
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

64

Manuscript received May 5, 2009

Manuscript revised May 20, 2009

Model of a Shared Memory Multiprocessor

Angel Vassilev Nikolov,

National University of Lesotho, 180, Roma

Summary
We develop an analytical model of multiprocessor with private

caches and shared memory and obtain the steady-state

probabilities of the system. Behavior in equilibrium can be

studied and analyzed. We show that results can be applied to

determine the output parameters for both blocking and non-

blocking caches.

Key words:
Invalidate cache-coherence protocol, queuing system, discrete

transform

1. Introduction

Shared memory multiprocessors are widely used as

platforms for technical and commercial computing [2].

Performance evaluation is a key technology for design in

computer architecture. The continuous growth in

complexity of systems is making this task increasingly

complex [7]. In general, the problem of developing

effective performance evaluation techniques can be stated

as finding the best trade-off between accuracy and speed.

The most common approach to estimate the performance

of a superscalar multiprocessor is through building a

software model and simulating the execution of a set of

benchmarks. Since processors are synchronous machines,

however, simulators usually work at cycle-level and this

leads to enormous slowdown [9]. It might take hours even

days to simulate.

For memory structures relatively accurate analytical

models are developed [3, 7, 8, 9] through extensive use of

various queuing systems. Open queue system with Poisson

arrivals and exponential service times is considered quite

good for description of memory hierarchies [7]. Our focus

is on the impact of the cache-coherence protocols on the

overall system performance. The most commonly used

technique for this purpose is the Mean Value Analysis

(MVA) [3, 5, 7, 8, 9]. It allows the total number of the

customers to be fixed (closed queue system), and this

seems to be more adequate representation of the processes

of self-blocking requestors [5]. Calculations of output

parameters such as residency times, waiting times and

utilization are shown in [3, 8, 9]. MVA suggests

exponential service times but in fact both bus cycle times

and memory access times are close to constants. It will be

seen later in this paper that state probabilities depend on

the server’s time density function.

We assume general distribution of the service times and

introduce the supplementary variable x, elapsed service

time, to describe the behavior of the multiprocessor

implementing cache-coherence protocols. A system of

differential equations is set and solved and the steady-state

probabilities are obtained.

2. Definition and Analysis of the Model

A multiprocessor consists of several processors connected

together to a shared main memory by a common complete

transaction bus. Each processor has a private cache. When

a processor issues a request to its cache, the cache

controller examines the state of the cache and takes

suitable action, which may include generating bus

transaction to access main memory. Coherence is

maintained by having all cache controllers “snoop” on the

bus and monitor the transaction. Snoopy cache-coherence

protocols fall in two major categories: Invalidate and

Update [2, 3, 9]. Invalidating protocols are studied here

but the concepts can be applied with some modifications to

updating protocols too. Transactions may or may not

include the memory block and the shared bus. Typical

transaction that does not include memory block is

Invalidate Cache Copy which occurs when a processor

requests writing in the cache. All other processors simply

change the status bit(s) of their on copies to Invalid. If the

memory block is uncached or not clean it can be uploaded

from the main memory, but in today’s multiprocessors it is

rather uploaded from another cache designated as Owner

(O) (cache-to cache transfer). Memory-to-cache transfer

occurs when the only clean copy is in the main memory. A

cache block is written back (WB) in the main memory (bus

is used) when a dirty copy is evicted [6]. The evicted block

is maintained in the write-back buffer until the block is

written back. The responsibility of handling the WB

transaction rests solely with the processor’s cache

controller and thus the processor can resume processing

immediately after completion of its blocking request.

Apparently the bus can be considered as the bottleneck of

the system.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

65

We shall refer to the processors as customers and to the

bus as server.

Inter-arrival times are exponentially distributed with

parameter λ. This assumption is adequate for most

applications [7]. The number of the processors is N.

Requests are served on First Come First Served (FCFS)

basis. Immediately after issuing a request for cache-to-

cache transfer or synchronization procedure the customer

blocks itself. Service time for blocking request has a

density function fb(x). When service is completed the

processor resumes processing with probability p or

resumes processing and generates a new WB request with

probability q (p+q=1). The new request joins the queue at

its tail or is taken immediately into service if there is no

queue at the server. Details on how to obtain the input

parameters are given in [2, 3, 8, 9]. This new request has a

different density function fw(x) and corresponds to WB

transaction. It does not block the customer but the server is

held until completion of WB transaction therefore adding

to the queue. System’s states can be described by two

components: 1) number of customers doing internal

processing, and 2) ordering zr of blocking(b) and WB(w)

requests (waiting and in service) at the server. Transitions

between these states are illustrated in Fig. 1.

