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Summary 

In this paper, an improved genetic algorithm is proposed for 

flow shop scheduling problems. The proposed method is 

improved by  Lagrangian relaxation method using 

multipliers which can be adjusted during the search 

process. The simulation results based on some flow shop 

problems prove the proposed method can find better 

solution than original guided genetic algorithm. 
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1. Introduction 

The combinational optimization problem, such as 

scheduling problem, transportation programming, delivery 

planning, is limited by many conditions and difficult to be 

resolved [1]. Furthermore, in the case of a large-scale 

combinational optimization problem, there are many cases 

that a good solution cannot be obtained even if a human 

being spends a few days on solving it [2]. However, in 

recent years it became feasible with the rapid progress of 

the computer to do much numerical computation in a short 

time [3].  But it is difficult to accelerate because many of 

combinational optimization problems are the problems that 

are NP-hard about demanding strict optimum solution. 

Therefore, over the years, an approximate method and a 

heuristic method are taken to the combinational 

optimization problem and the research to which the 

solution that seems that considerably near to the optimal 

solution is done. However, a study of the Metaheuristics to 

achieve a highly accurate solution with more time is done 

recently because it is difficult at all for even these 

techniques to solve a complicated combinational 

optimization problem. As typical methods, there are 

genetic algorithms (GA), taboo search algorithm (TS), 

simulated annealing (SA). For many cases these 

algorithms cannot arrive at the global optimum value (we 

call it optimum value as follows), because if it falls into a 

local minimum value once (we call it local minimum as 

follows), it is not possible to escape from there. Therefore, 

planning an escape from local minimum is effective 

technique to discover the optimum value in the elucidation 

of the combinational optimization problem with Meta 

heuristics. 

In this paper, a method that applies genetic algorithm to 

solve a flow shop scheduling problem is suggested. It is 

specialized to solve a difficult problem in the 

combinational optimization problem. This is a technique 

for making a better solution enabled the search by 

adjusting the Lagrangian multiplier of each function that 

composes the objective function. Because the accuracy of 

the unit is low in the genetic algorithm, the improvement is 

added and has been used as the combinational 

optimization problem with an approximation method and a 

heuristic method as hybrid GA till now. Among these 

methods, Guided Genetic Algorithm (GGA) is special, it 

adds penalty to the one to enlarge (reduce) the value of the 

energy function, to change the objective function, and to 

attempt the escape from a minimum value. On the other 

hand, suggestion method is similar technique, but a wide 

application is possible because there is no penalty needed, 

besides, when the limiting condition is not filled, it has the 

effect similar to a conventional Lagrangian relaxation 

method. 

In this paper, the proposed method is actually applied to 

the flow shop problem and the simulation results by 

comparing with some of other techniques shows that the 

proposed method is effective.  

 

 

 

 
 

Fig. 1  Local optimum values and a global optimum value. 
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2. Flow Shop Problem 

The flow shop problem is solved in this paper. The 

conditions are described as follows. 

2.1 Outline of Flow Shop Problem 

1. About product X , it works with machine 𝒾 in the 

production process only at necessary processing 

time  ,P X i . When the work on the last machine ends in 

the processing order, product X  is completed. 

2. When two or more products
1 2, ,..., nX X X are processed, 

each machine cannot process more than one work at the 

same time. 

3. Each work cannot be processed at the same time with 

two machines or more. 
4. The same product cannot be produced parallel.  For 

example, when the number of production targets of 

products X  is two, the second production cannot be 

started until the first production is complete.  

2.2 Limiting Condition and Objective Function 

There is a requirement should be met at least in the 

scheduling problem (limiting condition). In this paper,   

there is no repetitive use of the machine, and the 

processing order is defended. In many cases, there are two 

or more feasible solutions in a certain scheduling problem.   

It is caused by completion time of the product, goodness of 

the efficiency of the inventory control, and so on. So 

these situations should be considered. The objective 

function is used to judge the superiority or inferiority of 

the feasible solutions. In this paper, the following 

objective functions are enumerated as a definition of the 

best schedule, when solving a flow shop problem. 

