offer the capability for the users to
create, edit, and delete objects in the visualization. In
order to be able to fully support the construction of
software architecture, the visualization must be able to
allow the user to create objects in the domain of the
supported viewpoint.(TS 6:Does the visualization support
construction of software architectures?) Of course, the
visualization should also then support the editing and
deleting of those objects. Architectural descriptions can be
used for the planning, managing, and execution of
software development [15]. In order for the visualization
to support this task, it should provide rudimentary
functionality of a project management tool—or have the
ability to communicate with an existing project
management tool. (TS 7: Does the visualization support
software planning and development?)
Software architecture evaluation allows the architects and
designers to determine the quality of the software
architecture and to predict the quality of the software that
conforms to the architecture description [15]. To support
this, a visualization should have some mechanism by
which quality descriptions can be associated with
components of the software being visualized. (TS 8: Does
the visualization support evaluation of software

architectures?) A typical use of software architecture
visualization is the comparison of as-implemented with
as-designed architecture. The visualization should be able
to support the display of these two architectures and allow
users to make meaningful comparisons between them. (TS
9: Does the visualization support the comparison of
software architectures?) Software built from a software
product line is a typical scenario where comparison of
architectures is particularly useful.
The rationale for the selection of architecture and the
selection of the individual architectures of the components
of that architecture are included in architectural
descriptions. (TS 10: Does the visualization represent
rationale?)Rationale can also be associated with each
viewpoint of an architecture. By showing the rationale for
the elements of the architecture and the architecture as a
whole, a visualization will allow a user to have an insight
into the decision making process.

3.3.6 Implementation (I)

Visualizations should be able to be generated
automatically. (I 1:Can the visualization be generated
automatically?) If platform choice prohibits remote
capture of system data, the visualization should be able to
execute on the same platform as the software it is intended
to visualize. (I 2: Can the visualization be executed on the
platform of the target system?) Where possible, remote
capture may be preferred for its potential in reducing
unwanted interaction with the software. As there are many
stakeholder roles in a software system, there may also be a
one-to-one mapping of role to physical users. Therefore,
the visualization should support multiple users
concurrently or asynchronously. (I 3: Does the
visualization support multiple users?)

3.3.7 Representation Quality (RQ)

Representation Quality is an area of the framework that
deals with the capability of the visualization to adequately
represent the software architecture. For software
architecture visualization, the visualization must present
the architecture accurately and represent all of that
architecture if the visualization purports to do so. (RQ 1:
 Does the visualization achieve high fidelity and
completeness?) During its execution, software may
change its configuration in such a way that its architecture
has changed. Software that changes its architecture in such
a way is labeled software that has a dynamic architecture.
If the visualization is able to support architectural views of
the software at runtime, then it may be capable of showing
the dynamic aspects of the architecture. (RQ 2 :
Does the visualization support the representation of
dynamically changing software architecture?) In order to

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

283

do so, the visualization may either support snapshot views
of the progression or animate the changes.

4. Software Architecture visualization tools

Each visualization tool can satisfy some specific activities.
Only one tool does not satisfy the needs to visualize the
software completely and effectively.

 4.1.1 ArchView (AV)

The ArchView [9] tool uses the architecture analysis
activities of extraction, visualization, and calculation. It
produces an architecture visualization that presents the use
relations in software systems. The relations are stored in a
set of files that are read by a browser. The browser reads
layout information files and allows the selection of shapes
and the manual configuration of layout. A collection of
tools is used to manipulate the set of relations to perform
selected operations. A VRML generator creates a 3D
representation using the 2D layouts and layer position.

4.1.2 The Searchable Bookshelf (SB)

The Searchable Bookshelf [24] visualization attempts to
combine both searching and browsing approaches to
software comprehension. The Searchable Bookshelf adds
search capabilities to the Software Bookshelf. Users can
browse the software structure from an initial overview by
navigating through an HTML style display and a software
landscape central view. Here is an example of the
difference between searching and query drilling. The
Searchable Bookshelf allows searching but does not allow
extended searching within the resulting data space.
This visualization affords the user a number of different
views; however, the number of views is limited and the
user cannot add custom views. Dynamic data is not linked
to the static representations of the architecture. The
visualization is therefore unable to deal with architectures
that change configuration during runtime.

