
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

378

Manuscript received April 5, 2009

Manuscript revised April 20, 2009

Back Propagation Algorithm: The Best Algorithm Among the

Multi-layer Perceptron Algorithm

1
Mutasem khalil Sari Alsmadi,

2
Khairuddin Bin Omar and

2
Shahrul Azman Noah

1
Department of Science and Information Technology, University Kebangsaan Malaysia,

Kuala Lumpur, Malaysia
2
Department of System Science and Management, University Kebangsaan Malaysia,

Kuala Lumpur, Malaysia

Abstract:
A multilayer perceptron is a feed forward artificial neural

network model that maps sets of input data onto a set of

appropriate output. It is a modification of the standard linear

perceptron in that it uses three or more layers of neurons (nodes)

with nonlinear activation functions and is more powerful than the

perceptron in that it can distinguish data that is not linearly

separable, or separable by a hyper plane. MLP networks are

general-purpose, flexible, nonlinear models consisting of a

number of units organized into multiple layers. The complexity

of the MLP network can be changed by varying the number of

layers and the number of units in each layer. Given enough

hidden units and enough data, it has been shown that MLPs can

approximate virtually any function to any desired accuracy. This

study presents the performance comparison between multi-layer

perceptron (back propagation, delta rule and perceptron).

Perceptron is a steepest descent type algorithm that normally has

slow convergence rate and the search for the global minimum

often becomes trapped at poor local minima. The current study

investigates the performance of three algorithms to train MLP

networks. It was found that the back propagation algorithm are

much better than others algorithms.

Key words:
Back propagation, perceptron, delta rule learning, classification

INTRODUCTION

Recognition and cataloging are the vital facets in this up-

to-the-minute era of research and development, hence

exploiting the accessible techniques in Artificial

Intelligence (AI) and Data Mining (DM) to achieve

optimal production levels, examination procedures and

enhancing methodologies in most fields principally in the

agricultural domain.

Artificial neural networks are defined as computational

models of nervous system. Significantly natural organisms

do not only possess nervous system; in fact they also

evolve genetic information stored in the nucleus of their

cells (genotype). Furthermore, the nervous system as a

whole is part of the phenotype which is derived from the

genotype through a specific development process. The

information specified in the genotype determines assorted

aspects of the nervous system which are expressed as

innate behavioral tendencies and predispositions to learn
[7]

,

acknowledges that when neural networks are viewed in

the broader biological context of Artificial Life, they tend

to be accompanied by genotypes and to become members

of budding populations of networks in which genotypes

are inherited from parents to offspring. Many researchers

such as Holland, Schwefel and Koza, have stated that

artificial neural networks are evolved by the utilization of

evolutionary algorithms.

The perceptron is a type of artificial neural network

invented in 1957 at the Cornell Aeronautical Laboratory

by Frank Rosenblatt. It can be seen as the simplest kind of

feed forward neural network: A linear classifier
 [3]

. The

learning algorithm is the same across all neurons;

therefore a pattern that follows is applied to a single

neuron in isolation.

Feed forward back propagation: The feedforward,

back-propagation architecture was developed in the early

1970¹s by several independent sources (Werbor; Parker;

Rumelhart, Hinton and Williams)
[7, 8]

. This independent

co-development was the result of a proliferation of articles

and talks at various conferences which stimulated the

entire industry. Currently, this synergistically developed

back-propagation architecture is the most popular,

effective, and easy to earn model for complex, multi-

layered networks. This network is used more than all other

combined. It is used in many different types of

applications. This architecture has spawned a large class

of network types with many different topologies and

training methods. Its greatest strength is in non-linear

solutions to ill-defined problems
[4, 9, 10, 11, 12, and 15].

The typical back-propagation network has an input layer, an

output layer, and at least one hidden layer. There is no theoretical

limit on the number of hidden layers but typically there is just one

or two
[1, 2]

. Some work has been done which indicates that a

minimum of four layers (three hidden layers plus an output layer)

are required to solve problems of any complexity. Each layer is

fully connected to the succeeding layer, as shown in Figure 1.

The in and out layers indicate the flow of information during recall.