 

1. The earlier production is complete, the better. 

2.  The shorter the standby time of the production is, the 

better. 
3.  The shorter the standby time of the machine is, the 

better. 

3. Genetic Algorithm 

3.1 A Summary of the Genetic Algorithm 

Genetic algorithms are implemented as a computer 

simulation in which a population of abstract 

representations (called chromosomes or the genotype of 

the genome) of candidate solutions (called individuals, 

creatures, or phenotypes) to an optimization problem 

evolves toward better solutions [1]. Traditionally, 

solutions are represented in binary as strings of 0s and 1s, 

but other encodings are also possible. The evolution 

usually starts from a population of randomly generated 

individuals and happens in generations [4] [5]. In each 

generation, the fitness of every individual in the population 

is evaluated, multiple individuals are stochastically 

selected from the current population (based on their 

fitness), and modified (recombined and possibly randomly 

mutated) to form a new population. The new population is 

then used in the next iteration of the algorithm. Commonly, 

the algorithm terminates when either a maximum number 

of generations has been produced, or a satisfactory fitness 

level has been reached for the population. If the algorithm 

has terminated due to a maximum number of generations, 

a satisfactory solution may or may not have been reached. 

 

3.1.1 Initialization 
When the initial individual group is generated, it is 

necessary to consider the variety of the chromosome [6]. 

In this paper, when an initial population is generated, an 

internal clock of the computer is used as a seed of random 

numbers.  

 
3.1.2 Selection 

In this paper, an original method which matches the 

elite strategy to the tournament method is used. The elite 

strategy copies individual with high evaluation value to a 

new population. Therefore, it is easy to fall into a 

minimum value though the searching ability is excellent. 

As the candidate of the selection, the roulette method 

decides the selected probability according to the evaluation 

value, and all of the individuals are objects [7]. Thus, there 

is a possibility of selecting the worst individual by this 

technique. Then, the original method mentioned above is 

to narrow the range of individual selection by elite strategy 

and to select individual depending on an evaluation value. 

On the other hand, the tournament method selects n  

individuals from population randomly and chooses an 

individual with the highest evaluation value as a parent. 

The tournament size (number of individuals chosen 

randomly) is set to be 2 in this paper. The 50% of the high-

ranking is set according to the combination of roulette 

method and elite strategy in the individual group. In this 

paper, two parents’ hamming distance is calculated, and 

the combinations of parents are selected only when the 

distance is larger than 1, in order to maintain the variety of 

the individuals. 

 

3.1.3 Crossover 
In this paper, uniform crossover was used. These 

crossover operators' searching abilities are assumed to be 

efficient in the order of one-point crossover < two-point 

crossover < Uniform crossover [8]. One-point crossover is 

that a single crossover point on both parents' organism 

strings is selected. All data beyond that point in either 

organism string is swapped between the two parent 

organisms. The resulting organisms are the children. The 

http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Genome
http://en.wikipedia.org/wiki/Candidate_solutions
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Algorithm
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feature of one-point crossover is that it has the possibility 

of generating the child far apart from parents. Two-point 

crossover calls for two points to be selected on the parent 

organism strings. Everything between the two points is 

swapped between the parent organisms, and renders two 

child organisms. In the uniform crossover scheme (UX), 

the two parents are combined to produce two new 

offspring. And its individual bits in the string are 

compared between two parents. The bits are swapped with 

a fixed probability. 

 

3.1.4 Mutation 
In genetic algorithms, mutation is a genetic operator 

used to maintain genetic diversity from one generation of a 

population of chromosomes to the next. It is analogous to 

biological mutation. A common method of implementing 

the mutation operator involves generating a random 

variable for each bit in a sequence. This random variable 

shows whether or not a particular bit will be modified. The 

purpose of mutation in GAs is to allow the algorithm to 

avoid local minima by preventing the population of 

chromosomes from becoming too similar to each other, 

thus slowing or even stopping evolution. In this paper, the 

same method is used. Furthermore, it is made to select the 

individuals of the high-ranking 1% of individual groups 

successfully. And the processing replaced only when the 

evaluation value changes better than that before mutation.  

