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Summary 

In computer aided design (CAD), the availability of many 

types of surface editing which ease creating the geometric 

models is important. This paper describes a wavelets-based 

mulresolution representation for endpoint-interpolating 

cubic B-spline surface and algorithms to support the 

surface editing at different scales, allowing structural 

features (global shape) deformations as well as detail 

features (local shape) creation. The experiment results 

show that the multiresolution representation can be used as 

a single, unified framework for developing an interactive 

surface editor. 

Keywords: 
Wavelets, multiresolution surface, structural features, detail 

features. 

1. Introduction 

In current CAD systems there are many modeling methods, 

such as non-uniform rational B-splines (NURBS), 

constructive solid geometry (CSG), boundary 

representation (B-rep), and recently free-form deformation 

(FFD) [1,2], partial differential equation (PDE) [3], energy 

functional optimization [4]. However, all those modeling 

methods use a single three-dimensional vector space as the 

framework, so that it limits the modeling to simple objects. 

 

The manipulating of the mesh of complex geometry 

objects which might be constructed from scratch (ab initio 

design) or be scanned-in either by hand or with automatic 

digitizing methods, can be difficult to be carried out in a 

single vector space, especially when they are to be edited 

or animated. Aside from considerations of economy, the 

choice of mesh representation is also guided by the need 

for multiresolution editing semantics. The representation of 

the mesh should provide control at a large scale, so that 

one can change the mesh in a global or in a local shape.  

 

Wavelet is a mathematical tool that can be used to define 

multi-scale space and has found a wide variety of 

applications in recent years, including signal analysis [5], 

image processing [6], and numerical analysis [7]. Wavelet-

based multiresolution analysis is based on decomposing a 

vector space into a set of nested vector spaces with 

different scales, and then analyzing the properties of 

functions in the time and frequency domains in those 

different scale spaces. Finkelstein [8] in 1994 first 

introduced wavelet-based multiresolution curve in the field 

of curve modeling to facilitate a variety of multiresolution 

editing operations. Wavelet-based multiresolution analysis 

brought a novel conception to the area of curve/surface 

modeling. With multiresolution editing, the curve can be 

smoothed and the overall form of the curve can be changed 

while preserving its details (sweep editing). The curve can 

be edited at any continuous level of detail (fractional 

editing). Additionally, the curve’s character can be 

changed without affecting its overall shape.  

 

Since the real objects modeling needs three dimensional 

representation, the goal of this research is to describe 

wavelet-based multiresolution representation for surface 

and investigate the capability of the multiresolution 

representation as framework that support editing of 

structural and detail features of surface. We propose the 

multiresolution representation for surface based on the 

extension of multiresolution curve proposed by Finkelstein 

[8]. The surface representation we used is cubic B-spline 

surface which interpolate endpoints and have uniform 

knots distance except knots at surface endpoints which 

have multiplicity 4. Furthermore, we refer this surface 

representation as EI B-spline surface. This surface is 

defined using patch scheme which is computed from tensor 

product of parametric basis function. The basis functions is 

polynomial functions with degree 3, continuity C2 at joint 

(meeting point between two series of surface patches) and 

have uniform knots distance.    

 

The rest of this paper is organized as follows. The 

theoretical foundation of tensor product of endpoint-

interpolating cubic b-spline surface is presented in Section 

2. Our wavelet-based multiresolution representation of b-

spline surface which is the extension of the work of 

Finkelstein[8] is then discussed in Section 3. Some 
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experiments carried out in Matlab, in order to investigate 

capability of the framework of multiresolution surface, are 

presented in Section 4. Finally, conclusion and future 

research directions are suggested.  

2. Tensor Product Cubic B-spline Surface  

Two popular schemes of surface representations are 

subdivision scheme and patch scheme. In subdivision 

scheme, a surface is defined using mesh polyhedral. In 

patch scheme, a surface is defined using tensor product of 

parametric basis functions. A tensor product cubic B-spline 

surface is defined using the following formula: 

     

i j

jiijij vBuBVvuQ 4,4,,   (1) 

Vij is control points in three dimensional spaces. Bij is B-

spline basis function. Fig. 1(a) shows the example of a 

mesh of control points for B-spline surface with 5 x 3 

patches. Fig. 1(b) shows the corresponding surface 

computed using formula 1. 

