
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

390

Manuscript received April 5, 2009
Manuscript revised April 20, 2009

Automatic Software Structural Testing by Using Evolutionary
Algorithms for Test Data Generations

Maha Alzabidi† , Ajay Kumar††, and A.D. Shaligram†††

†Department of Computer Science, University of Pune, Pune-411007, India
††JSPM’s Jaywant Institute of Computer Applications, Pune-411033, India

†††Department of Electronic Sciences, University of Pune, Pune-411007, India

Summary
Software testing is an important activity of the software
development process. It is a critical element of software quality
assurance. Structural-oriented test methods which define test
cases on the basis of internal program structure are widely used.
Evolutionary testing is a promising approach for automation of
structural test case design, which search test data that fulfill
given structural test criteria by manner of evolutionary
computation.
In this article we investigate the performance of proposed GA
with different parameters combinations used to automate the test
data generation for path coverage. The investigation involves
crossover strategies and methods of selecting of parents for
reproduction and mutation rates. The results of the study showed
that double crossover was more successful in path coverage. The
study results Also that, selecting parent for reproduction
according to their fitness is more efficient than random selection.
And that mutation rate is better adjusted with program at hand.
Also, we studied the generation to generation progress in the
proposed GA while searching for good test data. The work is
compared with random testing. And we concluded that the
proposed GA improves the search from one generation to the
next, and performs better than random testing, where the search
was absolutely random and does not show improvement through
the generations. Another observation is that random testing
generates less successful test cases than the proposed GA.
Key words:
software testing - unit testing – path testing - genetic algorithms
- test data generation.

1. Introduction

Software testing is a laborious and time-consuming work
[1] [18]. It spends almost 50% of the software system
development resources. To increase the effectiveness and
efficiency of the test and thus to reduce the overall
development cost for software system, we require a test
that is systematic and automatable. The automation of test
case generation is the most important aspect of automatic
testing. No powerful test data generation tools are
commercially available today.

For years, many researchers have proposed different
methods for generating test data automatically [3][4][5]
[6][7]. This article studies the use of GA in structural
testing, where test cases are selected so that the structural
components are covered.
The study is based on path coverage criterion for testing.
In section 2 we explain the objectives of the work then a
short overview of evolutionary testing and path testing is
presented in section 4 and 4 respectively. Our proposed
GA is described in section 5. The results of the conducted
experiments are presented section 6. Conclusion and
remarks are given in section 7.

2. Objective

Past experiment with GA indicates that GA needs to be
tuned for the problem of test data generation. In this article
we investigate the performance of different GA
parameters. The investigation of the proposed GA includes
the following: (1) which crossover strategy is most
efficient. (2) which parent selection method is most
efficient. (3) which mutation rate gives best result.

3. Evolutionary testing

Evolutionary testing is characterized by the use of meta-
heuristic search for test case generation. The considered
test aim is transformed into an optimization problem [6]
[8] where the input domain of the test object forms the
search space for test data that fulfills the respected search
aim. An example of evolutionary algorithms is Genetic
Algorithms (GA). GA operates on a string of digits called
chromosomes [9], each digit that makes up the
chromosome is called gene, and a collection of such
chromosomes makes up a population. Each has a fitness
value associated with it, and this fitness value determines
the probability of survival of an individual to the next
generation. After the next generation is created a
percentage of the chromosomes are crossed and small

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

391

percentages are mutated. A block diagram of GA is shown
in Fig.1.
GA with selection, crossover, and mutation is an adoptive
search technique that has been applied in many areas [9].
Adoptive search techniques are not guaranteed to find the
optimal solution, however they often find a very good
solution in limit of time [10]. GA is used to generate test
data because their robustness and suitability for solutions
of different test tasks has already been proven in previous
work, e.g. [3], [7], [11], and [12].
Genetic algorithms guarantee high probability of
improving the quality of individuals over several
generations according to the Schema Theorem [10].

Fig .1. Block diagram of Genetic Algorithms

4. Path testing

Path coverage is an effective software structural testing
criteria. If testing can be designed to force execution of all
paths, every statement in the program will have been
guaranteed to be executed at least one time and every
condition will have been executed in its true and false
sides [5] which make it the utmost coverage. Thus an
effective software structural testing should have path
coverage as its objective.
Genetic algorithms could be applied to path testing if the
target paths are clearly defined and an appropriate fitness
function related to this goal is built.