The state of the mutation is shown in Fig. 2. 

 

 

 

Fig. 2  Mutation. 

 

3.1.5 Evaluation 
Evolution are a sub-class of nature-inspired direct 

search (and optimization) methods belonging to the class 

of Evolutionary Algorithms (EAs) which use mutation, 

recombination, and selection applied to a population of 

individuals containing candidate solutions in order to 

evolve iteratively better and better solutions. In this paper, 

energy functions composed of objective functions and 

limited function are explained in detail in Chapter 4. 

 

3.1.6 GA parameter 
There is a variable called GA parameter when GA is 

designed. The definition of the GA parameter is important, 

and the quality of algorithm depends on these values 

greatly. There is no best conclusion yet although a lot of 

researches have been done up to now. 

 

The main parameter is population size N ，the probability 

of the selection is crossP , and the probability of the 

mutation is mutP . mutP  is usually set between 0.001-0.01, 

but when this value is too small, it may fall into minimum 

value, and on the other hand, it suffers a long time when 

this value is too large. In this paper, the gene is set to be 

the maximum value. And the values of GA parameters are 

indicated in Chapter 5. 

3.2 Application of Genetic Algorithm for Scheduling 

Problem 

The population is called a genotype, and the character of 

the individual decided by the gene is called phenotype. In 

this paper, a phenotype is a Gantt chart. We define the 

encoding and decoding as follows: the encoding is to map 

phenotype to genotype, and the decoding is to map 

genotype to phenotype. The encoding is performed using 

the real numbers according to the viewpoint of 

manageability. If an appropriate encoding is not done, it is 

probable that an impracticability solution (lethal gene) is 

generated or the individual far apart from parents might be 

generated even if it is executable[13]. Fig. .3 shows the 

decoding from a chromosome to a Gantt chart. The genetic 

information expresses the stand-by time of the product 

with an actual number.  The generation of the lethal gene 

is decreased as much as possible by encoding using the 

method described above. For example, there is a problem 

with 3 products and 3 machines. One machine’s working 

hours of each product is 1 2 31, 2, 3,X X X    

respectively, and the working line of A B C   is 

repeated twice. The structure of the chromosome is shown 

in Fig. .3. The chromosome gene number 1 ~ 3 shows the 

standby time until the work beginning of 1 3~X X . The 

chromosome gene number 4 ~ 18 shows the standby time 

of the product. 4 ~ 8, 9 ~ 13, 14 ~ 18 show the product 

information of 1X ,
2

X , 
3X ,respectively. 

 

 
 

Fig. 3  Decoding of a chromosome. 
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4. Proposed Local Minimum Escaping 

Method 

This section explains the minimum value escape method 

by the proposed improved Lagrangian relaxation method. 

4.1 Improved Lagrngian Relaxation Method 

The Lagrangian relaxation method is also called the 

penalty method, and it is a method of transferring the 

parameter to the limiting condition to break it. 

The energy function E  using the Lagrangian relaxation 

method is shown in equation (1). 

1 1

( ) ( ) ( )
m n

c o
i j

E i F i F j
 

                                             (1) 

  is the Lagrangian multiplier. cF  is the element of each 

parameter in constraint function, and the number of the 

element is m . oF is the element of each parameter in 

objective function, and the number of element is n .  

The parameter used in Lagrangian relaxation method is 

called a Lagrangian multiplier and the performance of the 

Lagrangian relaxation method depends on how to choose 

the Lagrangian multiplier. A past Lagrangian relaxation 

method is used to meet the limiting condition. It may not 

be improved after obtaining the solution that fulfills the 

limiting condition, when the Lagrangian relaxation method 

is applied to GA etc. In this paper, an improved 

Lagrangian relaxation method is proposed, and the 

Lagrangian multiplier is multiplied to element of each 

function. The optimum solution after the limiting 

condition is fulfilled can be efficiently searched. The 

improved energy function is shown in the following 

equation. 

