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Summary 
An Electroencephalography (EEG) inverse solution technique 
can be seen as a way to add spatial information to extra-cranial 
measurements. In other words, it is a mathematical/physical way 
to expand the dimensionality of scalp measurements so as to 
embed intra-cranial spatial information. This paper presents the 
new sLORETA-FOCUSS approach estimating the current 
density distribution in the brain. A comparative study of the 
sLORETA, FOCUSS, sLORETA-FOCUSS and its recursive 
version is also performed using the ROC curve analysis. The 
results demonstrate that the recursive sLORETA-FOCUSS 
method gives good solutions in terms of localization error, 
simulation time, and reconstruction precision in 3D. 
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1. Introduction 

EEG is a recording of electrical potentials at a set of 
electrodes placed on the scalp. Though it is a measurement 
at the surface of the head, EEG can still be used in an 
attempt to infer the location of the neural electrical sources 
within the brain, such as epileptic spikes or somatosensory 
evoked potentials [1, 2]. This localization problem is 
commonly referred to as the inverse problem [3-5] of 
electroencephalography. The inverse problem is ill-posed 
as there are an infinite number of source configurations 
that can produce the same and exact potential at the 
surface of the head. 

The resolution methods can be classified into two 
main categories: dipolar model which assumes that the 
electric sources are equivalent to one or few dipoles, and 
distributed source model which consider that the dipoles 
are distributed regularly in cerebral volume according to a 
3D grid. The positions of the dipoles are then fixed and 
their amplitudes should be estimated. 

In order to solve the inverse problem, it is necessary 
to perform the forward problem [6] to construct the lead 
field matrix that would be inversed to compute the 

potential over the scalp surface from simulated dipoles 
whose position and strength are known. 

Several methods of the resolution of the inverse 
problem, such as the LOw-Resolution Electromagnetic 
TomogrAphy algorithm LORETA [7, 8], the standard 
form of LORETA method: sLORETA [9], the focal 
underdetermined system solver FOCUSS [10-12] can be 
found. The latter repeats the procedure of the WMN [13-
15] method, recursively adjusting the weighting matrix 
until most elements of the solution become nearly zero. 
However, the final solution depends, to some degree, on 
the assumed initial current distribution. Moreover, we 
present our method named sLORETA-FOCUSS witch 
represent a combination method between the sLORETA 
and FOCUSS [16] can be found. Finally, an amelioration 
of the sLORETA-FOCUSS method is given by the 
recursive sLORETA-FOCUSS that gives best results in 
terms of sources reconstruction and computing time. 

This paper is organized as follows. Section 2 presents 
the mathematical steps, the advantages and the 
disadvantages of each inverse problem method. Results 
and discussion are presented in section 3. Section 4 
provides a comparative study. 

2. Technical details 

Consider the problem: 
  

XX t

x
min , under constraint: AXY = .        (1) 

 
Where X is an M-vector, Y is an N-vector, M>N, and 

NHARank ≤=)(  
Matrix A has singular value decomposition (SVD): 
 

tRLA Λ= , with Λ is a diagonal H*H matrix (2) 
 
Then: 
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The solution is: 
 

YLLLRYAX tt )(ˆ 2−+ ΛΛ== .         (5) 
 
Note that “+” denotes the Moore-Penrose pseudo-inverse, 
and “t” indicates the matrix transpose. 
We consider here that:  

 V(N, 1):  equivalent in equation (5) to Y : is a 
vector containing scalp electric potentials 
measured at N cephalic electrodes: 

 
JKV *= .                             (6) 

 
 J(3M, 1): equivalent in equation (5) to X :  is a 

vector containing current densities at M sources 
in the brain: 

 
1* −= KVJ .                           (7) 

 
 K(N, 3M): equivalent in equation (5) to A :  is a 

Lead Field matrix, containing the relation 
between the position of the point where the 
measure of the potential is taken in scalp surface, 
and the position of the sources in the brain: 
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Where rs and rv represent the coordinates of the 
measurement points in the scalp surface and the 
coordinates of the source points within the brain volume 
respectively; σ is the electrical conductivity. 

The final expressions of the estimated current density 
J with the minimum norm “MN” [17, 18], the weighted 
minimum norm “WMN” and the “LORETA” methods are: 

 For the MN algorithm, using equations (4) and 
(5), we obtain: 

 

VKKKJ tt
MN

+= )( .                  (9) 
 

 For the WMN algorithm, we obtain: 
 

VKKWKWJ tt
WMN

+−−= )( 22
.       (10) 

 
Where W is a diagonal 3Mx3M matrix. 