Test case generation for path testing consists of four basic
steps:

1) Control Flow Graph construction: A CFG is a
representation of a program where contiguous regions
of code without branches, known as basic blocks, are
represented as nodes in a graph and edges between
nodes indicate the possible flow of the program. A
cycle in CFG may imply that there is a loop in the
code. In this step, the source program is transferred to
a graph that represents the control flow of the
program. Each branch of the graph is denoted by a
label and different branches correspond with different
labels.
2) Target path selection: In path testing, paths are
extracted from the CFG, and some paths might be
very meaningful and need to be selected as target
path for testing (e.g. the path for Equilateral triangle).
3) Test case generation and execution: in this step
the algorithm automatically creates new test cases to
execute new path and leads the control flow to the
target path. Finally, a suitable test case that executes
the target paths could be generated.
4) Test result evaluation: this step is to execute the
selected path and to determine the test criteria is
satisfied

5. The Proposed Algorithm

The aim of this work is improving fitness function
calculation, which is the more costly component of genetic
algorithm, to get performance improvements. Our
approach is to develop GA algorithm to generate test data
for path coverage. The fitness function proposed to
evaluate each test data is a modification to the Hamming
Distance, which quantify the distance between two given
paths. The fitness function in this work will be named
Shifted-Modified-SIMILARITY (SMS). Given a target
path and a current one, the similarity is calculated from
cascaded edges for each of the paths being compared
using hamming distance or symmetric differences (the
symmetric difference between set A and set B is ()).
Similarities are then normalized and summed associated
with a weighting factor which is usually found by
experience. To obtain the total similarity this value is used
as the objective function used to evaluate individuals in
the population.
For path testing, two different paths may contain the same
branches but in different sequences [13]. To increase path
coverage within limited time and computational efforts,
we proposed the (SMS). Where we shift paths being
compared to right and left for calculating that distance
(detailed in [14]). To obtain the objectives of the work we
experimented in the following areas:

Create initial population (randomly)

Evaluate individuals of population (fitness
calculation)

Select individuals for mating (Crossover) to
generate new population

Mutation

Stopping criteria satisfied?

Yes

No

Stop

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

392

1) GA Parameter Combinations: two crossover
strategies, namely single-point and double-point
crossover (illustrated in Fig.2.), were studied. Also,
selection of parents for reproduction at random an
according to fitness are two methods investigated,
and results are discussed in the next section. In
addition, probability of mutation (Pm) is another GA
parameter which was varied and applied to find the
suitable Pm rate that gives best results. The results
discuss different Pm rates.
2) Monitoring GA progress: in this part we study the
speed of convergence of the population generated
from generation to generation. This measures the
efficiency of the fitness function and the difficulty of
the target/goal path.

Single-point crossover at k=9

Double-point crossover at k=5, m=13

Fig.2. Single-point and double- point crossover.

6. Discussion of Results

To investigate the performance of GA parameter
combinations with the proposed algorithm, we
experimented with the triangle classifier program (Tri-
Class). The program is a benchmark for many researches
in software testing [15] [16] [17][18]. It classifies a
triangle as valid, scalene, isosceles or equilateral given the
length of the triangle sides. In the first step, the selection
of parents for reproduction was either random or
according to fitness (roulette wheel) method. Fig.3 list the
average of test data generated to cover the goal paths in
the program over 10 runs. The population was 500
individuals for 50 generations/iterations with 1.0
probability of single-point crossover and mutation rate

Pm= 0.05. As shown, selection of parent according to their
fitness value was far more effective than random selection.

21279

15604

20204

9130

4950

184 3.8 0.7
0

5000

10000

15000

20000

25000

average

invalid scalene isosceles equilateral

Tri-class with different select method (single-point crossover)

roulette wheel

random

Fig.3. Path coverage for Tri-Class with different select method of parents

Fig.4 shows the same comparison using same parameters
in the above experiment except that double-point
crossover was used to generate offspring. As can be seen
in the figure, the selection of parents according to fitness
value was more successful in generating test data to cover
all goal paths in the program under test than random
method. In general, when the generation of the next
population based on roulette wheel, the fitness function
determines the probability of selection allowing those with
high fitness more chance of offspring in the next
generation in comparison of their less fit companions.

