
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

287

Manuscript received April 5, 2009
Manuscript revised April 20, 2009

Path Finder For Creating A .NET Component
For Grid Based Graph

R. ANBUSELVI↑ R.S. BHUVANESWARAN,
Lecturer in Computer Science, Asst.Prof.Anna University, Chennai.
Bishop Heber College, Trichy – 17.

SUMMARY

Path finding is one of those required elements of
the Computer network. Any path finding algorithm will
work as long as there are no obstacles or distractions
along the way. If there is an obstacle, then the character
needs to figure out a way to move around and still reach
the goal.
 Most of the path finding algorithms found in the
literature [1], [2], [3] were designed with arbitrary
graphs which is not realistic.

To achieve the best path there are many
algorithms, which are more or less effective, depending
on the particular case.

Efficiency depends not only on the time needed
for calculation but also on the reliability of the result.

 In this research work we have attempted with
Grid Based graph, since the ssearch area is simplified
into a manageable number of nodes.

The next step is to conduct a search to find the
shortest path.
The efficiency can be obtained in our proposed system
when number of nodes is increased with less memory
and less time.

1. INTRODUCTION

“PATH FINDER”, is developed as a .NET
component that allows to build graphs and perform
certain operations on these structures. The main
component of the path finding algorithm is search area,
which is discussed in detail in next section. Section 2
dealt with beginning of search and path scoring. Section 3
presented the related works, Section 4 describe the
implementation particulars and conclude with section 5.

1.1 THE SEARCH AREA:

Let us assume that we have someone who wants
to get from point A to point B. Let us assume that a wall
separates the points A, A1,B1,…: Let A be the starting
point and B be the ending point. This is illustrated below,
with green square being the starting point A, and red
square being the ending point B, and the blue squares
being the wall in between.

Fig: 1 search area representing the square grids.

The first thing we should notice is that the

search area is divided into a square grid. Here the first
step is the pathfinding. This particular method reduces
the search area to a simple two dimensional array. Each
item in the array represents one of the squares on the grid,
its status is recorded as walkable or unwalkable. The path
is found by figuring out which squares should take to get
from A to B. Once the path is found, our person moves
from the center of one square to the center of the next
until the target is reached.

These center points are called “nodes”. When
we read about path finding elsewhere, we will often see
people discussing nodes. Squares can otherwise be
rectangles, hexagons, triangles, or any shape, really. And
the nodes could be placed anywhere within the shapes –
in the center or along the edges, or anywhere else. [2],[4].

2. STARTING THE SEARCH

We do this by starting at point A, checking the

adjacent squares, and generally searching outward until
we find our target.
We begin the search by doing the following:

 Begin at the starting point A and add it to an “open
list” of squares to be considered. The open list is
kind of like a shopping list. Right now there is just
one item on the list, but we will have more later. It
contains squares that might fall along the path we
want to take, but maybe not. Basically, this is a list
of squares that need to be checked out.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

288

 Look at all the reachable or walkable squares
adjacent to the starting point, ignoring squares with
walls, water, or other illegal terrain. Add them to the
open list, too. For each of these squares, save point A
as its “parent square”. This parent square stuff is
important when we want to trace our path. It will be
explained more later.

 Drop the starting square A from our open list, and
add it to a “closed list” of squares that we don’t need
to look at again for now.

At this point, we should have something like the

following illustration. In this illustration, the dark green
square in the center is our starting square. It is outlined in
light blue to indicate that the square has been added to the
closed list. All of the adjacent squares are now on the
open list of squares to be checked, and they are outlined
in light green.

 Fig: 2 Open list of squares

Next, we choose one of the adjacent squares on

the open list and more or less repeat the earlier process,
as described below. But which square do we choose? The
one with the lowest F cost.

2.1 PATH SCORING:

The key to find the squares to use when figuring

out the path is the following equation:
F = G + H

Where F is calculated by adding G and H.
 G is the movement cost to move from the starting

point A to a given square on the grid, following the
path generated to get there.

 H is the estimated movement cost to move from that
given square on the grid to the final destination,
point B. This is often referred to as the heuristic,
which can be a bit confusing. The reason why it is
called that is because it is a guess. The actual
distance cannot be known until we find the path, due

to an obstacle. We have a way to calculate H in this
paper, but there are many others that we can find in
other articles on the web [2], [3], [4].

The path is generated by repeatedly going
through an open list and choosing the square with the
lowest F score. This process is described as follows.