Recall is the process of putting input data into a trained network

and receiving the answer. Back-propagation is not used during

recall, but only when the network is learning a training set.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

379

Figure1: An Example Feedforward Back-propagation Network

The number of layers and the number of processing element per

layer are important decisions. These parameters to a feedforward,

back-propagation topology are also the most ethereal. They are the

³art² of the network designer. There is no quantifiable, best answer

to the layout of the network for any particular application. There

are only general rules picked up over time and followed by most

researchers and engineers applying this architecture of their

problems.

Rule One: As the complexity in the relationship between the input

data and the desired output increases, then the number of the

processing elements in the hidden layer should also increase.

Rule Two: If the process being modeled is separable into multiple

stages, then additional hidden layer(s) may be required. If the

process is not separable into stages, then additional layers may

simply enable memorization and not a true general solution.

Rule Three: The amount of training data available sets an upper

bound for the number of processing elements in the hidden layers.

To calculate this upper bound, use the number of input output pair

examples in the training set and divide that number by the total

number of input and output processing elements in the network.

Then divide that result again by a scaling factor between five and

ten. Larger scaling factors are used for relatively noisy data
[4, 10, 11,

12, 13, 14, and 15]
.Extremely noisy data may require a factor of twenty or

even fifty, while very clean input data with an exact relationship to

the output might drop the factor to around two. It is important that

the hidden layers have few processing elements. Too many

artificial neurons and the training set will be memorized. If that

happens then no generalization of the data trends will occur,

making the network useless on new data sets. Once the above

rules have been used to create a network, the process of teaching

begins.

This teaching process for a feedforward network normally uses

some variant of the Delta Rule, which starts with the calculated

difference between the actual outputs and the desired outputs.

Using this error, connection weights are increased in proportion to

the error times a scaling factor for global accuracy. Doing this for

an individual node means that the inputs, the output, and the

desired output all have to be present at the same processing

element. The complex part of this learning mechanism is for the

system to determine which input contributed the most to an

incorrect output and how does that element get changed to correct

the error
[4, 9, 10, 11, 12, and 15]

 .An inactive node would not contribute to

the error and would have no need to change its weights.

To solve this problem, training inputs are applied to the input layer

of the network, and desired outputs are compared at the output

layer. During the learning process, a forward sweep is made

through the network, and the output of each element is computed

layer by layer. The difference between the output of the final layer

and the desired output is back-propagated to the previous layer(s),

usually modified by the derivative of the transfer function, and the

connection weights are normally adjusted using the Delta Rule
[4, 9,

10, 11, 12, and 15]
 .This process proceeds for the previous layer(s) until

the input layer is reached.

There are many variations to the learning rules for back-

propagation network. Different error functions, transfer functions,

and even the modifying method of the derivative of the transfer

function can be used. The concept of ³momentum error² was

introduced to allow for more prompt learning while minimizing

unstable behavior. Here, the error function, or delta weight

equation, is modified so that a portion of the previous delta

weight is fed through to the current delta weight. This acts, in

engineering terms, as a low-pass filter on the delta weight terms

since general trends are reinforced whereas oscillatory behavior is

canceled out. This allows a low, normally slower, learning

coefficient to be used, but creates faster learning.

Another technique that has an effect on convergence speed is to

only update the weights after many pairs of inputs and their

desired outputs are presented to the network, rather than after

every presentation. This is referred to as cumulative back-

propagation because the delta weights are not accumulated until

the complete set of pairs is presented. The number of input-output

pairs that are presented during the accumulation is referred to as

an ³epoch². This epoch may correspond either to the complete set

of training pairs or to a subset.

There are limitations to the feed forward, back-propagation

architecture. Back-propagation requires lots of supervised

training, with lots of input-output examples. Additionally, the

internal mapping procedures are not well understood, and there is

no guarantee that the system will converge to an acceptable

solution. At times, the learning gets stuck in local minima,

limiting the best solution. This occurs when the network systems

finds an error that is lower than the surrounding possibilities but

does not finally get to the smallest possible error. Many learning

applications add a term to the computations to bump or jog the

weights past shallow barriers and find the actual minimum rather

than a temporary error pocket
[4, 9, 10, 11, 12, and 15].

Typical feedforward, back-propagation applications include

speech synthesis from text, robot arms, evaluation of bank loans,

image processing, knowledge representation, forecasting and

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

380

prediction, and multi-target tracking. Each month more back-

propagation solutions are announced in the trade journals.