Each processor at any moment can have one blocking and

one write-back request at the server, so that the maximum

length of zr is 2N.

 Throughout this paper we use the following

notations

b blocking request

w write-back request

zr ordering of b’s and w’s

Z {zr} set of all orderings at the server

LM(zr) leftmost character of the ordering zr

RM(zr) rightmost character of the ordering zr

yk ordering in which the LM(yk)=w; parent state

(node)

rzchar  (char=b,w) ordering originating from zr by

adding/removing the RM(zr); example: zr=wbbbw, -

w+zr=bbbw,w+zr=wwbbbw

charzr  (char=b,w) ordering originating from zr by

adding/removing the LM(zr); example: zr=wbbbw, zr-

wr=wbbb,zr+w=wbbbww

Y {yk}, YZ subset of the parent states; Although

the leftmost character of the state N-1,b is not w we refer to

it as a parent state

j,zr system’s state (node), where j is the number of

customers doing internal processing

PN P[in equilibrium all N customers are doing

internal processing]

)(, xP
r

zj P[in the equilibrium state j customers are

doing internal processing, N-j are in the queue and/or in

the server, the ordering of b and w requests is zr, and the

elapsed service time lies between x and x+dx].

PN

t

N tP)(lim

r
zjP , 



0

,)(dxxP rzj steady-state probabilities

βj jλ; j=1≤j≤N

Fsrv(x) c.d.f. of the service time of type srv ; srv=b,w

fsvr(x) density function of the service time of type

srv

1
 



0

)(dxxxfsrv

hsrv(x)
)(1

)(

xF

xf

srv

srv


 service rate for type srv

)(sfsrv Laplace transform of fsrv(x)

* multiplication sign

t.u. time unit

The algorithm below generates the states of the system:

Number_nonblocked_customers(first_parent)=N;

Seq(first_parent)=Ø;

Add first-Parent to New_Parent_Nodes;

Do while New_Parent _Nodes=Ø{

Parent_Nodes=New_Parent_Nodes;

New_Parent_Nodes=Ø;

NodesParentNodeParent __ 

{Generate_all_children(parent_node}

 NodesParentnodeparent __  and  its

children

{Generate_Parent (parent_node)}

}

Generate_Child(node,i){

Number_nonblocked_customers(child)=Number_nonblock

ed_customers(node)-i;

Seq(child)=(Number_nonblocked_customers(node)-

i)*b+seq(node);

Add child to Nodes}

Generate_all_children(node){

For i=Number_nonblocked_customers ,0

Generate_child(node,i);

Endfor}

Generate_parent(node){

If RM(seq(node))=b then

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

66

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

67

 Number_nonblocked_customers(new_parent)=

Number_nonblocked_customers(node)+1;

 Seq(new_parent)=w+seq(node)-LM(seq(node));

Add new_parent to New_Parent_Nodes;

Endif}

In each step a subset of parent nodes is created according

to the transition k

xbqh

k ymbywm ,,1
)(

  ,

then the child nodes of each parent nodes are added to Z.

Nodes with w as a rightmost character in the ordering do

not generate parent nodes. The number of rightmost b’s in

the generating ordering is decremented by one, so that the

node 
placesl

bbm
_

...,... will be exhausted in l steps. Since the

node 
placesN

bb
_

...,0 of the first subset has the largest number

of such b’s, N step will be needed to exhaust it. So the

algorithm produces all states (nodes) in N+1 steps.

We will prove that the algorithm produces all possible

system’s states. First we use induction to show that all

phb(x) transactions in a given subset occur between states

in this subset. Let m,zz and m-1,zr+b be two states in the i
th

subset (1≤i≤N-1). Obviously

r
xph

r zmbzm b ,,1
)(

  . If RM(zr)=b both states

generate parent nodes in the (i+1)
st
 subset and there is a

ph1(x) transaction between them:

bzwmzwm r
xph

r
b   ,,1

)(
 . A phb(x)

transaction also exists between their child states

bzwbmj r  *)1(, and

rzwbmj  *)1(, .

Since in the last subset RM(zr)=w for all states no ph1(x)

transitions exist.

Let’s denote two arbitrary states in the i
th

 subset iZ ,za and

j+l,zc (0≤i≤N+1, 0≤j≤N, 0≤l≤N, iaz Z and icz Z)

and an arbitrary state in the (i+1)
st
 subset 1iZ by j,zd

(1 idz Z). The following relations can be proven by

induction on i

Length(za)-length(zc)=l

 (1)

and

Length(zd)-length(za)=1.