1 1

( ) ( ) ( ) ( )
m n

c c o o
i j

E i F i j F j 
 

                                  (2) 

When the constraint function fulfilling the limiting 

condition is 0, the energy function can be corrected by 
assigning penalty to the parameter of the objective 

function. In addition, application is possible in other 

Metaheuristics not only GA but also hybrid GA because 

the proposed method is applicable for a combinational 

optimization problem with a constraint function and an 

objective function. 

4.2 Escaping From Minimum Value by the 

Subgradient Method 

Generally, it is difficult to obtain the best Lagrangian 

multiplier, and subgradient method is often used. The 

subgradient method is a technique for raising energy by 

adjusting the parameter built into the energy function to 

escape from a minimum value finally. The parameter is 

decided by evaluation function of the solution. In this 

paper, the gradient ascent, which differentiates the energy 

function by the parameter, and corrects the parameter in 

the direction of the most much zoom, is used. 

Vector 


   is defined as an energy function. Therefore, if 

the study frequency is symbolized by s (discrete value) in 

parametrical space


 , 


 is updated using equation (3). 

 

1s s s

  

                                        (3)  

Also, the s



  , which is the correction of 


  , is defined 

in equation (4). 

( )s se
 

                                              (4) 

 

Where   is the positive constant and e  is a gradient 

about


 of energy function. Fig. 4 expressed a state of the 

escaping from minimum value by using subgradient 

method. Though A  is a minimum value, a solution which 

is better than A  has been discovered by changing the 

energy function. Not only the minimum value but also the 

energy of the surrounding solution synchronizes when the 

energy function is changed. 

Therefore, other solutions may usually become the newer 

minimum value. It is always attempted to escape by using 

the subgradient method when falling into another 

minimum value. 

 

 

Fig. 4  The situation of escaping from the local optimum value. 
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5. Application of Proposed Local Minimum  

5.2 Formulation of scheduling problem 

In this paper, the flow shop problem which is mentioned 

in section 2 is resolved. The flow shop problem is 

formulated as follows. 

Objective function: 

 2 3 4
1 1 1

( ) ( ) ( )
n n n

X M X

i i i

dE i dE i dE i

  

                       (5) 

Constraint function: 
( )

1
1 1

( , ) 0
n n

X J i

i j

dE i j

 

                                           (6)                                           

Where 

 

1( , )dE i j :  The repetition time with a certain machine. 

2( )dE i    :  The completion time of product i . 

3( )dE i    :  The sum of stand-by time of machine i . 

4( )dE i    :  The sum of stand-by time of product i . 

nX     : The number of products. 

( )nJ i : The number of the work processes of product i . 

nM    : The number of machines. 

5.2 Energy function 

Energy function is defined as follows. 

1 1 2 3 4E E E E E                                       (7) 

1E : The repetition time of work. 

2E : The sum of production completion time.   

3E : The sum of the stand-by time of machines. 

4E : The sum of the stand-by time of products. 

5.3 Application of Proposed Local Minimum 

Escaping Method 

The value of objective function 1E  is very different 

from that of constraint function 2E , 3E , 4E . As this time, 

the Lagrangian multiplier is corrected, and the proposed 

local minimum escaping method works at the direction 

where the value of objective function is large to make it 

decreased. In addition, escaping from a minimum value is 

performed with the processing of constraint function and 

objective function respectively. First of all, when the 

constraint function is not fulfilled for 1E , the Lagrangian 

multiplier is corrected using equation (8) by priority.  is 

a Lagrangian multiplier. 

 

 1 1 1( , ) ( , ) ( , )i j i j i j                               (8) 

1 1 1 1
1

( , ) ( , )
( , )

E
i j dE i j

i j
  




    


           (9) 

When falling into a minimum value with an executable 

solution, the Lagrangian multiplier to 2E , 3E  and 4E is 

corrected using equation (10) ~ (15). 

