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Summary 
Software testing is an important activity of the software 
development process. It is a critical element of software quality 
assurance. Structural-oriented test methods which define test 
cases on the basis of internal program structure are widely used. 
Evolutionary testing is a promising approach for automation of 
structural test case design, which search test data that fulfill 
given structural test criteria by manner of evolutionary 
computation. 
In this article we investigate the performance of proposed GA 
with different parameters combinations used to automate the test 
data generation for path coverage. The investigation involves 
crossover strategies and methods of selecting of parents for 
reproduction and mutation rates. The results of the study showed 
that double crossover was more successful in path coverage. The 
study results Also that, selecting parent for reproduction 
according to their fitness is more efficient than random selection. 
And that mutation rate is better adjusted with program at hand. 
Also, we studied the generation to generation progress in the 
proposed GA while searching for good test data. The work is 
compared with random testing. And we concluded that the 
proposed GA improves the search from one generation to the 
next, and performs better than random testing, where the search 
was absolutely random and does not show improvement through 
the generations. Another observation is that random testing 
generates less successful test cases than the proposed GA. 
Key words: 
software testing - unit testing – path testing - genetic algorithms 
- test data generation. 

1. Introduction 

Software testing is a laborious and time-consuming work 
[1] [18]. It spends almost 50% of the software system 
development resources. To increase the effectiveness and 
efficiency of the test and thus to reduce the overall 
development cost for software system, we require a test 
that is systematic and automatable. The automation of test 
case generation is the most important aspect of automatic 
testing. No powerful test data generation tools are 
commercially available today. 

For years, many researchers have proposed different 
methods for generating test data automatically [3][4][5] 
[6][7]. This article studies the use of GA in structural 
testing, where test cases are selected so that the structural 
components are covered. 
The study is based on path coverage criterion for testing. 
In section 2 we explain the objectives of the work then a 
short overview of evolutionary testing and path testing is 
presented in section 4 and 4 respectively. Our proposed 
GA is described in section 5. The results of the conducted 
experiments are presented section 6. Conclusion and 
remarks are given in section 7. 

2. Objective 

Past experiment with GA indicates that GA needs to be 
tuned for the problem of test data generation. In this article 
we investigate the performance of different GA 
parameters. The investigation of the proposed GA includes 
the following: (1) which crossover strategy is most 
efficient. (2) which parent selection method is most 
efficient. (3) which mutation rate gives best result. 

3. Evolutionary testing 

Evolutionary testing is characterized by the use of meta-
heuristic search for test case generation. The considered 
test aim is transformed into an optimization problem [6] 
[8] where the input domain of the test object forms the 
search space for test data that fulfills the respected search 
aim. An example of evolutionary algorithms is Genetic 
Algorithms (GA). GA operates on a string of digits called 
chromosomes [9], each digit that makes up the 
chromosome is called gene, and a collection of such 
chromosomes makes up a population. Each has a fitness 
value associated with it, and this fitness value determines 
the probability of survival of an individual to the next 
generation. After the next generation is created a 
percentage of the chromosomes are crossed and small 
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percentages are mutated. A block diagram of GA is shown 
in Fig.1. 
GA with selection, crossover, and mutation is an adoptive 
search technique that has been applied in many areas [9]. 
Adoptive search techniques are not guaranteed to find the 
optimal solution, however they often find a very good 
solution in limit of time [10]. GA is used to generate test 
data because their robustness and suitability for solutions 
of different test tasks has already been proven in previous 
work, e.g. [3], [7], [11], and [12].  
Genetic algorithms guarantee high probability of 
improving the quality of individuals over several 
generations according to the Schema Theorem [10]. 
 
 

 

Fig .1. Block diagram of Genetic Algorithms  

4. Path testing 

Path coverage is an effective software structural testing 
criteria. If testing can be designed to force execution of all 
paths, every statement in the program will have been 
guaranteed to be executed at least one time and every 
condition will have been executed in its true and false 
sides [5] which make it the utmost coverage. Thus an 
effective software structural testing should have path 
coverage as its objective. 
Genetic algorithms could be applied to path testing if the 
target paths are clearly defined and an appropriate fitness 
function related to this goal is built. 

