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Abstract 
The information transport infrastructure is currently based and 

directionally developed towards super-dense wavelength division 

multiplexing with provisional routing and switching in spatial 

(e.g. routing to different sub-network elements) and spectral (e.g. 

multiplexing/demultiplexing, filtering, adding/dropping of 

wavelength channels) domain. The processing of photonic 

signals is becoming very important in these diverse domains. 

This paper is the Part I of three parts which has sought to 

integrate the fields of discrete signal processing and fiber-optic 

signal processing, integrated photonics and/or possibly nano-

photonics to establish a methodology based on which physical 

systems can be implemented. Because fiber-optics is essentially 

one-dimensional planar medium, the methodology has been 

proposed in order to implement 2-D signal processing using 1-D 

sources and processors. A number of 2-D filter design algorithms 

are implemented. These algorithms are applicable to photonic 

filters that perform 2-D processing. The developed 2-D filter 

design methods are generic allowing the proposals of several 

photonic signal processing (PSP) architectures in Part II and part 

II to enable efficient coherent lightwave signal processing.  
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1. Introduction to Photonic Signal Processing 

In recent years, there has been a notable increase in the 

number of applications that require an extremely fast signal 

processing speed that cannot be met by current all-

electronic technology. Photonic signal processing (PSP) 

opens the possibilities for meeting the demands of such 

high-speed processing by exploiting the ultra high 

bandwidth capability of lightwave signals with specific 

applications in the field of photonic communications and 

fiber optic sensor networks. 

1.1 Photonic Signal Processing: A brief overview 

The field of signal processing is concerned with the 

conditioning of a signal to fit certain required 

characteristics such as bandwidth, amplitude, and phase. 

Conventional techniques of signal processing make direct 

or indirect use of electronics. For example, frequency 

filtering, a most important signal processing procedure, 

can be performed through direct electronic means such as 

tunable IC filters or indirectly by digitizing the input for 

subsequent processing by computers or special purpose 

digital signal processing chips. Although a high 

performance can be obtained using either of the 

techniques, electronic methods suffer from physical 

limitations that govern the maximum processing speed. 

The demands for high performance beyond that achievable 

by electronic means have been increasing recently due to 

the increase in computationally demanding real-time 

processing applications. 

Using lightwaves instead of electronic signals as the 

information carrier in signal processing is an appealing 

concept.  

The full potential of the technology has been accelerated in 

recent years due to the invention and discovery of photonic 

crystals. Several important advances have been made in 

utilizing light as the information carrier including real-time 

spatial-light modulators and electro-optic devices, micro-

ring resonators, photonic crystal fibers, guided wave 

crystal photonics, super-prisms. Another incentive for 

using light as the information carrier is the superiority of 

fiber-optic communication systems which offer the wide 

bandwidth properties of photonic fiber medium. To fully 

exploit the capability of photonic systems, PSP is very 

essential.  

The field of photonic signal processing (PSP) can be 

divided into two distinctive approaches which are outlined 

in the following sections. 

1.2 Spatial and Temporal Approach 

The first use of lightwaves for signal processing 

applications was developed as early as in 1968 when an 

“integrated photonic correlator” {1(a)] and laser 

inscription device [1(b)] consisting of spatial light 

modulators and lenses in a planar waveguide was 

suggested. Further developments along this line were made 

and several experimental devices including acousto-optic 

spectrum analyzer, a time-integrating acousto-optic 

correlator, a hybrid electro-optic/acousto-optic vector 

multiplier, a high-speed electro-optic analog-to-digital 
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converter, and several fiber delay-line processors [2] were 

demonstrated. 

The advantage of the spatial and temporal approach over 

the conventional electronic approach can be seen in light 

of the fact that lenses which are 2-D devices, have Fourier 

transform properties and can therefore act as a massively 

parallel Fourier transform processor. Taking advantage of 

the massive parallelism can mean the removal of the Von-

Neumann bottleneck of present-day digital computers. 