 

 

 

 

 

 

 

 

 

 

Fig. 1(a) The example of a mesh of control points of B-spline surface. (b) 

The corresponding B-spline surface.  

Since discussion about the theory of B-spline surface is 

more easily carried out in the curve setting, the following 

two sub-sections would discuss the uniform cubic B-spline 

curve and the endpoint-interpolating cubic B-spline curve. 

All definition in the curve setting is also used in the surface 

setting. 

 

2.1. Uniform Cubic B-spline Curve 

Uniform cubic B-spline curve is a curve composed by 

cubic B-spline basis function with uniform knots distance. 

Cubic B-spline basis function is a parametric polynomial 

function with degree 3, piecewise, continuity C2 at joint. 

Continuity C2 means that the basis function has continuity 

at position, first derivative, and second derivative. 

 

Fig. 2(a) shows the example of curve composed using 

uniform cubic B-spline basis function. One segment of 

uniform cubic B-spline curve is defined using 4 control 

points. The curve approximates the 4 control points which 

have index from 0 to 3. Since each curve segment is 

defined using 4 basis functions, the curve requires 3 more 

basis functions and 3 more control points than the number 

of curve segments. Each basis function has non zero value 

at 4 parametric intervals. The most left basis function adds 

3 extra intervals in the left of curve, and the most right 

basis function adds 3 extra intervals in the right of curve. 

There are m+1 control points, m+1 basis functions, m-2 

curve segments in the range of m-1 knots, and m-

1+3+3=m+5 knots in total. Curve is drawn with u  

parameter running from 3u  to 1mu . 

  

The curve example shown in fig. 2(a) has the last index of 

control point m=9. The curve consists of 7 segments. Its 

definition requires 10 basis functions and 10 control points 

at 103 uuu   with parameter space 130 uuu  . The 

uniform cubic B-spline basis function used to compose the 

curve in fig. 2(a) is shown in fig. 2(b). 

  

 

         

      

 

 

 

 

 

 

 

 

Fig. 2(a) The example of uniform B-spline curve. (b) The basis functions 

of uniform cubic B-spline. 

In order to draw a curve, some control points Vi have to be 

defined first, and then, the control points are used to draw 

curve Q using the following formula: 

   ubVuQ rrii      (2) 

           ubVubVubVubV iiii 00112233    

The basis functions  ubr  for cubic B-spline curve are 

shown in fig. 3 and have the following formula: 
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Fig.  3. Uniform cubic B-spline basis function B0,4(u) 

2.2. Endpoint-interpolating Cubic B-spline Curve 

Basically, endpoint-interpolating cubic b-spline curve (EI 

B-spline curve) is defined using same basis functions as 

discussed in sub-section 2.1. The difference is if all knots 

in basis functions of uniform cubic B-spline curve has 

multiplicity 1, but all knots in basis function of EI B-spline 

curve has multiplicity 1 except 2 knots at endpoints which 

have multiplicity 4. Multiplicity 4 means that the knots 

have 4 other knots with same value. 

 

The most striking difference between EI B-spline curve 

and uniform cubic B-spline curve can be seen at endpoints. 

In uniform cubic B-spline curve, all curve segments 

approximate all control points. While in EI B-spline curve, 

all curve segments approximate all control points except 

the first and the last control points which are interpolated. 

This condition eases controlling the endpoints of curve. 

 

In uniform cubic B-spline curve, all curve segments is 

compiled using the same basis functions (which is shifted 

along knots). In EI B-spline curve, the basis functions 

compiling segments of curve have different forms, 

especially at two at the first segments and two at the last 

segments. The example of four segments of EI B-spline 

curve and the basis functions are shown in fig. 4(a) and (b), 

respectively.  

 

 

 

 

 

 

 

 

 

Fig. 4(a) The example of 4 segments of EI B-spline curve. (b) The basis 

functions of EI cubic B-spline. 

3. Wavelets-based Multiresolution 

Representation  

We divide the discussion in this section into two sub-

sections. In sub-section 3.1, we discuss the theory of 

wavelets and multiresolution analysis, and how it can be 

applied to represent endpoint-interpolating B-spline curve, 

following the work by Finkelstein[8]. In sub-section 3.2, 

we extend the definition of wavelets-based multiresolution 

curve into surface, which is furthermore used as the 

framework to develop algorithms for editing the structural 

and detail features of surface. 

