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Summary 
We develop an analytical model of multiprocessor with private 

caches and shared memory and obtain the steady-state 

probabilities of the system. Behavior in equilibrium can be 

studied and analyzed. We show that results can be applied to 

determine the output parameters for both blocking and non-

blocking caches. 
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1. Introduction 

Shared memory multiprocessors are widely used as 

platforms for technical and commercial computing [2]. 

Performance evaluation is a key technology for design in 

computer architecture. The continuous growth in 

complexity of systems is making this task increasingly 

complex [7]. In general, the problem of developing 

effective performance evaluation techniques can be stated 

as finding the best trade-off between accuracy and speed. 

 

The most common approach to estimate the performance 

of a superscalar multiprocessor is through building a 

software model and simulating the execution of a set of 

benchmarks. Since processors are synchronous machines, 

however, simulators usually work at cycle-level and this 

leads to enormous slowdown [9]. It might take hours even 

days to simulate. 

 

For memory structures relatively accurate analytical 

models are developed [3, 7, 8, 9] through extensive use of 

various queuing systems. Open queue system with Poisson 

arrivals and exponential service times is considered quite 

good for description of memory hierarchies [7]. Our focus 

is on the impact of the cache-coherence protocols on the 

overall system performance. The most commonly used 

technique for this purpose is the Mean Value Analysis 

(MVA) [3, 5, 7, 8, 9]. It allows the total number of the 

customers to be fixed (closed queue system), and this 

seems to be more adequate representation of the processes 

of self-blocking requestors [5].  Calculations of output 

parameters such as residency times, waiting times and 

utilization are shown in [3, 8, 9]. MVA suggests 

exponential service times but in fact both bus cycle times 

and memory access times are close to constants. It will be 

seen later in this paper that state probabilities depend on 

the server’s time density function.  

 

We assume general distribution of the service times and 

introduce the supplementary variable x, elapsed service 

time, to describe the behavior of the multiprocessor 

implementing cache-coherence protocols. A system of 

differential equations is set and solved and the steady-state 

probabilities are obtained. 

 

2. Definition and Analysis of the Model 
 

A multiprocessor consists of several processors connected 

together to a shared main memory by a common complete 

transaction bus. Each processor has a private cache. When 

a processor issues a request to its cache, the cache 

controller examines the state of the cache and takes 

suitable action, which may include generating bus 

transaction to access main memory. Coherence is 

maintained by having all cache controllers “snoop” on the 

bus and monitor the transaction. Snoopy cache-coherence 

protocols fall in two major categories: Invalidate and 

Update [2, 3, 9]. Invalidating protocols are studied here 

but the concepts can be applied with some modifications to 

updating protocols too. Transactions may or may not 

include the memory block and the shared bus. Typical 

transaction that does not include memory block is 

Invalidate Cache Copy which occurs when a processor 

requests writing in the cache. All other processors simply 

change the status bit(s) of their on copies to Invalid. If the 

memory block is uncached or not clean it can be uploaded 

from the main memory, but in today’s multiprocessors it is 

rather uploaded from another cache designated as Owner 

(O) (cache-to cache transfer). Memory-to-cache transfer 

occurs when the only clean copy is in the main memory. A 

cache block is written back (WB) in the main memory (bus 

is used) when a dirty copy is evicted [6]. The evicted block 

is maintained in the write-back buffer until the block is 

written back. The responsibility of handling the WB 

transaction rests solely with the processor’s cache 

controller and thus the processor can resume processing 

immediately after completion of its blocking request. 

Apparently the bus can be considered as the bottleneck of 

the system.  
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We shall refer to the processors as customers and to the 

bus as server. 

 

Inter-arrival times are exponentially distributed with 

parameter λ. This assumption is adequate for most 

applications [7]. The number of the processors is N. 