Test case generation for path testing consists of four basic 
steps: 

1) Control Flow Graph construction: A CFG is a 
representation of a program where contiguous regions 
of code without branches, known as basic blocks, are 
represented as nodes in a graph and edges between 
nodes indicate the possible flow of the program. A 
cycle in CFG may imply that there is a loop in the 
code. In this step, the source program is transferred to 
a graph that represents the control flow of the 
program. Each branch of the graph is denoted by a 
label and different branches correspond with different 
labels. 
2) Target path selection: In path testing, paths are 
extracted from the CFG, and some paths might be 
very meaningful and need to be selected as target 
path for testing (e.g. the path for Equilateral triangle).  
3) Test case generation and execution: in this step 
the algorithm automatically creates new test cases to 
execute new path and leads the control flow to the 
target path. Finally, a suitable test case that executes 
the target paths could be generated. 
4) Test result evaluation: this step is to execute the 
selected path and to determine the test criteria is 
satisfied 

5. The Proposed Algorithm 

The aim of this work is improving fitness function 
calculation, which is the more costly component of genetic 
algorithm, to get performance improvements. Our 
approach is to develop GA algorithm to generate test data 
for path coverage. The fitness function proposed to 
evaluate each test data is a modification to the Hamming 
Distance, which quantify the distance between two given 
paths. The fitness function in this work will be named 
Shifted-Modified-SIMILARITY (SMS). Given a target 
path and a current one, the similarity is calculated from 
cascaded edges for each of the paths being compared 
using hamming distance or symmetric differences (the 
symmetric difference between set A and set B is ( )). 
Similarities are then normalized and summed associated 
with a weighting factor which is usually found by 
experience. To obtain the total similarity this value is used 
as the objective function used to evaluate individuals in 
the population. 
For path testing, two different paths may contain the same 
branches but in different sequences [13]. To increase path 
coverage within limited time and computational efforts, 
we proposed the (SMS). Where we shift paths being 
compared to right and left for calculating that distance 
(detailed in [14]). To obtain the objectives of the work we 
experimented in the following areas: 

 

Create initial population (randomly) 

Evaluate individuals of population (fitness 
calculation) 

Select individuals for mating (Crossover) to 
generate new population 

Mutation 

Stopping criteria satisfied? 

Yes 

No 

Stop 
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1) GA Parameter Combinations: two crossover 
strategies, namely single-point and double-point 
crossover (illustrated in Fig.2.), were studied. Also, 
selection of parents for reproduction at random an 
according to fitness are two methods investigated, 
and results are discussed in the next section. In 
addition, probability of mutation (Pm) is another GA 
parameter which was varied and applied to find the 
suitable Pm rate that gives best results. The results 
discuss different Pm rates. 
2) Monitoring GA progress: in this part we study the 
speed of convergence of the population generated 
from generation to generation. This measures the 
efficiency of the fitness function and the difficulty of 
the target/goal path. 

 

Single-point crossover at k=9 
 

 
 
 
 
 
 
 

 
 

Double-point crossover at k=5, m=13 
 

 

 

 

 

 

Fig.2. Single-point and double- point crossover.  

6.  Discussion of Results 

To investigate the performance of GA parameter 
combinations with the proposed algorithm, we 
experimented with the triangle classifier program (Tri-
Class). The program is a benchmark for many researches 
in software testing [15] [16] [17][18]. It classifies a 
triangle as valid, scalene, isosceles or equilateral given the 
length of the triangle sides.  In the first step, the selection 
of parents for reproduction was either random or 
according to fitness (roulette wheel) method. Fig.3 list the 
average of test data generated to cover the goal paths in 
the program over 10 runs. The population was 500 
individuals for 50 generations/iterations with 1.0 
probability of single-point crossover and mutation rate 