22129

15628

20701

9348
7047

189 168 0.9
0

5000

10000

15000

20000

25000

average

invalid scalene isosceles equilateral

Tri-class with different select method (double-point
crossover)

roulette wheel

random

Fig.4. Path coverage for Tri-Class with double-point crossover.

In another experiment, the mutation rate for the proposed
algorithm was investigated. Fig.5 shows the experiment
results with two mutation rates. The first is 0.05 which is

the reciprocal of the chromosome length
)

24
1(

and the
second was a smaller value of (0.005) which
approximately is the reciprocal of generation population
size. As can be seen in Fig.5, the lower rate of 0.005 for
Pm was better than 0.05 which was less effective.
The best mutation rate for the Tri-Class program turns to
be 0.005. Which means that on the average, one mutation

1100101010 0101010111 0000101100

0011100001 1111100000 1010101010

1100101001 1111100000 1010101010

0011100010 0101010111 0000101100

1100101010 0101010111 0000101100

0011100001 1111100000 1010101010

1100100001 1101010111 0000101100

0011101010 0111100000 1010101010

Offspring

Offspring

Parents

Parents

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

393

every 200th gene. If mutation rate was high, the change in
the chromosome is too big; the building block of the
chromosome will be lost or badly affected. It will be
similar or close to random generation of data, and that is
why results are worsen when experimented with Pm rates:
1.0 and 0.1. In other experiments, when Pm is very small
(like 0.001, 0.0001) the results deteriorate because there is
no enough disruption in the population.

21279
23920

20204

23427

4950

18596

3.8

8148

0

5000

10000

15000

20000

25000

coverage

invalid scalene isosceles equilateral

Tri-Class with different mutation rates

Pm=0.05

Pm=0.005

Fig.5. Path coverage in Tri-Class using different mutation rates

Another interesting result is shown in Fig.6. The figure
shows comparison of GA performance in both single-point
crossover and double-point crossover, the other
parameters was same as before, i.e. 500 individuals for 50
generations and Pm=0.005. As can be seen in the figure,
the average number of data generated to cover paths for
the four types of triangle in double-point crossover was
larger than the single-point crossover. This is because in
double-point crossover there are good chances to double
exchange the good genes between two fit parent to
generate a yet better offspring. In the case of Tri-Class
program, Comparison between the two crossover
operators favors double-point crossover. Single-point-
crossover may only change one input variable at a time,
but double-point crossover may change two input
variables (see Fig.2. above), which increase the
effectiveness of the search. In general double-point
crossover explores more of the domain than single-point
crossover. This gives the indication that the strength of
GA techniques exists in crossover operation.
In this section we show results of studying generation to
generation progress in the GA search i.e. how does case-
generation progresses from one generation/iteration to the
next. The proposed GA algorithm using SMS as objective
fitness function was applied to the Max-Min and Tri-Class
programs. Tri-Class was explained earlier. Max-Min (the
maximum minimum) program finds the maximum and
minimum values, within an array of numbers. The
program has two sequential selection statements inside a
loop in which all the conditions are simple. And to allow
more confidence in the proposed algorithm, the obtained

result is compared with results obtained from random
testing for the same two programs with similar parameters.

2127922129
2020420701

4950
7047

3.8 168.2
0

5000

10000

15000

20000

25000

average

invalid scalene isosceles equilateral

Tri-Calss with different crossover points

single-point

double-point

Fig.6. Path coverage in Tri-Class using different crossover points

The GA parameters used for MAX-Min program was as
follows: pop size of 500, max-gen of 10 Pc=1.0 (single-
point) Pm=0.05. The parent selection was according to
fitness. For simplification, the results of selected 3 paths
out of 13 paths in Max-Min program, over 10 generation,
is shown in Fig.7-a. As shown in the figure, the selected
goal paths were covered with good amount of data, since
they are equal in difficulty of coverage and the progress is
visible from 1st generation. SMS performs better and
better from one generation to the next. In Fig.7-b., the
progress in random testing is rather random. No
improvement in the search for test data is seen in the
selected 3 paths. Another observation from the results
(shown in Fig.7-a. and Fig.7-b.) is that the number of good
test data generated using SMS is about double the data
generated using random testing.

