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SUMMARY 

Path finding is one of those required elements of 
the Computer network. Any path finding algorithm will 
work as long as there are no obstacles or distractions 
along the way. If there is an obstacle, then the character 
needs to figure out a way to move around and still reach 
the goal. 
 Most of the path finding algorithms found in the 
literature [1], [2], [3]  were designed with arbitrary 
graphs which is not realistic.  

To achieve the best path there are many 
algorithms, which are more or less effective, depending 
on the particular case.  

Efficiency depends not only on the time needed 
for calculation but also on the reliability of the result. 

 In this research work we have attempted with 
Grid Based graph, since  the ssearch area is simplified 
into a manageable number of nodes. 

The next step is to conduct a search to find the 
shortest path. 
The efficiency can be obtained in  our proposed system 
when number of nodes is increased with  less memory 
and less time. 
 
1. INTRODUCTION 
 

“PATH FINDER”, is developed as  a .NET 
component that allows to build  graphs and perform  
certain operations on these structures. The main 
component of the path finding algorithm is search area, 
which is discussed in detail in next section. Section 2 
dealt with beginning of search and path scoring. Section 3 
presented the related works, Section 4 describe the 
implementation particulars and conclude with section 5. 
 
1.1 THE SEARCH AREA: 
 

Let us assume that we have someone who wants 
to get from point A to point B. Let us assume that a wall 
separates the points A, A1,B1,…: Let A be the starting 
point and B be the ending point. This is illustrated below, 
with green square being the starting point A, and red 
square being the ending point B, and the blue squares 
being the wall in between.  

  
Fig: 1 search area representing the square grids. 

 
The first thing we should notice is that the 

search area is divided into a square grid. Here the first 
step is the pathfinding. This particular method reduces 
the search area to a simple two dimensional array. Each 
item in the array represents one of the squares on the grid, 
its status is recorded as walkable or unwalkable. The path 
is found by figuring out which squares should take to get 
from A to B. Once the path is found, our person moves 
from the center of one square to the center of the next 
until the target is reached.  

These center points are called “nodes”. When 
we read about path finding elsewhere, we will often see 
people discussing nodes. Squares can otherwise be 
rectangles, hexagons, triangles, or any shape, really. And 
the nodes could be placed anywhere within the shapes – 
in the center or along the edges, or anywhere else. [2],[4]. 

 
2. STARTING THE SEARCH 

 
We do this by starting at point A, checking the 

adjacent squares, and generally searching outward until 
we find our target.   
We begin the search by doing the following: 

 Begin at the starting point A and add it to an “open 
list” of squares to be considered. The open list is 
kind of like a shopping list. Right now there is just 
one item on the list, but we will have more later. It 
contains squares that might fall along the path we 
want to take, but maybe not. Basically, this is a list 
of squares that need to be checked out.    
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 Look at all the reachable or walkable squares 
adjacent to the starting point, ignoring squares with 
walls, water, or other illegal terrain. Add them to the 
open list, too. For each of these squares, save point A 
as its “parent square”. This parent square stuff is 
important when we want to trace our path. It will be 
explained more later.    

 Drop the starting square A from our open list, and 
add it to a “closed list” of squares that we don’t need 
to look at again for now.  

 
At this point, we should have something like the 

following illustration. In this illustration, the dark green 
square in the center is our starting square. It is outlined in 
light blue to indicate that the square has been added to the 
closed list. All of the adjacent squares are now on the 
open list of squares to be checked, and they are outlined 
in light green.  

 

 
  Fig: 2 Open list of squares 

 
Next, we choose one of the adjacent squares on 

the open list and more or less repeat the earlier process, 
as described below. But which square do we choose? The 
one with the lowest F cost. 

 
2.1 PATH SCORING: 

 
The key to find the squares to use when figuring 

out the path is the following equation: 
F = G + H   

Where F is calculated by adding G and H. 
 G is the movement cost to move from the starting 

point A to a given square on the grid, following the 
path generated to get there.   

 H is the estimated movement cost to move from that 
given square on the grid to the final destination, 
point B. This is often referred to as the heuristic, 
which can be a bit confusing. The reason why it is 
called that is because it is a guess. The actual 
distance cannot be known until we find the path, due 

to an obstacle. We have a   way to calculate H in this 
paper, but there are many others that we can find in 
other articles on the web [2], [3], [4]. 