Pm= 0.05. As shown, selection of parent according to their 
fitness value was far more effective than random selection. 
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Fig.3. Path coverage for Tri-Class with different select method of parents 

Fig.4 shows the same comparison using same parameters 
in the above experiment except that double-point 
crossover was used to generate offspring. As can be seen 
in the figure, the selection of parents according to fitness 
value was more successful in generating test data to cover 
all goal paths in the program under test than random 
method. In general, when the generation of the next 
population based on roulette wheel, the fitness function 
determines the probability of selection allowing those with 
high fitness more chance of offspring in the next 
generation in comparison of their less fit companions. 
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Fig.4. Path coverage for Tri-Class with double-point crossover. 

In another experiment, the mutation rate for the proposed 
algorithm was investigated. Fig.5 shows the experiment 
results with two mutation rates. The first is 0.05 which is 

the reciprocal of the chromosome length 
)

24
1(

and the 
second was a smaller value of (0.005) which 
approximately is the reciprocal of generation population 
size.  As can be seen in Fig.5, the lower rate of 0.005 for 
Pm was better than 0.05 which was less effective.  
The best mutation rate for the Tri-Class program turns to 
be 0.005. Which means that on the average, one mutation 
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every 200th gene. If mutation rate was high, the change in 
the chromosome is too big; the building block of the 
chromosome will be lost or badly affected. It will be 
similar or close to random generation of data, and that is 
why results are worsen when experimented with Pm rates: 
1.0 and 0.1.  In other experiments, when Pm is very small 
(like 0.001, 0.0001) the results deteriorate because there is 
no enough disruption in the population. 
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Fig.5. Path coverage in Tri-Class using different mutation rates 

Another interesting result is shown in Fig.6. The figure 
shows comparison of GA performance in both single-point 
crossover and double-point crossover, the other 
parameters was same as before, i.e. 500 individuals for 50 
generations and Pm=0.005. As can be seen in the figure, 
the average number of data generated to cover paths for 
the four types of triangle in double-point crossover was 
larger than the single-point crossover. This is because in 
double-point crossover there are good chances to double 
exchange the good genes between two fit parent to 
generate a yet better offspring. In the case of Tri-Class 
program, Comparison between the two crossover 
operators favors double-point crossover. Single-point-
crossover may only change one input variable at a time, 
but double-point crossover may change two input 
variables (see Fig.2. above), which increase the 
effectiveness of the search. In general double-point 
crossover explores more of the domain than single-point 
crossover. This gives the indication that the strength of 
GA techniques exists in crossover operation. 
In this section we show results of studying generation to 
generation progress in the GA search i.e. how does case-
generation progresses from one generation/iteration to the 
next. The proposed GA algorithm using SMS as objective 
fitness function was applied to the Max-Min and Tri-Class 
programs. Tri-Class was explained earlier. Max-Min (the 
maximum minimum) program finds the maximum and 
minimum values, within an array of numbers. The 
program has two sequential selection statements inside a 
loop in which all the conditions are simple. And to allow 
more confidence in the proposed algorithm, the obtained 

result is compared with results obtained from random 
testing for the same two programs with similar parameters. 
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Fig.6. Path coverage in Tri-Class using different crossover points 

The GA parameters used for MAX-Min program was as 
follows: pop size of 500, max-gen of 10 Pc=1.0 (single-
point) Pm=0.05. The parent selection was according to 
fitness. For simplification,  the results of selected 3 paths 
out of 13 paths in Max-Min program, over 10 generation, 
is shown in Fig.7-a. As shown in the figure, the selected 
goal paths were covered with good amount of data, since 
they are equal in difficulty of coverage and the progress is 
visible from 1st generation.  SMS performs better and 
better from one generation to the next. In Fig.7-b., the 
progress in random testing is rather random. No 
improvement in the search for test data is seen in the 
selected 3 paths. Another observation from the results 
(shown in Fig.7-a. and Fig.7-b.) is that the number of good 
test data generated using SMS is about double the data 
generated using random testing. 
 