As described above, G is the movement cost to
move from the starting point to the given square using the
path generated to get there. Since we are calculating the
G cost along a specific path to a given square, the way to
figure out the G cost of that square is to take the G cost of
its parent, and then add 10 or 14 depending on whether it
is diagonal or orthogonal (non-diagonal) from that parent
square. The need for this method will become apparent a
little further on in this example, as we get more than one
square away from the starting square.

H can be estimated in a variety of ways. The
method we use here is called the Manhattan method,
[1],[2],[4]. where we calculate the total number of
squares moved horizontally and vertically to reach the
target square from the current square, ignoring diagonal
movement, and ignoring any obstacles that may be in the
way. We then multiply the total by 10, our cost for
moving one square horizontally or vertically.

This is (probably) called as Manhattan method
since it is like calculating the number of city blocks from
one place to another, where we can’t cut across the block
diagonally. F is calculated by adding G and H. The
results of the first step in our search can be seen in the
illustration below. The F, G, and H scores are written in
each square. As is indicated in the square to the
immediate right of the starting square, F is printed in the
top left, G is printed in the bottom left, and H is printed in
the bottom right.

Fig: 3 List of squares on the open list

Create a search graph G, consisting solely of the

start node, no. Put no on a list called OPEN.
 Create a list called CLOSED that is initially
empty.
 If OPEN is empty, exit with failure.
 Select the first node on OPEN, remove it from

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

289

OPEN, and put it on CLOSED. Called this node n.
 If n0 is the starting node, n is the goal node, exit
successfully with the solution obtained by tracing a path
along the pointers from n to no in graph G. (The pointers
define a search tree and are established in Step 7.)
 Expand node n, generating the set M, of its
successors that are not already ancestors of n in G. Install
these members of M as successors of n in G.
 Establish a pointer to n from each of those
members of M that were not already in G (i.e., not
already on either OPEN or CLOSED). Add these
members of M to OPEN. For each member, m, of M that
was already on OPEN or CLOSED, redirect its pointer to
n if the best path to m found so far is through n. For each
member of M already on CLOSED, redirect the pointers
of each of its descendants in G so that they point
backward along the best paths found so far to these
descendants.

The F score for each square, again, is simply
calculated by adding G and H together.[1],[5].

2.2 CONTINUING THE SEARCH

To continue the search, we simply choose the

lowest F score square from all those that are on the open
list. We then do the following with the selected square:

 Drop it from the open list and add it to the closed list.
 Check all of the adjacent squares. Ignoring those that

are on the closed list or unwalkable (terrain with
walls, water, or other illegal terrain), add squares to
the open list if they are not on the open list already.
Make the selected square the “parent” of the new
squares.

 If an adjacent square is already on the open list,
check to see if this path to that square is a better one.
In other words, check to see if the G score for that
square is lower if we use the current square to get
there. If not, don’t do anything. On the other hand, if
the G cost of the new path is lower, change the
parent of the adjacent square to the selected square
(in the diagram above, change the direction of the
pointer to point at the selected square). Finally,
recalculate both the F and G scores of that square.

3. RELATED WORKS

Specifically open and closed lists and path
scoring using F, G, and H. There are lots of other
pathfinding algorithms, but those other methods are not
A*, which is generally considered to be the best of the lot.
Marco Pinter [4] discusses many of them in the article
referenced at the end of this article, including some of
their pros and cons. Sometimes alternatives are better

under certain circumstances, but we should understand
what we are getting into.

4. NOTES ON IMPLEMENTATION

Now that we understand the basic method, here
are some additional things to think about when we are
writing our own program. Some of the following
materials reference the program I wrote in C++ and Blitz
Basic, but the points are equally valid in other languages.

4.1. OTHER UNITS (COLLISION
AVOIDANCE)

If we happen to look closely at my example
code, we will notice that it completely ignores other units
on the screen. The units pass right through each other.
Depending on the game, this may be acceptable or it may
not. If we want to consider other units in the pathfinding
algorithm and have them move around one another, I
suggest that we only consider units that are either stopped
or adjacent to the pathfinding unit at the time the path is
calculated, treating their current locations as unwalkable.
For adjacent units that are moving, we can discourage
collisions by penalizing nodes that lie along their
respective paths, thereby encouraging the pathfinding
unit to find an alternate route (described more under #2).

If we choose to consider other units that are
moving and not adjacent to the pathfinding unit, we will
need to develop a method for predicting where they will
be at any given point in time so that they can be dodged
properly. Otherwise we will probably end up with strange
paths where units zig-zag to avoid other units that aren't
there anymore.