4.1.3 SoftArch (SA)

SoftArch [13] is both a modeling and visualization system
for software, allowing information from software systems
to be visualized in architectural views. SoftArch supports
both static and dynamic visualization of software
architecture components and does so at various levels of
abstraction.SoftArch’s implementation of dynamic
visualization is that of annotating and animating static
visual forms. SoftArch defines a metamodel of available
architecture component types from which software
systems can be modeled. In this way, a system’s behavior
can be visualized using copies of static visualization views
at varying levels of abstraction to show both the highly

detailed or highly abstracted running system information.
SoftArch is integrated into a development environment;
thus, it addresses a key criticism of other visualizations: It
provides a mechanism by which it can be used by
developers during software development. Other aspects of
architecture such as project management, architecture
comparison, and architecture evaluation are not directly
supported in SoftArch.

4.1.4 SoFi

SoFi [4] is a tool that performs source code analysis in
order to compare intended architecture with implemented
architecture. SoFi’s clusters source files into a structure
based on source file naming schemes. SoFi relies heavily
on intervention by an architect to perform restructuring.
This restricts the applicability of this visualization to
scenarios that require automated generation of a
visualization of an existing system. SoFi is focused on
lower level areas of architecture and does not support
dynamic data. Visualizing evolution can only be supported
by repeated application of the tool and visually comparing
the differences between subsequent images.

Fig.1: Starplots of visualization tools

4.1.5 LePUS

LePUS is a formal language dedicated to the specification
of object-oriented design and architecture [5], [6], [7].
LePUS diagrams are intended to be used in the
specification of architectures and design patterns and in
the documentation of frameworks and programs. As a
visual language, LePUS is not concerned with the
extraction of architectural information from systems but is
simply a means by which an architect can encode software
architecture for communication to other stakeholders in
that architecture. This will allow for some activities, such
as construction, evaluation, and comparison, but is not
suited to core visualization activities such as searching and
query drilling.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

284

4.1.6 Enterprise Architect (EA)

Enterprise Architect [25] is a UML CASE tool that allows
software architects, designers, and analysts to design
software from several viewpoints. EA can be used from
requirements capture to UML modeling to testing and
project management. EA utilizes a graphical user interface
that sits above an entity-relationship repository. The
primary mechanism for modeling software systems in EA
is to use diagrams. Entity templates are dragged onto a
diagram area, causing a new entity to be created. These
entities can be edited using the graphical user interface.
Links can be formed between diagram entities. These
links cause relationships to be formed between entities in
the underlying model. Existing entities can be dragged
onto newly formed diagrams and any existing
relationships are automatically shown. Thus, the entity-
relationship model is distinct from the visual
representations that form the user- interface. EA’s primary
use is for designing new software but it also offers a broad
range of other tools. For example, EA also allows existing
software to be parsed and imported. EA supports many
activities and is suited to a wider audience of stakeholders.
It does not support dynamic data and has difficulty in
showing architectural evolution. EA does permit the
construction of new views.

4.1.7 Arch Vis (Avis)

Arch Vis is prototype software architecture visualization
tool. Its design was driven by the key concerns regarding
software architecture visualization requirements. That is to
say that Arch Vis was designed and built using the
evaluation framework as requirements. In this sense,
including it in this list is skews the results. However, the
framework and Arch Vis were developed in parallel, so
features were added to the framework after the design of
Arch Vis was complete. Figure 2 shows star plot of Arch
Vis visualization tool.

Figure 2

All these seven existing visualization tools all the
attributes that are present in the seven key areas. We can

know this by superimposing the starplots of all the
existing tools on one another we can obtain the combined
starplot of all the existing tools. This combination starplot
clearly shows that some of the attributes related to
dynamic events should not supported by the existing tools.
The figure 3 shows the combined starplot of all the
visualization tools. In this representation we can find that
some specific activities should not satisfied by the
existing tools. In order satisfy those activities we can
propose a new tool for visualizing the software completely.
In order to satisfy all the attributes related to dynamic
events we can propose a new tool, it can be referred as
DArch(DA).