 (2)

Proof: Transitions

a

xqh

a
j

a zbwjzbjbzj b   ,,1,
)(

 and

c

xqh

c
lj

c zbwljzbljbzlj b   


,,1,
)()(

 generate two parent states for which apparently (1) and (2)

hold. Proof for the child states is straightforward.

We can conclude now that transitions of type hw (x) occur

from nodes in the (i+1)
st
 subset to nodes in the i

th
 subset.

Viewing the nature of the system, we obtain the following

set of differential equations

βNPN=p 




0

,1)()(dxxhxP bbN + 


0

,)()(dxxhxP wwN

 (3)









)(xh

dx

d
srvm)(, xP kym =0 (4)

)()()()*1(,11)*(, xPxPxh
dx

d

k
ybjmjj

k
ybjmjsrvj  








 

 (5)

)()(*,0 xPxh
dx

d

k
ybmsrv 








 =β1)()*1(,1 xP

k
ybm  (6)

having the following boundary and normalizing conditions

 




0

,2,1)()()0(dxxhxPpP bbbNbN






0

,1)()(dxxhxP wbwN + βNPN (7)




 
0

,1,)()()0(dxxhxPqP bb
k

ywm
k

ym






0

,)()(dxxhxP ww
k

ym (8)

for the i
th

subset (2≤i≤N),1≤m≤N, and no phb(x) transition

to m,yk





0

,1,)()()0(dxxhxPqP bb
k

ywm
k

ym





0

,)()(dxxhxP ww
k

ym + p 




0

,1)()(dxxhxP bk bym

for 2≤i≤N,1≤m≤N, and phb(x) transition to m,yk

 (9)

)0(, kymP =q 




0

,1)()(dxxhxP bk bywm

 for the last (N+1)
st

subset (10)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

68

)0(*)(,
k

ybjmjP  = 




0

)*(,)()(dxxhxP ww
k

ybjmj for

0≤j≤m for the i
th

subset (2≤i≤N),1≤m≤N, and no phb(x)

transition to j,(m-j)*b+yk (11)

)0()*(,
k

ybjmjP 




0

)*(,1)()(dxxhxPp bb
k

ybjmj +






0

*)(,)()(dxxhxP wk wybjmj for

the i
th

subset (2≤i≤N), 1≤m≤N, and phb(x) transition to

 j,(m-j)*b+yk (12)

)0(*,0
k

ybmP  = 




0

*,0)()(dxxhxP ww
k

ybm for

1≤i≤N (13)

)0(*)(,
k

ybjmjP  =0 for 0≤j<m for the last (N+1)
st

subset (14)






Z
r

z
r

zjN PP 1, (15)

By using discrete transform [4] the equations (4-5) are

transformed as follows









)(xh

dx

d
srvj)(*)(, xu

k
ybjmj  = 0 for

1≤j≤m (16)

where

)()1()(*)(,*)(, xP
j

n
xu

kk
ybnmn

m

jn

jn
ybjmj 




  








 ,

and

)()1()(*)(,*)(, xu
j

n
xP

kk
ybnmn

m

jn

jn
ybjmj 




  










Let
)(1

)(
)(

*)(,

*)(,
xF

xu
xv

srv

ybjmj

ybjmj
k

k 




 and

)(1

)(
)(

*,0'
*,0

xF

xP
xP

srv

k
ybm

k
ybm








Then from (16) and (6) we have after some manipulations









 j

dx

d
)(*)(, xv

k
ybjmj  =0 (17)










dx

d
)('

*,0 xP
k

ybm  =)('
*)1(,11 xP

k
ybm  (18)

Hence solutions of (17-18) are

x

ybjmjsrvybjmj
j

kk
euxFxu



 )0()](1[)(*)(,*)(,

for 1≤j≤m (19)

)0()](1[

)0(
1

1

*)](1[)(

*,0

)*(,

1

1

1*,0

)(

k
ybmsrv

k
ybnmn

n

n
n

m

n

srv
k

ybm

PxF

u

x
e

n

xFxP



























 










 (20)

By integrating (19-20), and from (3) we obtain the steady-

state probabilities

)0(
)(1

)1(*)(,

1

1
*,

kk
ybnmn

n

nsrv
m

n

n
ybmj u

f

j

n
P 






















 (21)

srv

k
ybm

k
ybnmn

n

nsrv

srvn

m

n

n

k
ybm

P
u

f
nP











)0(
)0(

*
)(11

)1(

'
*,0

*)(,

1

1

1

*,0























 