Requests are served on First Come First Served (FCFS) 

basis. Immediately after issuing a request for cache-to-

cache transfer or synchronization procedure the customer 

blocks itself. Service time for blocking request has a 

density function fb(x). When service is completed the 

processor resumes processing with probability p or 

resumes processing and generates a new WB request with 

probability q (p+q=1). The new request joins the queue at 

its tail or is taken immediately into service if there is no 

queue at the server. Details on how to obtain the input 

parameters are given in [2, 3, 8, 9]. This new request has a 

different density function fw(x) and corresponds to WB 

transaction. It does not block the customer but the server is 

held until completion of WB transaction therefore adding 

to the queue. System’s states can be described by two 

components: 1) number of customers doing internal 

processing, and 2) ordering zr of blocking(b) and WB(w) 

requests (waiting and in service) at the server. Transitions 

between these states are illustrated in Fig. 1. 

Each processor at any moment can have one blocking and 

one write-back request at the server, so that the maximum 

length of zr is 2N. 

 Throughout this paper we use the following 

notations 

b  blocking request 

w write-back request 

zr ordering of b’s and w’s 

Z {zr} set of all orderings at the server 

LM(zr) leftmost character of the ordering  zr 

RM(zr) rightmost character of the ordering  zr 

yk ordering in which the LM(yk)=w; parent state 

(node) 

rzchar  (char=b,w)  ordering originating from zr by 

adding/removing the RM(zr); example: zr=wbbbw, -

w+zr=bbbw,w+zr=wwbbbw 

charzr  (char=b,w)  ordering originating from zr by 

adding/removing the LM(zr); example: zr=wbbbw, zr-

wr=wbbb,zr+w=wbbbww 

 

Y {yk}, YZ subset of the parent states; Although 

the leftmost character of the state N-1,b is not w we refer to 

it as a parent state 

j,zr system’s state (node), where j is the number of 

customers doing internal processing 

PN  P[in equilibrium all N customers are doing 

internal processing] 

)(, xP
r

zj   P[in the equilibrium state j customers are 

doing internal processing, N-j are in the queue and/or in 

the server, the ordering of b and w requests is zr, and the 

elapsed service time lies between x and x+dx ]. 

PN 

t

N tP )(lim  

r
zjP ,      



0

, )( dxxP rzj  steady-state probabilities 

βj jλ;  j=1≤j≤N  

Fsrv(x)    c.d.f. of the service time of type srv ;  srv=b,w 

fsvr(x)     density function of the service time of type  

srv

1
 



0

)( dxxxfsrv      

 

hsrv(x) 
)(1

)(

xF

xf

srv

srv


 service rate for type srv 

)(sfsrv  Laplace transform of fsrv(x) 

* multiplication sign 

t.u. time unit 

 

The algorithm below generates the states of the system: 

 

Number_nonblocked_customers(first_parent)=N; 

Seq(first_parent)=Ø; 

Add first-Parent to New_Parent_Nodes; 

Do while New_Parent _Nodes=Ø{ 

Parent_Nodes=New_Parent_Nodes; 

New_Parent_Nodes=Ø; 

NodesParentNodeParent __   

{Generate_all_children(parent_node} 

 NodesParentnodeparent __  and  its 

children 

{Generate_Parent (parent_node)} 

} 

Generate_Child(node,i){ 

Number_nonblocked_customers(child)=Number_nonblock

ed_customers(node)-i; 

Seq(child)=(Number_nonblocked_customers(node)-

i)*b+seq(node); 

Add child to Nodes} 

 

Generate_all_children(node){ 

For  i=Number_nonblocked_customers ,0 

Generate_child(node,i); 

Endfor} 

 

Generate_parent(node){ 

If RM(seq(node))=b then 
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  Number_nonblocked_customers(new_parent)=   

           

Number_nonblocked_customers(node)+1; 

  Seq(new_parent)=w+seq(node)-LM(seq(node)); 

Add new_parent to New_Parent_Nodes; 

Endif}  

 

In each step a subset of parent nodes is created according 

to the transition k

xbqh

k ymbywm ,,1
)(

  , 

then the child nodes of each parent nodes are added to Z. 