GA progress for some paths of Max-Min
program

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10

generations

of

 g
oo

d
te

st
 c

as
es

path9

path11

path12

Fig.7-a. GA performance progress for Max-Min

Same results were obtained with Tri-Class program using
population of 500 individuals over 50 generations (see
Fig.8-a. and Fig.8-b).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

394

Random testing progress for some paths of
Max-Min program

0
20
40
60

80
100
120

0 1 2 3 4 5 6 7 8 9 10

generations

of

 g
oo

d
te

st
 c

as
es

path9

path11

path12

Fig.7-b. Random testing performance progress for Max-Min

Fig.8-a. shows that invalid and scalene triangle types were
easily covered with large amount of good test data to
cover them in the 1st to the 3rd generation (and then the
average is approximately 400 test cases in each
generation) while it took SMS about 10 generation to
improve and give an adequate number of good test data to
cover Isosceles triangle path (approximately 150 test cases
in each generation). The most difficult path to be covered
in the program is the equilateral triangle. The SMS shows
improvement after about 30 generations/iterations since it
is very difficult to generate test cases with 3 identical
numbers to cover the path. Fig.8-b. shows random test
progress for Tri-Class program with same number of
individuals and generations. The progress is not clear in
invalid and scalene triangles paths though they are
comparatively easy to cover, while the progress is poor
and there is almost no progress in generating test data for
the difficult paths of isosceles and equilateral triangles.
And generally, the average number of good test data
generated is less than (approximately half) the average
generated using SMS-based GA, in all the selected goal
paths.

GA progress of Tri-Class program

0

100

200

300

400

500

1 6 11 16 21 26 31 36 41 46

generations

of

 g
oo

d
te

st
 c

as
es

invalid

scalene

isoceles

equilateral

Fig.8-a. GA performance progress for Tri-Class

We conclude that the random testing does not improve
from one generation to the next. the search is absolutely

random in each iteration and good test data generated are
less than SMS-based GA. This indicates that calculated
SMS fitness value provides the necessary feed back for
the GA to generate better test data in the next generations.

Random progress of TRi-Class program

0
50

100
150
200
250
300

1 5 9 13 17 21 25 29 33 37 41 45 49

generations

of

 g
oo

d
te

st
 c

as
es invalid

scalene

isoceles

equilateral

Fig.8-b. Random testing performance progress for Tri-Class

7. Conclusion

This article investigates the performance of a proposed
GA for path testing. We have studied the performance of
different GA parameters (crossover strategies, mutation
rates and parent selection methods). The experiments with
Tri-Class program showed that double crossover is more
effective than single cross over strategy. And that
selection parent for reproduction according to their fitness
gave better results than random selection of parents. A
very small value for mutation rate (0.005) gave the best
results. In fact, larger rates for Pm were tested but were
found disruptive while much lower rates was less effective
which indicates that mutation rate (Pm) is better adjusted
with program at hand.
For studying the GA progress from generation to
generation, the experiment with Tri-Class and Max-Min
programs showed that SMS-based GA performs better
from one generation to the next to cover selected paths
even with difficult paths like Equilateral triangle in Tri-
Class program. The comparison with random testing
showed that when generation of the next population is
based on selecting those individuals with high fitness, this
gives the chance to generate a better offspring than of
random testing which had a poor or no progress in the
generation of test data and generated much less number of
good test data.
The next step is to experiment the proposed algorithm
using more complex programs with loops and arrays using
different data types (integers, floats, characters).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009

395

References
[1] B. Beizer, Software Testing Techniques, Van Nosterland

Reinhold, 1990.
[2] J. A. Whittaker, “What is software testing? And Why is it so

hard?” IEEE Software, 2000.
[3] B. T. de Abreu, E. Martins, F, de Sousa, “Automatic Test

Data Generation for Path Testing Using A New Stochastic
Algorithm”, http://www.sbbd-sbes2005.ufu.br/arquivos/16-
%209523.pdf

[4] B. Korel, “Automatic Software Test Data Generation”,
IEEE Trans of Software Engineering, 16(8):870-879.