 

3.1. Multiresolution Curve 

Let S defines space of uniform cubic B-spline with knots 

Ziiu i  , , and distance of knots equal to 1. Z is positive 

integer. Multiresolution representation composes spaces 
jS of uniform cubic B-spline with knots distance 

Zjj  ,2 . Index j in 
j

S expresses the resolution level. 

Curve at resolution j is formed using (2
j
+3)x1 control 

points. Therefore, a curve at the coarsest resolution 

(resolution 0) is formed using (2
0
+3)x1  control points, 

consists of one segment and has knots distance equal to 1. 

Curve at resolution 1 is formed using (2
1
+3)x1 control 

points, consist of 4 segments, and has knots distance equal 

to ½. Curve at resolution 2 is formed using (2
2
+3)x1 

control points, consist of 16 segments, and has knots 

distance equal to ¼, etc. 

  

Since B-spline function at resolution j1 with knots distance 

equal to 12 j  is also B-spline function at resolution j2 with 

knots distance equal to 22 j , and j1<j2, then there will be 

nested spaces as below : 

  ...210  SSS  
If V

j
 express closed space L

2
(R) of  RLS j 2 , then there 

are closed B-spline subspaces dan nested of L
2
(R) as 

below: 

  ....210  VVV  
 

In different resolutions, the same curve is expressed using 

different control points. For example, curve at resolution 2 

which has 4 segments and 7x1 control points can be 

expressed using 2 segments and 5x1 control points at 

resolution 1.  

 

Let C
n
 be a set of control points at resolution n. The 

number of control points in C
n
 is (2

n
+3)x1. In order to 

arrange C
n-1

 (the approximation of C
n
 in one lower 

resolution) which has the number of control points (2
n-

1
+3)x1, it is required to do filtering to the control points of 
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nC
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1nA

… 

nB 1nB 1B
1nD 2nD
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… 

… 0C

0D

1P

1Q

1C

1nQ

1D

1nP
1nC

nC

nP

nQ

1nD

C
n
. This process is expressed using the following matrix 

equation: 
nnn CAC 1                   (4) 

A
n
 is a matrix with size (2

n-1
+3)x(

2n
+3). 

 

Since the number of control points C
n-1

 is smaller than the 

number of control points in C
n
, there are some details 

missing during the filtering process. These missing details 

are captured in D
n-1

 which can be computed using the 

following matrix equation: 
nnn CBD 1    (5) 

B
n
 is a matrix with size [(2

n
+3)-(2

n-1
+3)]x(2

n
+3). 

 

The matrix pair A
n
 and B

n
 are referred as analysis filters. 

The process to separate C
n
 into lower resolution C

n-1
 and 

detail D
n-1

 is referred as decomposition. The 

decomposition process can be carried out recursively to C
n-

1
, so that the control points C

n
 can be expressed as 

hierarchy of control points with lower resolution C
0
, C

1
, …, 

C
n-1

 and details D
0
, D

1
, …, D

n-1
. This recursive 

decomposition process is known as filter bank and is 

illustrated in Fig. 5.  

  

                     

        

            

                                     

Fig. 5.  Filter bank 

If the matrix pair A
n
 and B

n
 are selected carefully, the 

original control points C
n
 can be reconstructed from C

n-1
  

and D
n-1

 using matrix pair P
n
 and Q

n
 with the following 

calculation: 
11   nnnnn DQCPC    (6) 

Matrix P
n
 and Q

n
 are called synthesize filters. The 

reconstruction process is illustrated in Fig. 6. 

   

 

                

                    

                                                    

Fig. 6. The reconstruction process  

Since the original control points C
n
 can be reconstructed 

from C
0
, D

0
, D

1
, …, D

n-1
, then the values of  C

0
, D

0
, D

1
, …, 

D
n-1

, are considered as the wavelets transformation of 

control points C
n
. The wavelets transformation is 

computed by using pairs of the analysis and synthesize 

filter. Those filters are determined based on several 

choices below: 

1. Selection of scaling functions  )(uj  which span V
j
 for 

all j in ],0[ n . Scaling functions  )(uj  determine 

synthesize filter P
j
. 