4.2 EXPERIMENT AND ANALYSIS

Consider the following RPG situation, and a
swordsman who wants to path finding around a nearby
wall:

Fig: 4 Path finding around a near by wall.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

290

Given this kind of map, we could place nodes in
a variety of ways, and use a variety of densities. In this
example, let's use a high-density node network, as is
shown below.

Fig: 5 High- Density Node Network

Let us say we were adding an item with an F

score of 17 to our existing heap. We currently have 7
items in the heap, so the new item would be placed in
position number 8. This is what the heap looks like. The
new item is underlined.

10 30 20 34 38 30 24 17
We would then compare this item it to its parent,

which is in position 8/2 = position 4. The F value of the
item currently in position 4 is 34. Since 17 is lower than
34, we swap them. Now our heap looks like this:

10 30 20 17 38 30 24 34
Then we compare it with its new parent. Since

we are in position 4 we compare it to the item in position
number 4/2 = 2. That item has an F score of 30. Since 17
is lower than 30, we swap them, and now our heap looks
like this:

10 17 20 30 38 30 24 34
We then compare it to its new parent. Since we

are now in position #2, we compare it with the item in
position number 2/2 = 1, which is the top of the heap. In
this case, 17 is not lower than 10, so we stop and leave
the heap the way it is.

Removing Items from the Heap

Removing items from the heap involves a
similar process, but sort of in reverse. First, we remove
the item in slot #1, which is now empty. Then we take the
last item in the heap, and move it up to slot #1. In our
heap above, this is what we

would end up with. The previously last item in
the heap is underlined.

34 17 20 30 38 30 24
Next we compare the item to each of its two

children, which are at locations (current position * 2) and
(current position * 2 + 1). If it has a lower F score than

both of its two children, it stays where it is. If not, we
swap it with the lower of the two children. So, in this case,
the two children of the item in slot #1 are in position 1*2
= 2 and 1*2+1 = 3. It turns out that 34 is not lower than
both children, so we swap it with the lower of the two,
which is 17. This is what we end up with:

17 34 20 30 38 30 24
Next we compare the item with its two new

children, which are in positions 2*2 = 4, and 2*2+1 = 5.
It turns out that it is not lower than both of its children, so
we swap it with the lower of the two children (which is
30 in slot 4). Now we have this:

17 30 20 34 38 30 24
Finally we compare the item with its new

children. As usual, these children would be in positions
4*2 = 8, and 4*2 +1 = 9. But there are not any children in
those positions because the list is not that big. The
process terminates when it reaches the bottom of the level
of the heap.

5. CONCLUSION

Actually, we started with some basic path-
finding routines on a tile-based map, such as a
randomized search and the popular “right hand on the
wall” trick. Then we went to more advanced
environments based on graphs and implemented a generic
A* algorithm that could be used for graph- or tile-based
environments.

Finally, we merged A* searching with the BSP
tree we have been working with for the past couple of
chapters, and we created a generic path that follows any
type of path, whether it was created by an A* search or
not.

REFERENCES
[1] Craig Reynold’s, (1999) “Sterring Behavior for

Autonomous Characters:” 1st Feb 2000 [Reyn87]
Gamasutra, cited by 68 – Related articles – all 12
versions.

[2] Dave Pottinger, “Coordinated Unit Movement:” 22nd
Jan 1999. Gamasutra Vol.3: Issue 3. First in a two-
part series of articles on formation and group-based
movement by Age of Empires designer.

[3] DavePottinger’s “Implementing Coordinated
Movement:” 29th Jan 1999. Game Developer PP 48-
58. Second in two-part series.

[4] Marco Pinter, “More Realistic Part Finding Article:”
14th Mar 2001. Gamasutra.

[5] Eric Marchesin, “A simple c# Genetic alogorithm
Article:” 22nd June 2003, .NET 1.0, 4.72

[6] http://www.gamasutra.com

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

291

R.Anbuselvi received
M.Sc in computer science
from Bharathidasan
University, India in 1992.
She received M.Phil from
Mother Teresa women’s
University kodaikanal in
2001 .Her research include
Artificial Intelligence. She
is working as a lecturer in

Bishop Heber ‘s college, Trichy.

R.S. Bhuvaneswaran
received Bachelor of
Science in Mathematics
with Gold Medal in 1987
from Madras University,
Master of Technology in
Computer Science and
Engineering from
Pondicherry University, in
1996 and Ph.D in Computer

Science and Engineering from Anna University in
2003. He is a Post Doctoral Fellow of JSPS, Japan
(2004-2006).Presently, he is with Anna University
as Assistant Professor. His research interests
include design of algorithms, distributed systems,
wireless networks and fault tolerant systems.