Nodes with w as a rightmost character in the ordering do 

not generate parent nodes. The number of rightmost b’s in 

the generating ordering is decremented by one, so that the 

node 
placesl

bbm
_

...,... will be exhausted in l steps. Since the 

node 
placesN

bb
_

...,0 of the first subset has the largest number 

of such b’s, N step will be needed to exhaust it. So the 

algorithm produces all states (nodes) in N+1 steps.  

 

We will prove that the algorithm produces all possible 

system’s states. First we use induction to show that all 

phb(x) transactions in a given subset occur between states 

in this subset. Let m,zz and m-1,zr+b be two states in the i
th

  

subset (1≤i≤N-1). Obviously 

r
xph

r zmbzm b ,,1
)(

  . If RM(zr)=b both states 

generate parent nodes in the (i+1)
st
 subset and there is a 

ph1(x) transaction between them: 

bzwmzwm r
xph

r
b   ,,1

)(
 . A phb(x) 

transaction also exists between their child states 

bzwbmj r  *)1(, and 

rzwbmj  *)1(, .  

Since in the last subset RM(zr)=w for all states no ph1(x) 

transitions exist. 

 

Let’s denote two arbitrary states in the i
th

 subset iZ ,za  and 

j+l,zc (0≤i≤N+1, 0≤j≤N, 0≤l≤N,  iaz Z  and icz Z ) 

and an arbitrary state in the (i+1)
st
 subset 1iZ  by j,zd 

( 1 idz Z ). The following relations can be proven by 

induction on i 

 

Length(za)-length(zc)=l     

    (1) 

and 

Length(zd)-length(za)=1.    

    (2) 

Proof: Transitions 

a

xqh

a
j

a zbwjzbjbzj b   ,,1,
)(

 and 

c

xqh

c
lj

c zbwljzbljbzlj b   


,,1,
)()( 

 generate two parent states for which apparently (1) and (2) 

hold. Proof for the child states is straightforward. 

 

We can conclude now that transitions of type hw (x) occur 

from nodes in the (i+1)
st
 subset to nodes in the i

th
 subset. 

Viewing the nature of the system, we obtain the following 

set of differential equations             

βNPN=p 




0

,1 )()( dxxhxP bbN + 


0

, )()( dxxhxP wwN

      (3)   









 )(xh

dx

d
srvm )(, xP kym =0  (4) 

)()()( )*1(,11)*(, xPxPxh
dx

d

k
ybjmjj

k
ybjmjsrvj  








 

           (5) 

 

)()( *,0 xPxh
dx

d

k
ybmsrv 








 =β1 )()*1(,1 xP

k
ybm   (6) 

having the following boundary and normalizing conditions 

 




0

,2,1 )()()0( dxxhxPpP bbbNbN  






0

,1 )()( dxxhxP wbwN + βNPN    (7) 




 
0

,1, )()()0( dxxhxPqP bb
k

ywm
k

ym






0

, )()( dxxhxP ww
k

ym      (8)    

for the i
th 

subset (2≤i≤N),1≤m≤N, and no phb(x) transition 

to m,yk 





0

,1, )()()0( dxxhxPqP bb
k

ywm
k

ym





0

, )()( dxxhxP ww
k

ym  + p 




0

,1 )()( dxxhxP bk bym  

for 2≤i≤N,1≤m≤N, and phb(x) transition to m,yk 

           (9) 

)0(, kymP =q 




0

,1 )()( dxxhxP bk bywm    

 for the last (N+1)
st 

subset               (10) 
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)0(*)(,
k

ybjmjP  = 




0

)*(, )()( dxxhxP ww
k

ybjmj     for 

0≤j≤m for the i
th 

subset (2≤i≤N),1≤m≤N, and no phb(x) 

transition to j,(m-j)*b+yk                (11) 

 )0()*(,
k

ybjmjP 




0

)*(,1 )()( dxxhxPp bb
k

ybjmj  + 






0

*)(, )()( dxxhxP wk wybjmj    for 

the i
th 

subset (2≤i≤N), 1≤m≤N, and phb(x) transition to 

 j,(m-j)*b+yk                   (12) 