2. Selection of inner product of two function f and g in V
j
, 

to determine the norm function and the orthogonal 

complement space W
j
 of V

j
 in V

j+1
. 

3. Selection of wavelets  )(uj  which span W
j
. Wavelets 

 )(uj  determine synthesize filter Q
j
. Analysis filters 

A
j
 and B

j
 are computed from synthesize filters P

j
  and 

Q
j
. 

 

Fig. 7(b) shows plots of wavelets functions defined using 

basis functions of EI cubic B-spline curves as the scaling 

functions (fig. 7(a) and (c));  the standard form of inner 

product for any two functions f and g in 

V
j
,    duugufgf , , which determines the orthogonal 

complement spaces W
j
; and the wavelets  uj  with 

minimally-supported functions that span W
j
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7(a) The scaling functions at resolution 1. (b) The wavelets functions 

at resolution 1. (c)  The scaling functions at resolution 2. 

3.2. Multiresolution Surface 

Multiresolution surface is extension of all definitions 

including scaling functions and filters that are used for 

multiresolution curve. Let multiresolution of tensor 

product b-spline surface c(u,v) be defined as an element of 

a certain functional space V
n
, computed by: 

 

               nnn
n

i

n

j

n

j

n

i

n vuxvuxvuc  








32

1

32

1

, 

 
 

where x
n
 is a control points mesh with size mxm in R

2
, 

32  nm . In multiresolution surface, the extension of 

decomposition process specified by equation (4) and (5) 

would split the mesh of control points x
n
 into lower 
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(b) (a) 

(a) (b) 

resolution mesh x
n-1

, detail in row dx
n-1

 and detail in 

column dy
n-1

. The extension of decomposition process is 

computed by using analysis filters A
n
 and B

n
 as follow: 

      Tn

mxm

n

xmm

n

mmx xAxt  
                (7) 

     
n

mxm

n

xmm

n

xmm xBdx 

 1

   

     
n

mmx

n

xmm

n

mxm xtBdy 


 1

 

      Tn

mmx

n

xmm

n

mxm xtAx 


 1

 
 

As the inverse of the decomposition process, the extension 

of reconstruction process specified by equation (6) which 

allows recovering the original mesh of control points x
n
 

from x
n-1

, dx
n-1 

and dy
n-1

, is computed by using synthesis 

filters P
n
 and Q

n
 as follow: 

 

              Tn

mxm

n

mmx

n

mxm

n

mmx

n

xmm dyQxPxt 111 






 

(8) 

             
11 



  n

xmm

n

mmx

n

xmm

n

mmx

n

mxm dxQxtPx
 

 

4. Experiment  

The objective of experiment is to investigate the capability 

of wavelets-based multiresolution surface to support 

surface editing which allows easy creation/modification of 

the global shape of surface as well as its local shape. The 

two scenarios used in the experiment are creating “head of 

cat” from scratch and modifying “a car”. Both scenarios 

are run in the framework of wavelets-based multiresolution 

surface. If the first scenario is to examine the capability of 

wavelets-based multiresolution surface in creating the 

global and local shape, then the second scenario is to 

examine the capability in modifying the global shape while 

preserving its local shape. The experiments are carried out 

in Matlab 2008.  

 

4.1. Scenario 1: Creating “head of cat” 

The steps of creation “head of cat” are shown from fig. 8 

to fig. 12. Creating/modifying the global shape is basically 

carried out by moving some control points of the mesh at 

the current resolution or at the higher resolution. Adding 

the local shape is usually carried out by first, increasing the 

resolution of the mesh and then, moving some control 

points of the mesh at the higher resolution.  

 

In the framework of multiresolution surface, the 

reconstruction process which is computed by a set of 

equation (8) with x
n-1

 equal to the mesh of control point at 

current resolution,  detail in row dx
n-1

 equal to 0, and detail 

in column dy
n-1

  equal to 0, is used to increase the 

resolution of surface. The more number of control points in 

the higher resolution allows modifying the global shape of 

surface and/or adding its local shape. 