 (22)

N

NwwNNbbN

N

fufpu
P



)()0()()0(,1,1 




 (23)

From (7-13) we get after some algebra the following linear

equations

NPfu
N

n

fu
N

n
pu

Nnw

N

Nn

wbnNn
Nn

nbbnNn

N

Nn

Nn
bN















































)()0(
1

)1(

)()0(
2

)1()0(

1

*)(,
1

*)(,

1

2

2
,1

where yr=-w+yk+b (24)

)()0(
1

)1(

)()0(

)()0(
1

)1()0(

)*(,

1

1

,

1

)*(,

1

,

bbb
k

ybnmn

m

mn

mn

mww
k

ym

nb

l

mn
r

ybnln

mn

k
ym

fu
m

n
p

fu

fu
m

n
qu



















































where yr=-w+yk+b, for the i
th

subset (2≤i≤N), 2≤m≤N, and

phb(x) transition to m,yk (25)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

69

)()0(

)()0(
1

)1(

)0(

,

1

)*(,

1

,

mww
k

ym

nb

l

mn
rybnln

mn

k
ym

fu

fu
m

n
q

u































for the i
th

subset (2≤i≤N),2≤m≤N, and no phb(x) transition

to m,yk (26)

)()0()0(

)0(
)(1

)1(

)0(

1,1

'

*,0

1

)*(,

1

1

,1








ww
k

y
r

ybl

l

n
rybnln

n

nbn

k
y

fuqP

u
f

nq

u




















for 2≤i≤N (27)

For the last subset we have

)()0(
1

)1(

)0(

1

)*(,

1

,

nb

l

mn
rybnln

jn

k
ym

fu
j

n
q

u






















for 2≤m≤N (28)






 






l

n
rybnln

n

nbn

k
y

u
f

nq

u

1

)*(,

1

1

,1

)0(
)(1

)1(

)0(






)0('
*,0

r
yblqP  (29)

























































m

jn

nww
k

ybnmn

n

nb

m

jn

b
k

ybnmn

jn

k
ybnmn

m

jn

jn

fu
j

n

fu
j

n
p

u
j

n

)()0()1(

)()0(
1

)1(

)0()1(

)*(,

1

1

)*(,

1

)*(,





 for the i
th

subset (1≤i≤N), 2≤j≤m, and phb(x) transition to

j,(m-j)*b+yk (30)





































m

jn

nww
k

ybnmn

n

k
ybnmn

m

jn

jn

fu
j

n

u
j

n

)()0()1(

)0()1(

)*(,

1

)*(,



for the i
th

subset (1≤i≤N), 2≤j≤m, and no phb(x) transition

to j,(m-j)*b+yk (31)




































m

n

nww
k

ybnmn

n

b
k

ybm

m

n

b
k

ybnmn

n

nn

k
ybnmn

m

n

n

fnupP

u
f

np

un

1

)*(,

1'

)*1(

1

)*(,

11

1

)*(,

1

1

)()0()1()0(

)0(
)(1

)1(

)0()1(








 for the i
th

subset (1≤i≤N), and phb(x) transition to 1,(m-

1)*b+yk (32)





















m

n

nww
k

ybnmn

n

k
ybnmn

m

n

n

fnu

un

1

*)(,

1

*)(,

1

1

)()0()1(

)0()1(



for the i
th

subset (1≤i≤N), and no phb(x) transition to

1,(m-1)*b+yk (33)

)0(

)0(
)(1

)1()0(

'

*,0

*)(,

1

1

1

'

*,0

w
k

ybm

k
ybnmn

n

nw
m

n

n

k
ybm

P

u
f

nP









 


 





 for 1≤i≤N (34)

From (4) by induction and using the relation

0)1(
0













j

n

n

n

j
 we obtain

kk
ymybjmj u

j

m
u ,*)(, 








 for i=N+1,1≤j<m

 (35)

Coefficients)0(,
r

zju can be determined from (15) and

(24-35).

3. Numerical Example

Various performance characteristics can be computed

using the state probabilities. For example, the average

number of waiting (blocked) customers (ANBC) in the case

of blocking caches will be given by

ANBC= 



Z

r

r
z

zjPjN ,)(

In the case of non-blocking caches ANBC will be

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

70

ANBC=

 










bzRM

z

bzRM

z

zjzj

r

r

r

r

tr
PjNPkjN

)()(

,,)()1(
Z Z

where k is the ratio of average memory stall time [2] . k

depends strongly on the application. (1-k) actually refers to

the fraction time the processor is consuming data while

cache-to-cache or memory-to cache transfer is in progress.