)0(*,0
k

ybmP  = 




0

*,0 )()( dxxhxP ww
k

ybm  for 

1≤i≤N                 (13) 

)0(*)(,
k

ybjmjP  =0   for 0≤j<m   for the last (N+1)
st 

subset                 (14) 






Z
r

z
r

zjN PP 1,             (15) 

By using discrete transform [4] the equations (4-5) are 

transformed as follows 









 )(xh

dx

d
srvj )(*)(, xu

k
ybjmj  = 0 for 

1≤j≤m                 (16) 

                

where                                                     

)()1()( *)(,*)(, xP
j

n
xu

kk
ybnmn

m

jn

jn
ybjmj 




  








  , 

and                                                             

)()1()( *)(,*)(, xu
j

n
xP

kk
ybnmn

m

jn

jn
ybjmj 




  








  

Let 
)(1

)(
)(

*)(,

*)(,
xF

xu
xv

srv

ybjmj

ybjmj
k

k 




   and 

)(1

)(
)(

*,0'
*,0

xF

xP
xP

srv

k
ybm

k
ybm






  

Then from (16) and (6) we have after some manipulations 









 j

dx

d
  )(*)(, xv

k
ybjmj  =0         (17) 










dx

d
)('

*,0 xP
k

ybm  = )('
*)1(,11 xP

k
ybm   (18)   

 

Hence solutions of (17-18) are 

x

ybjmjsrvybjmj
j

kk
euxFxu



  )0()](1[)( *)(,*)(,

for 1≤j≤m                       (19)

    

)0()](1[

)0(
1

1

*)](1[)(

*,0

)*(,

1

1

1*,0

)(

k
ybmsrv

k
ybnmn

n

n
n

m

n

srv
k

ybm

PxF

u

x
e

n

xFxP



























 










 

      

                 (20) 

By integrating (19-20), and from (3) we obtain the steady-

state probabilities         

)0(
)(1

)1( *)(,

1

1
*,

kk
ybnmn

n

nsrv
m

n

n
ybmj u

f

j

n
P 






















                 (21) 

srv

k
ybm

k
ybnmn

n

nsrv

srvn

m

n

n

k
ybm

P
u

f
nP











)0(
)0(

*
)(11

)1(

'
*,0

*)(,

1

1

1

*,0























 


    

      (22) 

N

NwwNNbbN

N

fufpu
P



 )()0()()0( ,1,1 



 

                 (23) 

       

From (7-13) we get after some algebra the following linear 

equations 

NPfu
N

n

fu
N

n
pu

Nnw

N

Nn

wbnNn
Nn

nbbnNn

N

Nn

Nn
bN















































)()0(
1

)1(

)()0(
2

)1()0(

1

*)(,
1

*)(,

1

2

2
,1

 

 

where yr=-w+yk+b    (24) 

)()0(
1

)1(

)()0(

)()0(
1

)1()0(

)*(,

1

1

,

1

)*(,

1

,

bbb
k

ybnmn

m

mn

mn

mww
k

ym

nb

l

mn
r

ybnln

mn

k
ym

fu
m

n
p

fu

fu
m

n
qu



















































  

where yr=-w+yk+b, for the i
th 

subset (2≤i≤N), 2≤m≤N, and 

phb(x) transition to m,yk    (25) 
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)()0(

)()0(
1

)1(

)0(

,

1

)*(,

1

,

mww
k

ym

nb

l

mn
rybnln

mn

k
ym

fu

fu
m

n
q

u





























                  

for the i
th 

subset (2≤i≤N),2≤m≤N, and no phb(x) transition 

to m,yk                  (26) 

 

)()0()0(

)0(
)(1

)1(

)0(

1,1

'

*,0

1

)*(,

1

1

,1








ww
k

y
r

ybl

l

n
rybnln

n

nbn

k
y

fuqP

u
f

nq

u


















  

for 2≤i≤N     (27)  