 

2 2 2( ) ( ) ( )i i i                                        (10) 

 3 3 3( ) ( ) ( )i i i       (11) 

 4 4 4( ) ( ) ( )i i i                                        (12) 

 2 2 2 2
2

( ) ( )
( )

E
i dE i

i
  




    


                  (13) 

 3 3 3 3
3

( ) ( )
( )

E
i dE i

i
  




    


                   (14) 

 4 4 4 4
4

( ) ( )
( )

E
i dE i

i
  




    


                  (15) 

After the Lagrangian multiplier is corrected, it is necessary 

to escape from a minimum value. And it keeps correcting 

the Lagrangian multiplier until the superiority or 

inferiority relation is reversed. Moreover, after an 

executable solution becomes an impracticable solution, 

equation (8) is applied again to correct the Lagrangian 

multiplier. The flowchart is shown in Fig. .5. 

 

 

 
 
 

Fig. 5  The Flowchart of the proposed method. 
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6. Simulation  

6.1 A Summary of the Simulation 

In this section, the proposed method is applied to flow 

shop problem. 4 products problem ( 1 4~X X ) to 10 

products problem ( 1 10~X X ) of the scheduling problem 

are explained to prove the effectiveness of the proposed 

method. The following two kinds of production process 

models are set according to the difficulty of the scheduling 

problem. 

 

Model 1: The problem is set with a low difficulty of the 

limiting condition. Machine 2A , 2B , 2C  and 2Z   
are prepared in this model, and it is possible for all 

machines to perform parallel work. 

 

Model 2: The problem is set with a high difficulty of the 

limiting condition. Machine 2A , 2C and B , Z are 

prepared in this model, and it is possible for 

machine A and C to perform parallel work. 

Table.1 shows the production process and the processing 

time of each product. Each product is performed 

consecutive twice as shown in Table. 1. 

Table. 1  Processing order and time of products. 

 Products 

Processing Order X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

Z 

↓ 

A 

↓ 

Z 

↓ 

B 

↓ 

Z 

↓ 

C 

1 

 

2 

 

1 

 

2 

 

1 

 

2 

1 

 

3 

 

1 

 

3 

 

1 

 

3 

1 

 

4 

 

1 

 

4 

 

1 

 

4 

1 

 

5 

 

1 

 

5 

 

1 

 

5 

1 

 

6 

 

1 

 

6 

 

1 

 

6 

1 

 

2 

 

1 

 

2 

 

1 

 

2 

1 

 

3 

 

1 

 

3 

 

1 

 

3 

1 

 

4 

 

1 

 

4 

 

1 

 

4 

1 

 

5 

 

1 

 

5 

 

1 

 

5 

1 

 

6 

 

1 

 

6 

 

1 

 

6 

 

The following two techniques are simulated for the 

comparison with the proposed method. 

 

Method 1: The scheduling problem is solved by using only 

GA. The state that falls into a minimum value is not 

corrected by proposal method. 

 

Method 2: For the GA generation, the mutation is 

generated in the individual of the high rank 1% that always 

repeats ten times. Only when the individual with small 

value of the energy function is generated before mutating, 

the substitution is performed. In addition, the energy 

function is not corrected in the state of falling into a 

minimum value. 

 

The GA parameter used for simulation is shown in 

Table. 2, and the Lagrangian multiplier used for proposed 

method is shown in Table. 3. 

Table. 2  Setup of parameters for GA. 

Parameters Values 

Population size N 300 

Crossover rate Pcross 0.5 

Mutation rate Pmut 0.1 

End requirement SGA 100000steps 

Maximum value of genes 100 

Table. 3  Setting of parameters for proposed method. 

Parameters Initial values Values of η 

Overlapping jobs λ1=1.0 η1=1.1 

Completion time of products λ2=1.0 η2=1.0 

Waiting time of machines λ3=0.10 η3=0.11 

Waiting time of products λ4=0.10 η4=0.13 

 

The trial frequency is set to be100 times, and the state of 
chromosomes is initialized randomly. 

6.2 Simulation Result 

6.2.1 Simulation result of model 1 

The success rates of model 1 are shown in Table. 4. 

Through the comparison of success rates, it is shown that 

the proposed method is effective on searching the solution 

which meets the limiting condition. The shortest 

completion time and occurrence frequency of model 1 are 

shown in Table. 5. It is shown that the proposed method is 

effective for the objective function by comparing these 

values. Moreover, the average completion time is shown in 

Table.6. The completion time has been considerably 

shortened overall regardless of the number of products. 