In Table 1 we list the ANBC for blocking and fully non-

blocking caches (k=0), and exponential distributions. The

time to calculate ANBC was meaninglessly short.

Table1: N=7, fb(x)=0.1exp(-0.1x), fw(x)=0.01exp(-0.01x)

 λ

[1/t.u.]

p
ANBC for

blocking caches

ANBC for fully

nonblocking

caches
0.001 0.9 0.119892816014264 0.0597187308763036

0.002 0.9 0.326879422098233 0.274365956435035

0.003 0.9 0.598479465001276 0.463731753045547

0.004 0.9 0.91123004367094 0.753480566980827

0.005 0.9 1.24643543216730 1.04719770264053

0.006 0.9 1.58161756269221 1.37534396485572

0.007 0.9 1.904117409870415 1.66650450290252

0.008 0.9 2.22661725704862 1.96392225799428

0.009 0.9 2.51234115552431 2.25402984997982

0.01 0.9 2.79806505443023 2.48537272109571

0.001 0.8 0.167115014742735 0.128655123963607

0.002 0.8 0.504082299999646 0.452743023030220

0.003 0.8 0.95693912302814 0.879945633567323

0.004 0.8 1.46217043697011 1.39221745379462

0.005 0.8 1.96736551181953 1.89379955101169

0.006 0.8 2.44010356355546 2.32683265582309

0.007 0.8 2.86557429892792 2.69765882309075

0.008 0.8 3.24038821989026 3.07815921478303

0.009 0.8 3.56716080196313 3.40039003267717

0.01 0.8 3.85102404715019 3.63373809956681

4. Concluding Remarks

This paper presented a model for a shared memory, shared

bus multiprocessor maintaining Invalidate type cache

coherence protocol. We obtained the steady-state

probabilities of the system so that the behavior in

equilibrium can be studied and analyzed.

We showed that results can be applied to determine the

output parameters for both blocking and non-blocking

caches.

References

[1] S. K. Bose, Introduction to Queuing Systems,

Kluwer/Plenum Publishers, 2001

[2] J. L. Hennessy, D. A. Patterson; Computer Architecture: A

Quantitative Approach, Pearson Publishers, 2003

[3] M. C. Chiang, Memory System Design for Bus Based

Multiprocessor, PhD Thesis, University of Wisconsin, 1991

[4] T. Itoi, T. Nishida, M. Kodama and E. Ohi, N-unit parallel

redundant system with correlated failures and single repair

facility, Microelectronics and Reliability, vol. 17, pp. 279-

285, 1978

[5] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik,

Quantitative System Performance, Computer System

Analysis Using Queuing Network Models, Prentice-Hall,

Englewood Cli_s, NJ, May 1984.

[6] A. Louri, A.K. Kodi, An optical interconnection network and

a modifying snooping protocol for the design of large-scale

symmetric multiprocessors (SMPs), IEEE Transactions on

Parallel and Distributing Systems, vol. 15, No. 12, Dec.

2004, pp. 1093-1104

[7] R. E. Matick, Comparison of analytic performance models

using closed mean-value analysis versus open-queuing theory

for estimating cycles per instruction of memory hierarchies,

IBM Journal of Research and Development, Jul 2003

[8] D. J. Sorin et. al., A customized MVA model for ILP

multiprocessors, Technical report #1369, University of

Wisconsin-Madison, 1998

[9] D. J. Sorin et. al., Evaluation of shared-memory parallel

system with ILP processors, Proc. 25th Int’l Symp. On

Computer Architecture, June 1998, pp. 180-191

[10] J. Sustersic, A. Hurson, Coherence protocol for bus-based

and scalable multiprocessors, Internet and wireless

distributed computing environments: a survey, Advances in

Computers, vol.59, 2003, pp. 211-278.

 Angel Vassilev Nikolov received

the BEng degree in Electronic and

Computer Engineering from the

Technical University of Budapest,

Hungary in 1974 and the PhD

degree in Computer Science from

the Bulgarian Academy of Sciences

in 1982 where he worked as a

Research Associate. In 1989 he was

promoted to Associate Research

Professor in Bulgaria. Dr Nikolov

also served as a Lecturer of Computer Science at the National

University of Science and Technology, Bulawayo, Zimbabwe

and at the Grande Prairie Regional College, Alberta, Canada and

as an Associate Professor at Sharjah College, United Arab

Emirates. Currently he works for the National University of

Lesotho, Roma, Lesotho. His research interests include computer

architecture, performance evaluation of multiprocessors, and

reliability modeling.