Although an all-photonic computer does not seem feasible 

in the near future, a hybrid photonic-electronic computer 

offering ultra-high speed processing capability that could 

be realized by combining photonic information processing 

for some specific functions and electronics for general 

operation [2]. 

 2D spat ial 

modulat or 

2D spat ial 

modulat or 

2D pho todet ect or 

array  

L ighwave input  

Input  pat t ern  Reference pat t ern  Out put   

Figure 1: Spatial Fourier optical signal processor. The photonic active 

components are the acousto-optic diffractors. 

The drawback with spatial and temporal approach is the 

fact that the signal processing is performed in analogue 

manner. As shown in Figure 1, lightwaves carrying 

different signals must travel through different media 

therefore suffering acoustic diffraction resulting in 

crosstalk [2]. It is interesting to note that using holographic 

techniques, several layers of neural nets can be 

implemented with each layer in parallel format making 

spatial and temporal approach a suitable technique for 

neural network implementation. Although this technique 

may be useful in implementation of opto-electronic 

computer, the approach is not suitable for signals that have 

been transmitted through photonic fiber communication 

networks. Such signals are sequentially linear and to be 

processed by a spatial and temporal processor, a 

conversion into a suitable 2-D format using demultiplexing 

devices and laser arrays will be required. The following 

section introduces a technique which is ideal for lightwave 

signals from guided media such as photonic fibers and 

photonic crystals.  

The spatial structures can be translated in fiber and 

integrated photonic forms using planar lightwave circuit  

(PLC) using silica-on-silicon technology, for example the 

array waveguide filters acting as wavelength muxes and 

demuxes and spatial separators.  

1.3 Fiber-Optic Delay Line Approach 

Guided-wave photonics and fiber optics provide 

alternative architectures for PSP to the classic spatial or 

time integrating architecture introduced in Section 1.2. The 

main advantage of guided-wave systems over spatial and 

temporal system is the wide bandwidth property available 

with photonic fiber transmission medium. For example, a 

silica fiber with a nominal 5µs delay can store 1 GHz 
bandwidth signals for time periods less than one 

millisecond [2]. Another advantage of guided wave optics 

can be stated as the elimination of acoustic diffraction. 

However, since photonic fiber is essentially a 1-D medium 

(signal propagates along one axis - that of the fiber), this 

architecture sacrifices the 2-D nature of light that is 

utilized in time and space integrating architectures. In 

effect, in guided-wave systems, the advantage of massive 

2-D parallel processing capability of light is sacrificed for 

the wide bandwidth of guided wave optics which enables 

high speed processing. Despite this limitation which 

confines the use of fiber-optic technology to signals from 

guided lightwave transmission medium, the simple fact that 

the current major usage of photonic systems is in 

communication systems makes the technology useful as it 

presents the possibilities of removing the bottleneck 

caused by opto-electronic conversion and therefore 

ensuring full utilization of fiber bandwidth. So far various 

uses have been found for fiber-optic signal processors as 

frequency filters, matched filters, correlators, and 

waveform and sequence generators [3-10]. 

 ref;ector optical coupler optical  fibre 

Input lightwave 

Output 
 

Figure 2: Fiber-optic delay line processor. The coupler can be replaced 

by a3-port optical circulator. The reflector can be a fiber Bragg grating 

(FBG). 

 Figure 2 shows one possible configuration of fiber-optic 

processor. Although filter coefficients were realized using 

reflectors in Figure 2, other in-line components such as 

photonic attenuator/amplifier can also be used for 

implementing filter coefficients. It is evident that the 

operation of fiber-optic delay line filters is similar to that 

of digital filters. In fact, the correct term to describe the 

fiber-optic signal processing would be ‘discrete-time PSP’ 

rather than digital signal processing as the range of the 

input or output signal is not digital at all. In any case, the 

FBG 
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discrete-time property makes it possible to apply the well 

developed z-transform techniques to filter design. In 

Section 2, the application of the z-transform techniques for 

analysis and design of fiber-optic systems is discussed in 

detail. 