For the last subset we have 

)()0(
1

)1(

)0(

1

)*(,

1

,

nb

l

mn
rybnln

jn

k
ym

fu
j

n
q

u






















  

for 2≤m≤N                (28) 

 






 






l

n
rybnln

n

nbn

k
y

u
f

nq

u

1

)*(,

1

1

,1

)0(
)(1

)1(

)0(






)0('
*,0

r
yblqP                (29)   

         

























































m

jn

nww
k

ybnmn

n

nb

m

jn

b
k

ybnmn

jn

k
ybnmn

m

jn

jn

fu
j

n

fu
j

n
p

u
j

n

)()0()1(

)()0(
1

)1(

)0()1(

)*(,

1

1

)*(,

1

)*(,



  

 for the i
th 

subset (1≤i≤N), 2≤j≤m, and phb(x) transition to 

j,(m-j)*b+yk                  (30)

  


















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for the i
th 

subset (1≤i≤N), 2≤j≤m, and no phb(x) transition 

to j,(m-j)*b+yk                      (31) 
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 for the i
th 

subset (1≤i≤N), and phb(x) transition to 1,(m-

1)*b+yk                       (32)   
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for the i
th 

subset (1≤i≤N),  and no phb(x) transition to  

1,(m-1)*b+yk                        (33) 
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From (4) by induction and using the relation 
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                (35) 

Coefficients )0(,
r

zju  can be determined from (15) and 

(24-35). 

 

 

3. Numerical Example 
 

Various performance characteristics can be computed 

using the state probabilities. For example, the average 

number of waiting (blocked) customers (ANBC) in the case 

of blocking caches will be given by 

ANBC= 



Z

r

r
z

zjPjN ,)(  

In the case of non-blocking caches ANBC will be 
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where k is the ratio of average memory stall time [2] . k 

depends strongly on the application. (1-k) actually refers to 

the fraction time the processor is consuming data while 

cache-to-cache or memory-to cache transfer is in progress. 

 

In Table 1 we list the ANBC for blocking and fully non-

blocking caches (k=0), and exponential distributions. The 

time to calculate ANBC was meaninglessly short. 

 

Table1: N=7, fb(x)=0.1exp(-0.1x), fw(x)=0.01exp(-0.01x) 

  

         λ  

[1/t.u.] 

              

p 
ANBC for 

blocking caches 

ANBC for fully 

nonblocking 

caches 
0.001 0.9 0.119892816014264 0.0597187308763036 

0.002 0.9 0.326879422098233 0.274365956435035 

0.003 0.9 0.598479465001276 0.463731753045547 

0.004 0.9 0.91123004367094 0.753480566980827 

0.005 0.9 1.24643543216730 1.04719770264053 

0.006 0.9 1.58161756269221 1.37534396485572 

0.007 0.9 1.904117409870415 1.66650450290252 

0.008 0.9 2.22661725704862 1.96392225799428 

0.009 0.9 2.51234115552431 2.25402984997982 

0.01 0.9 2.79806505443023 2.48537272109571 

0.001 0.8 0.167115014742735 0.128655123963607 

0.002 0.8 0.504082299999646 0.452743023030220 

0.003 0.8 0.95693912302814 0.879945633567323 

0.004 0.8 1.46217043697011 1.39221745379462 

0.005 0.8 1.96736551181953 1.89379955101169 

0.006 0.8 2.44010356355546 2.32683265582309 

0.007 0.8 2.86557429892792 2.69765882309075 

0.008 0.8 3.24038821989026 3.07815921478303 

0.009 0.8 3.56716080196313 3.40039003267717 

0.01 0.8 3.85102404715019 3.63373809956681 

 

 

 

4. Concluding Remarks 
 

This paper presented a model for a shared memory, shared 

bus multiprocessor maintaining Invalidate type cache 

coherence protocol. We obtained the steady-state 

probabilities of the system so that the behavior in 

equilibrium can be studied and analyzed.  

We showed that results can be applied to determine the 

output parameters for both blocking and non-blocking 

caches. 
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