[5] C. Michael, G. McGraw, M. Schatz, C. Walton, “Genetic
Algorithm for Dynamic Test Data Generation”, Proceedings
of the 12th International Conference of Automated Software
Engineering, vol.1, issue 5, Nov.1997, pp: 307-308.

[6] H. Sthamer, “The Automatic Generation of Software Test
Data Using Genetic Algorithms”, PhD. Thesis, University
of Glamorgan, Wales, Great Britain, 1996.

[7] J. Wegener, K. Buhr, H. Pohlheim. “Automatic Test Data
Generation for Structural Testing of Embedded Software
System by Evolutionary Testing”,
http://www.lri.fr/~marc/articls/testwegener2002.pdf

[8] H. Sthamer, A. Baresel, J. Wegener, “Evolutionary Testing
of Embedded Systems”, 14th International Internet Quality
week 2001.

[9] D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, and A.
Watkins, “Breeding Software Test Cases with Genetic
Algorithms”, IEEE Proceedings of the Hawaii International
Conference on System Science, Hawaii, 2003.

[10] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison Wesley, 1989.

[11] M.R .Girgis, “Automatic Test Data Generation for Data
Flow Testing Using Genetic Algorithm”, Journal of
Universal Computer Science, vol. 11, no.6, 2005.

[12] D. Sandler, W. Tisthammer, “A Survey of Testing Tools”,
www.users.umn.edu/~dliang/5802reports/06/sandler/surveyt
esting.pdf

[13] J. Lin, P.L.Yeh, “Automatic Test Data Generation of Path
Testing Using GAs”, Information Sciences, 131(1-4):47-64.

[14] M. S. Al-Zabidi, A. Kumar, A. D. Shaligram, “Data
Generation for Path Testing Using Genetic Algorithms”, In:
Proceedings of the 1st International Engineering Sciences
Conference (IESC'08), Aleppo, Syria, Nov. 2 - 4, 2008

[15] K. Borgelt, “Software Test Data Generation from a Genetic
Algorithm”, Industrial Applications of Genetic Algorithms,
CRC Press, 1999.

[16] N. Mansour, M. Salame, “Data Generation for Path
Testing”. Software Quality Journal, 12,121-136-2004.

[17] G. Myer, The Art of Software Testing, John Wiley, 1979.
[18] R. P. Pargas, M. J. Harrold, R.Peck, “Test Data Generation

Using Genetic Algorithms”, Journal of Software Testing,
Verification and Reliability, John Wiley, 1999.

Maha Al-Zabidi, received M.Sc. in
Computer Science from University of
Technology, Baghdad in 2000. She
received B.SC. in Computer Science
from King Abdul-Aziz University,
Jeddah, KSA, in 1994. Since 2000 she
has been working as an assistant lecturer
in Hodeidah University, Yemen. She is
presently doing a PhD. research at

University of Pune, India. Her area of interest is software
engineering, software quality, Genetic Algorithms and software
testing.

Dr. Ajay Kumar, he has completed M.Sc.
Engg. هn computer science and Ph.D. in
1992. He is having 22 years of teaching
and research experience. At present he is
working as director of JSPM’s Jaywant
institute of computer applications, under
University of Pune, Pune. He has

published 36 research paper of national and international level.
His areas of specialization are computer networks, mobile
computing wireless networks, software engineering and data
coding

Dr.A.D.Shaligram, received B.Sc.
(1979), M.Sc. (1981) and Ph.D. (1986)
from University of Pune. Presently he is
head, Department of Electronic Science
at University of Pune, has a professional
experience of more than 25 years. His
main fields of research interest are
Optoelectronic sensors and systems,
Wireless Sensor Networks, Simulation

software development, Biomedical Instrumentation and sensors,
PC/Microcontroller based instrumentation, Embedded systems
and VLSI design, e-learning resource development. He has
authored 20 text books and laboratory manuals for undergraduate
electronics curricula, published more than 120 research papers in
national/ international journals and conference proceedings. He
has been a IEEE member for 16 years. He guided 18 students for
Ph.D.