  

The creation of “head of cat” is started with one flat patch 

surface at resolution 0 as shown in figure 8.  Subsequently, 

the resolution of mesh of control points is increased as 

shown in fig. 9, 10, 11, and 12. In each resolution, there is 

editing process to move some control points into new 

positions.  

 

As shown in this experiment, it is easy to create various 

forms of surface in the framework of multiresolution 

surface which can increase/decrease the surface mesh into 

different resolution. Representation of a surface in a 

certain resolution determines the number of patches which 

are involved in the editing process. Wavelets 

multiresolution representation give a sufficient fast 

respond in increasing/decreasing the mesh resolution, 

which is important in developing interactive surface editor.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8(a). The mesh of control points at resolution 0. (b). The 

corresponding surface. 

      

 

     

 

 

 

 

 

 

 

 

Fig. 9(a). The mesh of control points after moving some of control points 

to a mesh shown in 8(a). (b). The corresponding surface after modifying 

its global shape. 
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(b) (a) 

(a) (b) 

(a) (b) 

(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10(a). The mesh of control points after increasing the resolution 

level to 2 and moving some of control points. (b). The corresponding 

surface. 

 

          

 

 

 

 

 

 

 

Fig. 11(a). The mesh of control points after increasing the resolution 

level to 3 and moving some of control points. (b). The corresponding 

surface. 

 

 

 

 

 

 

 

 

 

Fig. 12(a). The mesh of control points after increasing the resolution 

level to 4 and moving some of control points. (b). The corresponding 

surface after adding the local shape. 

4.2. Scenario 2: Modifying “a car” 

In this scenario, we start with the global shape of a car, as 

shown in fig. 13. The addition of the local shape on the car 

model is carried out by first, increase the resolution of 

mesh and then, move some control points at its higher 

resolution, as shown in fig. 14. The modification of the 

global shape of car model is then carried out by first, 

decrease the resolution of mesh, and move some control 

points at its lower resolution, as shown in fig. 15. Finally, 

the modification of the global shape of car model which 

should preserve its local shape is shown in fig. 16, when 

we move back to the high resolution. 

 

The capability to support the editing of global shape while 

preserve its local shape is important for the surface 

representation, since this kind of editing mostly used in the 

process of product designing. In wavelets-based 

multiresolution surface, this capability is supported by 

allowing the user to work at different resolution and by 

capturing the detail information in high resolution while 

the user works at the low resolution. The algorithm for 

editing the global shape of surface is listed below: 

1. Move to low resolution by computing set of equation 

(7). The difference information between mesh at high 

resolution and mesh at low resolution is captured by a 

sequence of detail in row dx
n-1

 and detail in column 

dy
n-1

. 

2. Dispose some of control points at the low resolution to 

new positions in order to modify the global shape of 

the surface. 

3. Move back to high resolution by computing set of 

equation (8) using new position of control points and 

the difference information captured in a sequence of 

dx
n-1

 and dy
n-1

 from the step 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13(a). The mesh of control points at resolution 4. (b). The 

corresponding surface. 

 

 

 

 

 

 

 

 

 

 

 
(a) (b) 
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(a) (b) 

(a) (b) 

Fig. 14(a). The mesh of control points after increasing the resolution 

level to 6 and moving some of control points. (b). The corresponding 

surface after adding the detail shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15(a). The mesh of control points after decreasing the resolution 

level to 4 and moving some of control points. (b). The corresponding 

surface after modifying the global shape. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16(a). The mesh of control points after going back to the resolution 

6. (b). The corresponding surface which preserve the detail shape. 

5. Conclusion 

The wavelets-based multiresolution representation of EI B-

spline surface gives a very good support toward the 

creation of global and local shape of surface and 

modification of global shape while preserving local shape. 

The wavelets-based multiresolution representation does 

not need extra memory except for saving the mesh of 

control points and it is also give sufficient fast respond in 

increasing/decreasing the resolution of mesh. Thus, it can 

be concluded that the wavelets-based multiresolution 

representation can be used as framework to build an 

interactive surface editor. The constraint of this 

representation is all surface has to be expressed using mesh 

of control points with size (2
j
+3)x(2

j
+3), with j is the 

resolution level. In the next study, we plan to implement 

much more editing types on our multiresolution surface, 

such as features pasting [9], adding the local shape through 

drawing a curve directly on surface [10][11], etc. 
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