GA progress for some  paths of Max-Min 
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Fig.7-a. GA performance progress for Max-Min 

Same results were obtained with Tri-Class program using 
population of 500 individuals over 50 generations (see 
Fig.8-a. and Fig.8-b). 
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Random testing progress for some paths of 
Max-Min program
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Fig.7-b. Random testing performance progress for Max-Min 

Fig.8-a. shows that invalid and scalene triangle types were 
easily covered with large amount of good test data to 
cover them in the 1st to the 3rd generation (and then the 
average is approximately 400 test cases in each 
generation) while it took SMS about 10 generation to 
improve and give an adequate number of good test data to 
cover Isosceles triangle path (approximately 150 test cases 
in each generation). The most difficult path to be covered 
in the program is the equilateral triangle. The SMS shows 
improvement after about 30 generations/iterations since it 
is very difficult to generate test cases with 3 identical 
numbers to cover the path. Fig.8-b. shows random test 
progress for Tri-Class program with same number of 
individuals and generations. The progress is not clear in 
invalid and scalene triangles paths though they are 
comparatively easy to cover, while the progress is poor 
and there is almost no progress in generating test data for 
the difficult paths of isosceles and equilateral triangles. 
And generally, the average number of good test data 
generated is less than (approximately half) the average 
generated using SMS-based GA, in all the selected goal 
paths. 
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Fig.8-a. GA performance progress for Tri-Class 

We conclude that the random testing does not improve 
from one generation to the next. the search is absolutely 

random in each iteration and good test data generated are 
less than SMS-based GA. This indicates that calculated 
SMS fitness value provides the necessary feed back for  
the GA to generate better test data in the next generations. 
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Fig.8-b. Random testing performance progress for Tri-Class 

7. Conclusion 

This article investigates the performance of a proposed 
GA for path testing. We have studied the performance of 
different GA parameters (crossover strategies, mutation 
rates and parent selection methods). The experiments with 
Tri-Class program showed that double crossover is more 
effective than single cross over strategy. And that 
selection parent for reproduction according to their fitness 
gave better results than random selection of parents. A 
very small value for mutation rate (0.005) gave the best 
results. In fact, larger rates for Pm were tested but were 
found disruptive while much lower rates was less effective 
which indicates that mutation rate (Pm) is better adjusted 
with program at hand. 
For studying the GA progress from generation to 
generation, the experiment with Tri-Class and Max-Min 
programs showed that SMS-based GA performs better 
from one generation to the next to cover selected paths 
even with difficult paths like Equilateral triangle in Tri-
Class program. The comparison with random testing 
showed that when generation of the next population is 
based on selecting those individuals with high fitness, this 
gives the chance to generate a better offspring than of 
random testing which had a poor or no progress in the 
generation of test data and generated much less number of 
good test data. 
The next step is to experiment the proposed algorithm 
using more complex programs with loops and arrays using 
different data types (integers, floats, characters). 
 
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 2009 

 

395

References 
[1] B. Beizer, Software Testing Techniques, Van Nosterland 

Reinhold, 1990. 
[2] J. A. Whittaker, “What is software testing? And Why is it so 

hard?” IEEE Software, 2000. 
[3] B. T. de Abreu, E. Martins, F, de Sousa, “Automatic Test 

Data Generation for Path Testing Using A New Stochastic 
Algorithm”, http://www.sbbd-sbes2005.ufu.br/arquivos/16-
%209523.pdf 

[4] B. Korel, “Automatic Software Test Data Generation”, 
IEEE Trans of Software Engineering, 16(8):870-879. 

[5] C. Michael, G. McGraw, M. Schatz, C. Walton, “Genetic 
Algorithm for Dynamic Test Data Generation”, Proceedings 
of the 12th International Conference of Automated Software 
Engineering, vol.1, issue 5, Nov.1997, pp: 307-308. 

[6] H. Sthamer, “The Automatic Generation of Software Test 
Data Using Genetic Algorithms”, PhD. Thesis, University 
of Glamorgan, Wales, Great Britain, 1996. 