The path is generated by repeatedly going 
through an open list and choosing the square with the 
lowest F score. This process is described as follows. 

As described above, G is the movement cost to 
move from the starting point to the given square using the 
path generated to get there. Since we are calculating the 
G cost along a specific path to a given square, the way to 
figure out the G cost of that square is to take the G cost of 
its parent, and then add 10 or 14 depending on whether it 
is diagonal or orthogonal (non-diagonal) from that parent 
square. The need for this method will become apparent a 
little further on in this example, as we get more than one 
square away from the starting square. 

H can be estimated in a variety of ways. The 
method we use here is called the Manhattan method, 
[1],[2],[4]. where we calculate the total number of 
squares moved horizontally and vertically to reach the 
target square from the current square, ignoring diagonal 
movement, and ignoring any obstacles that may be in the 
way. We then multiply the total by 10, our cost for 
moving one square horizontally or vertically.    

This is (probably) called as Manhattan method 
since it is like calculating the number of city blocks from 
one place to another, where we can’t cut across the block 
diagonally.  F is calculated by adding G and H. The 
results of the first step in our search can be seen in the 
illustration below. The F, G, and H scores are written in 
each square. As is indicated in the square to the 
immediate right of the starting square, F is printed in the 
top left, G is printed in the bottom left, and H is printed in 
the bottom right.  

 

 
Fig: 3   List of squares on the open list  

 
Create a search graph G, consisting solely of the 

start node, no. Put no on a list called OPEN. 
 Create a list called CLOSED that is initially 
empty.  
 If OPEN is empty, exit with failure.  
 Select the first node on OPEN, remove it from 
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OPEN, and put it on CLOSED. Called this node n.  
 If n0 is the starting node, n is the goal node, exit 
successfully with the solution obtained by tracing a path 
along the pointers from n to no in graph G. (The pointers 
define a search tree and are established in Step 7.)  
 Expand node n, generating the set M, of its 
successors that are not already ancestors of n in G. Install 
these members of M as successors of n in G.  
 Establish a pointer to n from each of those 
members of M that were not already in G (i.e., not 
already on either OPEN or CLOSED). Add these 
members of M to OPEN. For each member, m, of M that 
was already on OPEN or CLOSED, redirect its pointer to 
n if the best path to m found so far is through n. For each 
member of M already on CLOSED, redirect the pointers 
of each of its descendants in G so that they point 
backward along the best paths found so far to these 
descendants.  

The F score for each square, again, is simply 
calculated by adding G and H together.[1],[5]. 
 
2.2 CONTINUING THE SEARCH 

 
To continue the search, we simply choose the 

lowest F score square from all those that are on the open 
list. We then do the following with the selected square:  

 Drop it from the open list and add it to the closed list.  
 Check all of the adjacent squares. Ignoring those that 

are on the closed list or unwalkable (terrain with 
walls, water, or other illegal terrain), add squares to 
the open list if they are not on the open list already. 
Make the selected square the “parent” of the new 
squares.  

 If an adjacent square is already on the open list, 
check to see if this path to that square is a better one. 
In other words, check to see if the G score for that 
square is lower if we use the current square to get 
there. If not, don’t do anything. On the other hand, if 
the G cost of the new path is lower, change the 
parent of the adjacent square to the selected square 
(in the diagram above, change the direction of the 
pointer to point at the selected square). Finally, 
recalculate both the F and G scores of that square. 

 
3. RELATED WORKS 
 

Specifically open and closed lists and path 
scoring using F, G, and H.  There are lots of other 
pathfinding algorithms, but those other methods are not 
A*, which is generally considered to be the best of the lot. 
Marco Pinter [4] discusses many of them in the article 
referenced at the end of this article, including some of 
their pros and cons. Sometimes alternatives are better 

under certain circumstances, but we should understand 
what we are getting into.  
 
4. NOTES ON IMPLEMENTATION 
 

Now that we understand the basic method, here 
are some additional things to think about when we are 
writing our own program. Some of the following 
materials reference the program I wrote in C++ and Blitz 
Basic, but the points are equally valid in other languages. 