 For the LORETA algorithm, we obtain: 
 

VKCKKCJ tt
LORETA

+−−= ])([)( 11
.     (11) 

 

Where C is the weighting matrix: BWBWC tt= . 
In the following equations: 

 the EEG measurements, the current density 
distribution, and the lead field matrix are termed 
V, J and K respectively 

 W is a weighting diagonal matrix, used in order 
to affect the same weight to the deep and the 
superficial sources: 
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 B represents the discrete operator Laplacian: 
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In the next stage, we present the mathematical details of 
the sLORETA, FOCUSS, sLORETA-FOCUSS and the 
recursive sLORETA-FOCUSS algorithms. 

2.1 sLORETA Approach 

The sLORETA is a new tomographic method for electric 
neuronal activity which employs the current density 
estimated by the minimum norm solution. The minimum 
norm inverse solution is inconvenient for its incapability 
of correct localization of deep point sources. This problem 
is solved by the standardization of the minimum norm 
inverse solution, basing localization inference on these 
standardized estimates. 
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VKKKJ tt
MN .)( += .              (14) 

 
The standardization of the estimate J requires an estimate 
of its variance. In this view, the actual source variance: 

 
)3()3(, MM

J IRIIS ×∈= .             (15) 
 

The electric potential variance is due to noisy 
measurements: 

 

HS noise
V α= .                       (16) 

 
0≥α  is the regularization parameter.  

ee NNIRH ×∈ is the average reference operator. 
We obtain the electric potential variance that depends on 
the linear relation V=KJ and the measurement noise: 

 

HKKSKKSS tnoise
V

t
JV α+=+= .     (17) 

 
The variance of the estimated current density is: 

 
ttt

VJ THKKTTTSS )(ˆ α+== .      (18) 
 

Where ++= ][ HKKKT tt α  
Finally:  

 

MNjsLORETA JSJ *ˆ= .                (19) 
 

The problem of the sLORETA is that it provides good 
results only in the absence of noise. 

2.2 FOCUSS Approach 

FOCUSS is a recursive approach which has two integral 
parts: a low-resolution initial estimate of the real signal 
and the iteration process that refines the initial estimate to 
the final localized energy solution. The iterations are based 
on adjusting the weighting matrix C: 

 
11)( −−= WWC t

.                      (20) 

 
Where W is a diagonal 3Mx3M matrix which is 
recursively refined. 
By including (20) in (10), we obtain the following 
equation: 
 

VKKWWKWWJ tttt
FOCUSS

+= )(ˆ .     (21) 
 

For each iteration in FOCUSS, the matrix W is updated 
based on the current density estimate of the previous 
iteration. The recursive version of (21) can be written as: 

 

VKWKWKWWJ tt
ii

tt
iii FOCUSS

+= )(ˆ .    (22) 

 
In each step, Wi is updated as follows: 
 

))]3(ˆ),...,1(ˆ([ 111 MJJdiagPWW
FOCUSSFOCUSS iiii −−−= .  (23) 

 

Where )(ˆ
1 nJ

FOCUSSi− represents the nth elements of vector 

Ĵ at the (i-1)th iteration, and P is a diagonal matrix for 
deep source compensation, where: 
 

]/1,...,/1,/1[ 321 MKKKdiagP = .       (24) 
 

The FOCUSS algorithm will converge to a localized 
solution with zero on most elements. The problem is that 
the simulation time is very high. 

2.3 sLORETA-FOCUSS Approach 

FOCUSS is a recursive method using the solution of the 
previous iteration to reconstruct the weighting matrix. 
Then, it requires a good initialization to produce the best 
reconstruction of the cerebral activity. The sLORETA 
method gives images of standardized current density with 
zero localization error. For these reasons, we have 
proposed to combine sLORETA and FOCUSS to develop 
the sLORETA-FOCUSS method. 

sLORETA-FOCUSS is a solution to improve the 3D 
reconstruction of the neuronal activity in the brain. Since 
the sLORETA algorithm produces a smooth result of 
source distribution, the iterative FOCUSS algorithm 
enhances the strength of some significant dipoles in the 
solution, and decreases the strength of other dipoles. 
Therefore, the sLORETA-FOCUSS method suppresses the 
dipoles whose current densities are close to zero, and 
authorize only the dipoles of high density.  

sLORETA-FOCUSS can be developed according to 
the following steps. Firstly, we calculated the current 

density using sLORETA; sLORETAĴ . Secondly, we 
constructed the weighting matrix W using the current 
density obtained by the sLORETA method, and therefore 
the initial value of W is given 

by ))(ˆ(0 iJdiagW sLORETA= . Thirdly, we calculated 
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the iterative form of the weighting matrix W with 
reference to the previously mentioned equation (23). After 
that, we calculated the current density distribution of the 
sLORETA-FOCUSS method using the recursive 
expression of the FOCUSS method in (22). Finally, we 
repeated the last two steps until the convergence. 