Delta rule: The delta rule is a further variation of

Hebb’s rule and it is one of the most commonly
applied ways available to modify the strengths of the
input connections in order to reduce the difference
between the desired output value and the actual
output of neuron . This rule changes the connection
weights in the way that minimizes the mean squared

error of the network . The error is back propagated
into previous layers one layer at a time. The process
of back-propagating the network errors continues until
the first layer is reached. The network type called
feed forward , back-propagation derives its name from
this method of computing the error team. This rule is

also referred to as the windrow-hoff learning rule and
the least mean square learning rule.
Perceptron: The perceptron is the simplest form of a
neural network used for the classification of a special type
of patterns, which are linearly separable. It consists of a
single McCulloch-Pitts neuron with adjustable synaptic
weights and bias (threshold), proved that if the patterns
(vectors) used to train the perceptron are drawn from
linearly separable classes, then the perceptron algorithm
converges and positions the decision surface in the form
of a hyper plane between the classes

[5,6,12]
. The proof of

convergence of the algorithm is known as the perceptron
convergence theorem.
 The single-layer perceptron shown has a single

neuron. Such a perceptron is limited to performing pattern

classification with only two classes as shown in Figure 2.

Figure 2: Perceptron.

n

T

i i

i 0

v(x) w x w x


  (1)

1,v 0
y

0,v 0

 
  

 
 (2)

Equation v(x) = 0 defines a boundary between the region
where the perceptron fires at and the region where it
outputs zero. This boundary is a line (decision line,
decision hyperplane), which must be appropriately located
during the process of learning. The perceptron can
distinguish between empty and full patterns if and only if
they are linearly separable as shown in figure 3.

Figure 3: Linearly separable sets

Training set T is a set of pairs [x

i
, d

i
], where the desired

value d
i
 equals either 1 or 0 and:

1 1

2 2

N N

[x d

T [x d

[x d

 
 

  
 
 

i i i i T

0 1 nx [x x ... x] (3)

The training instance (sample) [x

m
, d

m
] is misclassified if

the perceptron output y
m

 does not produce d
m
.A

n

appropriate measure of misclassification is this criterion:

N N
i i i i i T i

i 1 i 1

J (y d)v(x) (y d)w x
 

     (4)

 Let us discuss individual terms in the criterion J:

 If the training sample is correctly classified then (y
i
-

d
i
) = 0

 If d
m
 = 1 and y

m
 = 0 then (y

m
-d

m
) = -1 and (y

m
-

d
m
)v(x

m
)>0. (It follows from (6) that the output y

m
 =

0 only if v (x
m
) < 0.)

 If dm = 0 and y
m
 = 1 then (y

m
-d

m
) = 1 and (y

m
-d

m
) v

(x
m
). (It follows from (6) that the output y

m
 = 1 only

if v (x
m
) 0.)

We can mine from the above, that the criterion J grows if

training samples are misclassified and J = 0 if all samples

are classified correctly.

A gradient descent method will be used to minimize the

criterion J. Let w (k) be the k-th iteration of the weight

vector w. The gradient descent method is based on the

formula:

W(k+1) = w(k)- grad(J(w(k)) (5)

N

i i i

i 1

J
grade(J) (y d)x

J 


  


 (6)

The learning coefficient controls the size of a step against

the direction of the gradient (because of a minus sign). If

is too small learning is slow; if too large the process of the

criterion minimization can be oscillatory. The optimum

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

381

value of the learning coefficient is usually found

experimentally. If is kept constant we speak about a

fixed-increment learning algorithm.

Experiment design: In this experiment we are testing the

back propagation, delta rule and perceptron, to find out the

best algorithm of learning in order to train our data. This

will be achieved by providing the neural network structure

by the learning algorithm and the training samples to learn.

Our sample consists of distinct 600 fish images, 400

images used for trained neural network and 210 images

used for tested. For futher information about extraction

features from color texture measurements refer to
[3]

.

EXPERIMENT OF FEATURES

EXTRACTED FROM COLOR TEXTURE

FEATURES

In the color texture measurements experiment we built the

neural network with three layer and the number of neurons

is varied from layer to another (except The output layer

consist of 20 neurons since we need to classify 20 fish

families [1, 2,…, 20], each of which correspond to one of

the possible family’s that might be considered) in order to

determine the suitable number of neurons for both input

and hidden layers, therefore, obtaining high accurate

results. The following Table 1 shows the number of

neurons for each layer that determined experimentally.