 
4.1. OTHER UNITS (COLLISION 
AVOIDANCE)   

If we happen to look closely at my example 
code, we will notice that it completely ignores other units 
on the screen. The units pass right through each other. 
Depending on the game, this may be acceptable or it may 
not. If we want to consider other units in the pathfinding 
algorithm and have them move around one another, I 
suggest that we only consider units that are either stopped 
or adjacent to the pathfinding unit at the time the path is 
calculated, treating their current locations as unwalkable. 
For adjacent units that are moving, we can discourage 
collisions by penalizing nodes that lie along their 
respective paths, thereby encouraging the pathfinding 
unit to find an alternate route (described more under #2). 

If we choose to consider other units that are 
moving and not adjacent to the pathfinding unit, we will 
need to develop a method for predicting where they will 
be at any given point in time so that they can be dodged 
properly. Otherwise we will probably end up with strange 
paths where units zig-zag to avoid other units that aren't 
there anymore.  
 
4.2 EXPERIMENT AND ANALYSIS 
 

Consider the following RPG situation, and a 
swordsman who wants to path finding around a nearby 
wall: 

 

 
Fig: 4 Path finding around a near by wall. 
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Given this kind of map, we could place nodes in 
a variety of ways, and use a variety of densities. In this 
example, let's use a high-density node network, as is 
shown below. 

 

 
Fig: 5 High- Density Node Network 

 
Let us say we were adding an item with an F 

score of 17 to our existing heap. We currently have 7 
items in the heap, so the new item would be placed in 
position number 8. This is what the heap looks like. The 
new item is underlined.  

10 30 20 34 38 30 24 17  
We would then compare this item it to its parent, 

which is in position 8/2 = position 4. The F value of the 
item currently in position 4 is 34. Since 17 is lower than 
34, we swap them. Now our heap looks like this:  

10 30 20 17 38 30 24 34  
Then we compare it with its new parent. Since 

we are in position 4 we compare it to the item in position 
number 4/2 = 2. That item has an F score of 30. Since 17 
is lower than 30, we swap them, and now our heap looks 
like this:  

10 17 20 30 38 30 24 34  
We then compare it to its new parent. Since we 

are now in position #2, we compare it with the item in 
position number 2/2 = 1, which is the top of the heap. In 
this case, 17 is not lower than 10, so we stop and leave 
the heap the way it is.  
 
Removing Items from the Heap 
  

Removing items from the heap involves a 
similar process, but sort of in reverse. First, we remove 
the item in slot #1, which is now empty. Then we take the 
last item in the heap, and move it up to slot #1. In our 
heap above, this is what we  

would end up with. The previously last item in 
the heap is underlined.  

34 17 20 30 38 30 24  
Next we compare the item to each of its two 

children, which are at locations (current position * 2) and 
(current position * 2 + 1). If it has a lower F score than 

both of its two children, it stays where it is. If not, we 
swap it with the lower of the two children. So, in this case, 
the two children of the item in slot #1 are in position 1*2 
= 2 and 1*2+1 = 3. It turns out that 34 is not lower than 
both children, so we swap it with the lower of the two, 
which is 17. This is what we end up with:  

17 34 20 30 38 30 24  
Next we compare the item with its two new 

children, which are in positions 2*2 = 4, and 2*2+1 = 5. 
It turns out that it is not lower than both of its children, so 
we swap it with the lower of the two children (which is 
30 in slot 4). Now we have this:  

17 30 20 34 38 30 24  
Finally we compare the item with its new 

children. As usual, these children would be in positions 
4*2 = 8, and 4*2 +1 = 9. But there are not any children in 
those positions because the list is not that big. The 
process terminates when it reaches the bottom of the level 
of the heap. 
 
5. CONCLUSION 
 

Actually, we started with some basic path-
finding routines on a tile-based map, such as a 
randomized search and the popular “right hand on the 
wall” trick. Then we went to more advanced 
environments based on graphs and implemented a generic 
A* algorithm that could be used for graph- or tile-based 
environments. 

Finally, we merged  A* searching with the BSP 
tree we have been working with for the past couple of 
chapters, and we created a generic path  that follows any 
type of path, whether it was created by an A* search or 
not. 
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