Although sLORETA-FOCUSS gives good results to 
reconstruct the cerebral activity in 3D, it contains some 
problems; for example the computation time is still high. 
Hence, the algorithm must repeat the calculation with big 
matrices, whereas the majority of the elements in these 
matrices are equal to zero. A second problem is that no 
criteria are used to limit the error between two iterations. 

2.4 Recursive sLORETA-FOCUSS Approach 

In order to address these problems given by the 
sLORETA-FOCUSS algorithm, we developed a new 
algorithm named recursive sLORETA-FOCUSS to 
ameliorate the reconstruction of the cerebral activity in 3D. 
The recursive sLORETA-FOCUSS is based on the 
recursively FOCUSS algorithm. It tends to eliminate the 
non-active zones and choose the zones of high activity in 
order to obtain a gain in terms of simulation times and 
localization precision.  

The algorithm can be summarized as follows. We 
started by estimating the current density using sLORETA 
method. Afterwards, we reconstructed the weighting 
matrix W using equation (23) and we computed the current 
density using equation (22). Then, we reduced the space of 
the active zone in the brain by choosing nodes having high 
current density. Subsequently, we repeated the previous 
steps while eliminating the non-active zones of the 
cerebral volume and we redefined the new space of work 
in the cerebral volume, i.e., by choosing the active zones 
in the brain. Eventually, we repeated the last three steps 
until convergence. 

The recursive sLORETA-FOCUSS has offered good 
results of localization and amelioration of simulation time, 
but we have always found the problem of false dipoles in 
the case of the increasing number of active sources. 

3. Results and discussion 

To carry out the reconstruction of the active sources in the 
brain in 3D, we used measures consisting of 2319 nodes in 
the brain and 127 electrodes on the scalp surface. Data are 
obtained from EEG recordings provided by the 
Neurophysiology Clinical Service, CHRU Lille, FRANCE. 
The first step is to compute the forward problem to obtain 
the gain matrix K using the Brainstorm Matlab Toolbox 
[19]. The gain matrix describes the physical relations 
between electrodes distributed on the scalp surface, with 
sources distributed on cerebral volume. The gain matrix 

depends on the electrode and source position, and the 
electrical conductivity.   

In this section, we present two cases: the first one is 
an example for reconstruction of two simulated sources, 
and the second is an example of the reconstruction of three 
simulated sources. 

3.1 Reconstruction of the amplitude of two simulated 
dipoles in 3D 

Four different inverse methods; sLORETA, FOCUSS, 
sLORETA-FOCUSS and the Recursive sLORETA-
FOCUSS method, are evaluated. 

In figure1, we simulated the presence of two currents 
dipoles in the brain and we tried to find it by the different 
methods in order to provide some comprehensive 
information about the performance of these algorithms. 
Two simulated dipoles are presented in figure1.a. 
Figures1.b, 1.c, 1.d and 1.e present the reconstruction of 
these dipoles using the sLORETA, FOCUSS, sLORETA-
FOCUSS and the recursive sLORETA-FOCUSS methods 
respectively. 

According to figure1.b, the sLORETA method gives 
smooth results, so it is not able to offer good 
reconstruction of the simulated dipoles. However, in 
figure1.c, FOCUSS presents a sparse result, but unable to 
reconstruct the good position of the simulated dipole. 
sLORETA-FOCUSS in figure1.d is a combination 
between the two previous methods in order to profit their 
advantages.  

 

 
 
 

 
 

(a) 

(b) 
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Fig.1. Comparison of the amplitude of two active dipoles in the brain. (a) 
Test dipoles; (b) Solution of the sLORETA method; (c) Solution of the 
FOCUSS method; (d) Solution of the sLORETA-FOCUSS method; (e) 

Solution of the Recursive sLORETA-FOCUSS method. 

In the case of dipole configuration, it gives an exact 
convergence to the real dipole with zero localization error, 
but the problem is that some small spurious sources are 
generated on the space solution. In figure1.e, the recursive 
sLORETA-FOCUSS method gives exactly the same result 
as the simulated dipole in term of amplitude of the 
simulated dipoles. So, the presented results demonstrate 
that in 3D, the sLORETA-FOCUSS method and its 
recursive version have good localization properties. 

3.2 Reconstruction of the position of three simulated 
dipoles in 3D 

We can see the reconstruction results on 14 sagittal slices 
of the head. To elaborate this study, we have simulated 
three sources in the brain volume, and we have tried to 
locate these sources by each method. Figure2 shows 
results of source reconstructions in the brain. 
 