4.1.8. DArch (DA)

The proposed conceptual tool by us covers the activities of
non invasive collection of data, evolution of software,
planning and development, rationale selection of
architectures and dynamically changing architecture. This
tool is mainly focused on the dynamic events that are
related to a particular software development. By utilizing
the new tool we can retrieve the data required for
visualizing the software architecture in a proper way in
order to avoid abnormal behavior. Figure 4 shows the star
plot of the proposed conceptual tool DA.

Figure 3

Figure 4

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

285

5. Evaluations

Table2 presents the evaluation of the features in the
tabular form. Most tools do reasonably well in static
representation Dynamic representation is another matter,
as none of the surveyed tools have support for this key
area. Most tools support multiple views; none support
viewpoint definition .Navigation and interaction is
supported by browsing in all tools. The Enterprise
Architect is the only tool that has all the searching,
querying and view navigation features. It shows that all
the tools are deficiet in task support. This is mildly
surprising as one would expect architecture tools to be
closely allied with project management and IDE systems.
It is also surprising to note that not all tools have
automatic generation and multiple user support. And all
tools support high fidelity visualizations, but none
dynamically changing architectures.
With respect to Arch Vis, it is worth nothing that it does
not meet the full set of requirements. It does not show
evolution and give comparisons, and has only lightweight
support for anomalies and construction. It does meet the
dynamic representation criteria, and thus has one singular
advantage over all the other tools.

6. Ideal Tool

Representing architecture visualization tools through
starplots gives an immediate impression as to the tool’s
capability. Each tool has its own relative merit and none
supports all of the framework’s elements and thus
represents the trade-offs made by the tool developers. This
highlights a potential problem, where an organization may
want a single tool to give all stakeholders a central
repository for architectural information that can be
represented in different ways to each stakeholder.

Figure 5

The below figure illustrates an ideal tool that combines
the features of all tools analyzed under the framework. A
salient feature is that this would provide full support of all
elements of the framework. It is the direction of this paper

to suggest such a “perfect” tool may be possible to
construct. In the figure the lined portion indicates the
support for the new tool called DArch (DA). By including
this tool along with the existing tools we can meet the all
requirements to achieve an ideal tool in order to satisfy all
the attributes related to the seven key areas discussed
above.

7. Conclusion

Software architecture is the gross structure of a system; as
such, it presents a different set of problems for
visualization than those of visualizing the software at a
lower level of abstraction. We have developed and
presented a framework for the assessment of the
capabilities of software architecture visualization tools and
evaluated seven tools in this framework. It turns out that
no one tool meets all of the criteria of our framework. This
is not a bad thing. Moreover, it may be that a one-size-fits-
all approach may increase information overload and that a
collection of small tools appropriate to each stakeholder’s
task may be preferable. A side effect of the application of
the framework is that it has highlighted features not
present in existing tools, for example, Planning and
execution (TS 7) and Dynamically changing architecture
(RQ 2). These are shown clearly in Fig. 3. Thus, we are
using the framework to define and prototype an
architecture visualization tool [14]. It seems clear that
such a tool will need to be tailorable to the specific
stakeholder in order to be of any practicable use. By
inducing the new comprehensive tool along with the
existing tools we can visualize the software completely.

References

[1] G-C. Roman and K.C. Cox, “A Taxonomy of Program

Visualization Systems,” Computer, vol. 26, no. 12, pp. 11-
24, Dec. 1993.

[2] P. Kruchten, “The 4 + 1 View Model of Software
Architecture,” IEEE Software, vol. 12, no. 6, pp. 42-50,
Nov. 1995.

[3] M. Storey, D. Cubranic, and D. German, “On the Use of
Visualization to Support Awareness of Human Activities in
Software Development: A Survey and Framework,” Proc.
ACM Symp. Software Visualization, pp. 193-202, 2005.

[4] I. Carmichael, V. Tzerpos, and R. Holt, “Design
Maintenance: Unexpected architectural Interactions,” Proc.
Int’l Conf. Software Maintenance, pp. 134-137, 1995.

[5] T. Green, “Instructions and Descriptions: Some Cognitive
Aspects of Programming and Similar Activities,” Advanced
Visual Inter-faces, pp. 21-28, ACM Press, 2000.