Table 1: Number of neurons for each layer

Training

algorithm

NO. Neurons in Layers

BPC

Layer #1 Layer #2 Layer #3

22 33 20

Back propagation classifier were used with a total of 20

neurons for input layer, 30 hidden layer and 20 in the

output layer, since this research need to classify 20 fish

families [1, 2,…, 20], each of which correspond to one of

the possible family’s that might be considered. where the

output represents twenty families of fish.

Figure 4: Results for training color texture features

The obtained results of the training part are shown in

Figure 4. Where, number of maximum proposed iterations

to get the results is 1000 while the neural network finishes

training at iteration number 514. The time for

accomplishing the training was 1 minute and 21 seconds.

The Figure below shows the performance of the neural

network including Gradient, Mu, and validation check.

Figure 5: The training state results of color texture features.

In Figure 5, the performance parameters are discussed in

detail. The gradient started at first epoch at 104 and

slightly varied increase and decrease around the first

epoch value until the last epoch when the gradient is

decreased rapidly to (2.8439e-009) which is near to 10
-8

.

In the second diagram the Mu started from 108 and

decreased rapidly until 108 and nearly remained stable

until epoch 262. Then it has decreased a little to 101 and

remained again stable until epoch 500. In the end it has

rapidly decreased to 10
-5

 and increased again to 103. In the

third diagram, the validation checks started at the value of

zero and remained until epoch 42. Then it has started to

increase the value gradually until epoch 514 where the

validation checks are 500 during the training process.

Figure 6: The regression results of training for the color texture features.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

382

The regression results when using R =1, the target

formulae (Output= 1* Target + 4.1e-013) for the training

were near to the target (slope line) and the data fits in all

iterations as shown in Figure 6.

The mean squared error for checking the stop conditions

of training is shown in Figure 7. The Figure shows the

diagram of MSE during all 514 training iterations. The

best remained at epoch 10
3
, although the MSE for the first

iteration is near to 105, where it is gradually decreased to

10
-2

 in the 502nd iteration. From iteration 502 until

iteration 514 it has been rapidly decreased until the MSE

value is 10
-20

.

Figure 7: The performance by the mean squared error for training the

color texture features.

The following Table 7 describes the overall training and

testing accuracy. The results shown in the Table are the

overall accuracy outcome for both training and testing

accuracy obtained from the trained neural network using

back-propagation classifier. The overall training and

testing accuracy was 85% and 84% respectively.

Table 2: Description of the overall accuracy of training and testing for

the color texture features

Description Results

Overall training accuracy 85%

Overall testing accuracy 84%

CONCLUSION

In short, this study demonstrated the study of multi-layer

perceptron (back propagation, delta rule and perceptron)

algorithms in neural networks in the previous study and

explained the performance of the BP algorithm based on

extracted features from color texture measurements of fish

images. Eventually experimental findings revealed that the

back propagation algorithm is the best algorithm to be

used in the multi-layer perceptron in a neural network due

to back propagation algorithm Complex logical operations

pattern classification analysis and Back-Propagation (BP)

learning algorithm is designed to reduce an error between

the actual output and the desired output of the network in

a gradient descent manner.

REFERENCES

[1] Anderson, J.A., 1995. An Introduction to Neural Networks.

MIT Press, Cambridge, MA., ISBN: 10: 0262011441, pp:

672.

[2] Chauvin, Y. and D.E. Rumelhart, 1995. Backpropagation:

Theory, Architectures and Applications. Erlbaum, Mahwah,

NJ., ISBN: 080581258X, pp: 561.

[3] Alsmadi, M. K., Omar, K. B., Noah, S. A. And

Almarashdeh, I. Fish Recognition Based On Robust

Features Extraction From Color Texture Measurements

Using Back-Propagation Classifier. Journal of Theoretical

and Applied Information Technology 11-18.

[4] Gupta, L., M.R Sayeh. and R. Tammana, 1990. A neural

network approach to robust shape classification. Patt.