[7] J. Wegener, K. Buhr, H. Pohlheim. “Automatic Test Data 
Generation for Structural Testing of Embedded Software 
System by Evolutionary Testing”, 
http://www.lri.fr/~marc/articls/testwegener2002.pdf  

[8] H. Sthamer, A. Baresel, J. Wegener, “Evolutionary Testing 
of Embedded Systems”, 14th International Internet Quality 
week 2001. 

[9] D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, and A. 
Watkins, “Breeding Software Test Cases  with Genetic 
Algorithms”, IEEE Proceedings of the Hawaii International 
Conference on System Science, Hawaii, 2003.  

[10] D. E. Goldberg, Genetic Algorithms in Search, 
Optimization and Machine Learning, Addison Wesley, 1989. 

[11] M.R .Girgis, “Automatic Test Data Generation for Data 
Flow Testing Using Genetic Algorithm”, Journal of 
Universal Computer Science, vol. 11, no.6, 2005. 

[12] D. Sandler, W. Tisthammer, “A Survey of Testing Tools”, 
www.users.umn.edu/~dliang/5802reports/06/sandler/surveyt
esting.pdf 

[13] J. Lin, P.L.Yeh, “Automatic Test Data Generation of Path 
Testing Using GAs”, Information Sciences, 131(1-4):47-64. 

[14] M. S.  Al-Zabidi, A. Kumar, A. D. Shaligram, “Data 
Generation for Path Testing Using Genetic Algorithms”, In: 
Proceedings of the 1st  International Engineering Sciences 
Conference (IESC'08), Aleppo, Syria, Nov. 2 - 4, 2008 

[15] K. Borgelt, “Software Test Data Generation from a Genetic 
Algorithm”, Industrial Applications of Genetic Algorithms, 
CRC Press, 1999. 

[16] N. Mansour, M. Salame, “Data Generation for Path 
Testing”. Software Quality Journal, 12,121-136-2004. 

[17] G. Myer, The Art of Software Testing, John Wiley, 1979. 
[18] R. P. Pargas, M. J. Harrold, R.Peck, “Test Data Generation 

Using Genetic Algorithms”, Journal of Software Testing, 
Verification and Reliability, John Wiley, 1999. 

 
 
 
 
 
 
 
 

Maha Al-Zabidi, received M.Sc.  in 
Computer Science from University of 
Technology, Baghdad in 2000. She 
received B.SC. in Computer Science 
from King Abdul-Aziz University, 
Jeddah, KSA, in 1994. Since 2000 she 
has been working as an assistant lecturer 
in Hodeidah University, Yemen.  She is 
presently doing a PhD. research at 

University of Pune, India. Her area of interest is software 
engineering, software quality, Genetic Algorithms and software 
testing. 
 

Dr. Ajay Kumar, he has completed M.Sc. 
Engg. هn computer science and Ph.D. in 
1992. He is having 22 years of teaching 
and research experience. At present he is 
working as director of JSPM’s Jaywant 
institute of computer applications, under 
University of Pune, Pune. He has 

published 36 research paper of national and international level. 
His areas of specialization are computer networks, mobile 
computing wireless networks, software engineering and data 
coding 
 

Dr.A.D.Shaligram, received B.Sc. 
(1979), M.Sc. (1981) and Ph.D. (1986) 
from University of Pune. Presently he is 
head, Department of Electronic Science 
at University of Pune, has a professional 
experience of more than 25 years. His 
main fields of research interest are 
Optoelectronic sensors and systems, 
Wireless Sensor Networks, Simulation 

software development, Biomedical Instrumentation and sensors, 
PC/Microcontroller based instrumentation, Embedded systems 
and VLSI design, e-learning resource development. He has 
authored 20 text books and laboratory manuals for undergraduate 
electronics curricula, published more than 120 research papers in 
national/ international journals and conference proceedings. He 
has been a IEEE member for 16 years. He guided 18 students for 
Ph.D. 