[6] A. Eden, “Visualization of Object-Oriented Architectures,”
Proc. IEEE 23rd Int’l Conf. Software Eng. Workshop
Software Visualization, pp. 5-10, 2001.

[7] M. Storey, F. Fracchia, and H. Muller, “Cognitive Design

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

286

Elements to Support the Construction of a Mental Model
During Software Exploration,” J. Systems and Software,
vol. 44, pp. 171-185, 1999.

[8] M. Eisenstadt and M. Brayshaw, “A Knowledge
Engineering Toolkit: Part I,” BYTE: The Small Systems J.,
pp. 268-282, 1990.[9] L. Feijs and R. de Yong, “3D
Visualization of Software Architectures,” Comm. ACM,
vol. 41, no. 12, pp. 73-78, Dec. 1998.

[10] K. Gallagher, A. Hatch, and M. Munro, “A Framework for
Software Architecture Visualization Assessment,” Proc. IEEE
Workshop Visualizing Software, pp. 76-82, Sept. 2005.

[11] A. Eden, “Formal Specification of Object-Oriented Design,”
Proc.Conf. Multidisciplinary Design in Eng., 2001.

[12] T.R.G. Green and M. Petre, “Usability Analysis of Visual
Programming Environments: A “Cognitive Dimensions”
Framework,” J. Visual Languages and Computing, vol. 7,
no. 2, pp. 131-174,1996.

[13] J. Grundy and J. Hosking, “High-Level Static and Dynamic
Visualisation of Software Architectures,” Proc. IEEE Symp.
Visual Languages, pp. 5-12, Sept. 2000.

[14] A. Hatch, “Software Architecture Visualisation,” PhD
dissertation, Univ. of Durham, 2004.

[15] “IEEE Recommended Practice for Architectural
Description of Software Intensive Systems,” technical
report, IEEE, 2000.

[16] C. Knight and M. Munro, “Visualising Software—A Key
Research Area,” Proc. Int’l Conf. Software Maintenance, p.
436, 1999.

[17] S. Bassil and R. Keller, “A Qualitative and Quantitative
Evaluation of Software Visualization Tools,” Proc. 23rd
IEEE Int’l Conf. Software Eng. Workshop Software
Visualization, pp. 33-37, 2001.

[18] J. Maletic, A. Marcus, and M. Collard, “A Task Oriented
View of Software Visualization,” Proc. IEEE Workshop
Visualizing Software for Understanding and Analysis, pp.
32-40, 2002.

[19] N. Medvidovic and R. Taylor, “A Classification and
Comparison Framework for Software Architecture
Description Languages,” IEEE Trans. Software Eng., vol.
26, no. 1, pp. 70-93, Jan. 2000.

[20] B.A. Price, R. Baecker, and I.S. Small, “A Principled
Taxonomy of Software Visualization,” J. Visual Languages
and Computing, vol. 4, no. 3, pp. 211-266, 1993.

[21] V. Basili, G. Caldiera, and H.D. Rombach, “The Goal
Question Metric Paradigm,” Encyclopedia of Software
Eng., vol. 2, pp. 528-532, John Wiley & Sons, 1994.

[22] M. Shaw and D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[23] B. Shneiderman, Designing the User Interface: Strategies
for Effective Human-Computer Interaction. Addison-
Wesley, 1998.

[24] S. Sim, C. Clarke, R. Holt, and A. Cox, “Browsing and
Searching Software Architectures,” Proc. Int’l Conf.
Software Maintenance, pp. 381-390, Sept. 1999.

[25] Sparx Systems, Enterprise Architect,
http://www.sparxsystems. com.au, 2008.

[26] J. Stasko and C. Patterson, “Understanding and
Characterizing Program Visualization Systems,” Proc.
IEEE Workshop Visual Languages, pp. 3-10, 1992.

[27] S. Card, J. Mackinlay, and B. Shneiderman, Reading in
Information Visualization: Using Vision to Think. Morgan

Kaufmann, 1999.
[28] A. Eden, “Le PUS: A Visual Formalism for Object-

Oriented Architectures,” Proc. Sixth World Conf.
Integrated Design and Process Technology, June 2002.