Recog., 23: 563-568.

http://cat.inist.fr/?aModele=afficheN&cpsidt=19457517

[5] Qiyao Yu, C. Moloney and F.M. Williams, 2002. SAR

seaice texture classification using discrete wavelet

transform based methods. Proceeding of the IEEE

International Geoscience and Remote Sensing Symposium,

(IGRSS’02), IEEE Xplore Press, USA., pp: 3041-3043.

DOI: 10.1109/IGARSS.2002.1026863

[6] Rumelhart, D.E. and J.L. McClelland, 1986. Parallel

Distributed Processing: Explorations in the Microstructure

of Cognition. 8th Edn., I and II, MIT Press, Cambridge,

MA., ISBN: 0262631105.

[7] Veerendra Singh and S. Mohan Rao, 2005. Application of

image processing and radial basis neural network

techniques for ore sorting and ore classification. Mineral.

Eng., 18: 1412-1420.

http://cat.inist.fr/?aModele=afficheN&cpsidt=17289210

[8] Werbos, P.J., 1974. Beyond regression: New tools for

prediction and analysis in the behavioral sciences. Ph.D.

Thesis, Harvard University.

http://www.citeulike.org/user/yannael/article/1055600.

[9] Philip, M., D. Merikle, Smilek and D. John, 2001.

Perception without awareness: Perspectives from cognitive

psychology. Cognition, 79: 115-134.

http://www.ncbi.nlm.nih.gov/pubmed/11164025

[10] Hand, D., H. Mannila and P. Smyth, 2001. Principles of

Data Mining. MIT Press, Cambridge, ISBN: 026208290X,

pp: 546.

[11] Hastie, T. R. Tibshirani and J. Friedman, 2001. The

Elements of Statistical Learning: Data Mining, Inference

and Prediction. Springer, New York, ISBN: 0387952845,

pp: 533.

[12] Leo Breiman, H. Jerome Friedman, A. Richard Olshen and

J. Charles Stone, 1998. Classification and Regression Trees.

Chapman and Hall/CRC. Paperback: 368 pages. ISBN 978-

0412048418.

http://mitpress.mit.edu/catalog/item/default.asp?sid=D1AE325C-83F2-4E73-8E79-58F01303BCA9&ttype=2&tid=3520
http://mitpress.mit.edu/catalog/item/default.asp?sid=D1AE325C-83F2-4E73-8E79-58F01303BCA9&ttype=2&tid=3520
http://www.springer-ny.com/detail.tpl?cart=10281908926997838&isbn=0387952845
http://www.springer-ny.com/detail.tpl?cart=10281908926997838&isbn=0387952845
http://www.springer-ny.com/detail.tpl?cart=10281908926997838&isbn=0387952845

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

383

[13] Jiawei Han and Micheline Kamber, 2000. Data Mining:

Concepts and Techniques. 1st Edn., Morgan Kaufmann

Publishers, ISBN: 10: 1558604898, pp: 500.

[14] Michael R. Anderberg, 1973. Cluster Analysis for

Applications. Academic Press, ISBN: 0120576503, pp: 359.

[15] Michael J.A. Berry and Gordon S. Linoff, 2000. Mastering

Data Mining. Wiley.

Mutasem Khalil Sari Al Smadi
received his BS degree in Software

engineering in 2006 from Philadelphia

University, Jordan, his MSc degree in

intelligent system in 2007 from

University Utara Malaysia, Malaysia;

He has published paper in IEEE and

International Journal of Computer

Science and Network Security; currently

he is doing PhD in Intelligent System in University Kebangsaan

Malaysia in Malaysia.

Khairuddin Omar is an Associate

Professor in Faculty of Information

Science and Technology, University

Kebangsaan Malaysia, 43600 UKM

Bangi, Malaysia. His research interest

includes Arabic/Jawi Optical Text

Recognition, Artificial Intelligence for

Pattern Recognition & Islamic

Information System.

Shahrul Azman Noah is currently an

associate professor at the Faculty of

Information Science and Technology,

University Kebangsaan Malaysia

(UKM). He received his MSc and PhD

in Information Studies from the

University of Sheffiled, UK in 1994 and

1998 respectively. His research interests

include information retrieval, knowledge

representation, and semantic technology.

He has published numerous papers related to these areas. He

currently leads the knowledge technology research group at ukm.