 
 

 
 

 
 

 
 

 
 

Fig.2. Comparison of the position of three active sources in the brain: (a) 
Simulated sources, (b) Source reconstruction with sLORETA, (c) Source 
reconstruction with FOCUSS, (d) Source reconstruction with sLORETA-
FOCUSS, (e) Source reconstruction with recursive sLORETA-FOCUSS 

The simulated dipoles are presented in Figure2.a. 
Figures2.b, 2.c, 2.d and 2.e represent the reconstruction of 
these dipoles using the sLORETA, FOCUSS, sLORETA-
FOCUSS and the recursive sLORETA-FOCUSS methods 
respectively. According to figure2.b, we notice that the 
sLORETA method provides a smooth and diffused 
reconstruction of the original dipoles. However, FOCUSS 

(c) 

(d) 

(e) 

(a) 

(c) 

(e) 

(d) 

(b) 
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in figure2.c provides a sparse solution, which does not 
necessarily reflect the good solution. In figure2.d, we see 
an improvement of the source reconstruction compared to 
the FOCUSS but it is not the best reconstruction. 
According to figure2.e, we observe that the recursive 
sLORETA-FOCUSS method is able to give the best 
reconstruction in term of position of the simulated dipoles. 
In fact, it converges towards the real source without traces 
of any false ones. 

4. Evaluation using ROC curve and 
computing times metrics 

To validate the results of these algorithms, we used the 
Receiver Operating Characteristic (ROC) [20] graphs. So, 
we classified our results in four categories (TP: True 
Positive, TN: True Negative, FP: False Positive and FN: 
False Negative). This approach is used to obtain two 
parameters for statistical analysis: sensibility and 
specificity. 

Sensibility is the ability to reconstruct the active 
dipole on the right position among the false position, as 
shown in following: 

 

FNTP
TPysensibilit
+

= .                   (25) 

 
Specificity is the ability of non-reconstructing the 

right dipole, or the ability of reconstructing a false dipole, 
given in the next equation: 

 

FPTN
TNyspecificit
+

= .                   (26) 

 
The performance of each algorithm to reconstruct the good 
position of active dipoles can be presented by the ROC 
curve. ROC curve is used to compare the performance of 
two or more methods in the diagnosis of cerebral activity. 
It is the relation between the sensibility and specificity 
value. The obtained results are plotted on a Cartesian 
graph, on which the true positive rate (sensitivity) is 
assigned to the abscissa, and the false positive rate (100-
specificity) is assigned to the ordinate (Figure3). 

In order to perform ROC curve analysis, we used the 
measurements of current density in the brain for each 
algorithm. Figure3 (a), 3(b), and 3(c) show ROC curves 
for FOCUSS, sLORETA-FOCUSS and the recursive 
sLORETA-FOCUSS algorithms. 

Figure3 presents an improved performance for the 
recursive sLORETA-FOCUSS in comparison with the 
other methods. 

 
 
 

 
 
 

 
 

Fig.3. ROC curve: (a) FOCUSS, (b) sLORETA-FOCUSS, (c) Recursive 
sLORETA-FOCUSS 

We can compare the efficiency of these algorithms by 
studying the area under the ROC curve “AUC” [21, 22]. 
The AUC is the area between the diagonal and the ROC 
curve. It gives an improvement of the advantages and 
disadvantages of each algorithm to reconstruct the best 

(a) 

(b) 

(c) 

AUC 

ROC curve 

AUC 

ROC curve 

AUC 

ROC curve 
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position of the tested sources. The AUC has an important 
statistical property, which is equivalent to the probability 
to give the good reconstruction of the source distribution 
in the brain.  

Figure3 shows that the recursive sLORETA-
FOCUSS gives the big area under the ROC curve. We can 
demonstrate that the recursive sLORETA-FOCUSS 
presents the best result of the 3D source reconstruction in 
the brain. 

In table 1, we present the comparison in terms of the 
simulation time of each method. We notice that the 
recursive sLORETA-FOCUSS method is faster than the 
other methods. We obtain a gain in terms of simulation 
time about of 54,6 %. 

Table 1: Computing Times 

Method FOCUSS sLORETA-
FOCUSS 

Recursive 
sLORETA-
FOCUSS 

Computing 
Times  501,0625 sec 485,82 sec 265,42 sec 

 
This paper has presented an evaluation of the 3D 

neuronal activity reconstruction algorithms. It proved that 
the good result to reconstruct the best position of the 
simulated dipole is given by the recursive sLORETA-
FOCUSS method. We have validated our work using the 
ROC curve in which we have used the area under the ROC 
curve to measure the efficiency of each algorithm. 
Furthermore, we have studied the difference between each 
algorithm in terms of simulation time, the recursive 
sLORETA-FOCUSS method presents an amelioration of 
the simulation time of about 54,6 % compared with the 
sLORETA-FOCUSS. In conclusion, the recursive 
sLORETA-FOCUSS is an excellent method for study of 
the neuronal activity in the brain. 
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