Table. 4  Success rate of model 1(%). 

Number of products Method 1 Method 2 Proposed method 

4 100.0 100.0 100.0 

5 100.0 100.0 100.0 

6 100.0 100.0 100.0 

7 100.0 100.0 100.0 

8 100.0 100.0 100.0 

9 100.0 100.0 100.0 

10 100.0 100.0 100.0 

Table. 5  Completion time of model 1 (Minimum). 

 Method 1 Method 2 Proposed method 

Number of 

products 

Time Frequency Time Frequency Time Frequency 

4 36 24 36 31 36 83 

5 43 4 43 3 42 20 

6 44 3 45 3 43 2 

7 47 3 46 1 44 1 

8 50 2 48 1 48 3 

9 56 1 57 1 55 2 

10 61 1 68 1 61 1 
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Table. 6  Completion time of model 1 (Average). 

Number of products Method 1 Method 2 Proposed method 

4 38 38 36 

5 48 47 43 

6 57 53 46 

7 80 64 47 

8 115 112 52 

9 186 200 61 

10 265 285 69 

 

6.2.2 Simulation result of model 2  

Similarly, the success rates of model 2 are shown in Table. 

7, and the shortest completion time and occurrence 

frequency are shown in Table. 8. The average completion 

time is shown in Table. 9. The success rates have been 

improved greatly in all the results, and the effect of the 

scheduling problem will be better if the number of 

products increases. The average value and the minimum 

value of the completion time decrease greatly though the 

occurrence frequency is low. 

Table. 7  Success rate of model 2 (%). 

Number of products Method 1 Method 2 Proposed method 

4 100.0 99.0 100.0 

5 99.0 82.0 100.0 

6 82.0 68.0 100.0 

7 60.0 51.0 100.0 

8 41.0 16.0 100.0 

9 13.0 8.0 100.0 

10 2.0 2.0 100.0 

Table. 8  Completion time of model 2 (Minimum). 

 Method 1 Method 2 Proposed method 

Number of 

products 

Time Frequency Time Frequency Time Frequency 

4 43 5 41 1 41 5 

5 55 1 80 1 52 1 

6 171 1 170 1 57 1 

7 253 1 194 1 66 1 

8 309 1 373 1 80 1 

9 502 1 418 1 92 1 

10 416 1 492 1 108 1 

Table. 9  Completion time of model 2 (Average). 

Number of products Method 1 Method 2 Proposed method 

4 133 103 45 

5 293 305 61 

6 418 417 70 

7 503 472 81 

8 553 540 94 

9 594 543 109 

10 491 589 127 

 

The scheduling result in 4 products problem of model 2 is 

shown in Fig. 6. The simulations using method 1 and 

proposed method respectively begin from a same initial 

state. The minimum value of energy function and the 

objective function are shown in Fig. 7, Fig. 8 and Fig. 9. 

 

 

 

 
 

Fig. 6  A scheduling result of 4 products problem. 

 

According to Fig. 8 and Fig. 9, the proposed method can 

search for more executable solutions. When the limiting 

condition is not fulfilled, the correction of the energy 

function will be performed. And after becoming an 

impracticable solution, an executable solution can be 

found again. Moreover, the energy function is corrected 

when falling into a minimum value (See Fig. 7). 

 

 

 
 

Fig. 7  Values of the energy function (4 products problem). 

 

Fig. 8  Values of the objective function (Method 1). 
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Fig. 9  Values of the objective function (Proposed method). 

7. Conclusions 

In this paper, as a technique of searching for the solution 

in the combination optimization problem efficiently, an 

improved genetic algorithm using Lagrangian relaxation 

method is proposed, and applied to the flow shop problem. 

From the result of the simulation, an executable solution to 

severe problems with the constraint condition can be 

obtained. Moreover, more optimum solutions can be 

obtained than using GA. The results give evidence of its 

effectiveness in light of the good quality of the solutions. 

The proposed method can also be extended to other hard 

combination optimization problems that composed of the 

constraint function and two or more objective functions.   
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