1.4 Motivation 

The demand for multi-dimensional photonic signal 

processing (M-ary PSP) can be attributed to various factors 

due the growing feasibility of high-capacity digital 

transmission networks capable of transmitting ultra-high 

bit rate and time division multiplexing up to 160 Gb/s as 

well as fiber optical sensor networks. 

A problem with the implementation of such systems is the 

lack of devices that are capable of processing an enormous 

amount of data associated with multi-dimensional signals. 

With photonic transmission networks becoming the 

transport infrastructure, PSP technique has become 

increasingly more desirable compared to O/E and E/O 

conversion techniques. As discussed in Section 1.3, fiber-

optic signal processing systems are ideal for such 

processing demands for several reasons: all-optical (or 

photonic) processing of photonic information of optical 

communication systems are possible using fiber-optic 

signal processing; 2-D signals usually require much higher 

bandwidth than 1-D signals and therefore must be 

processed by a high bandwidth system to allow real-time 

performance; it is likely that future telecommunication 

networks would be all fiber-optic. 

 
 Spatial and Temporal Fiber-optic 

Principle 

operating 

mode 

unguided guided 

Components 

used 

lenses, light modulators, 

mirrors, masks, LED or 

laser arrays, slits 

lasers or  LED’s, 

optical fibers, optical 

amplifiers (OA), 

attenuators, reflectors 

Time mode continuous-time discrete-time 

Flexibility 

hard to change 

configuration once 

developed 

easy to adjust the 

function using 

different tab values 

Analysis 

method 

difficult (some Fourier 

transforms) 

well known z-

transform method 

Accuracy low high 

Cross-talk yes no 

Major use Photonic computing 
Communication 

signal processing 

Parallel 

processing 

capability 

massive parallel 

processing 

limited parallel 

processing 

Table 1-1: Outline of the two different approaches to PSP 

2. Multidimensional Signal Processing 

Multidimensional signal processing enables processing of 

signals that depend on more than one co-ordinate. 

Although many concepts of multidimensional signal 

processing are straightforward extensions of 1-D signal 

processing theory, there are also significant differences 

that need to be clarified, particularly when referred to 

photonics. Discussions of multidimensional signal 

processing in this paper is limited to 2-D signal processing 

applicable to photonics that is by far the most important 

class of multidimensional signal processing. 

2.1 Multi-dimensional Signal 

One may define multidimensional signals as signals whose 

values at a certain instance of time, space, or other 

coordinates depend on more than one variable. In 2-D 

signal processing, each of the properties depends on both x 

and y direction and therefore the concepts of spatial signal, 

and therefore spatial frequency must be introduced. Spatial 

frequency does not depend on time, but rather depends on 

the spatial variations of the 2-D signal. There are two 

distinct spatial frequencies, one in x direction and one in y 

direction. 2-D signals form the most important class of 

multidimensional signals and methods developed for 2-D 

signal can be generalized to signals of larger dimensions. 

This paper concentrates on developing filter design 

methods for two-dimensional signals. 

2.2 Discrete Domain Signals 

A signal domain can be either continuous or discrete. For 

digital signal processing purposes however, it is 

convenient to ‘sample’ continuous domain signals at a 

discrete interval so that in effect it has a discrete domain. 

In 1D, signal to be processed or stored in a sequential 

manner can be sampled at discrete intervals of time or 

direction. Put into an equation form, 1D signal can be 

represented by a train of scaled impulses as  

0
( ) lim ( ) ( )

k

a t a k t kδ
∞

∆→
=−∞

= ∆ − ∆ ∆∑   (1) 

where ∆ is the sampling period and n denotes the sequence 

number. The sampled signal can be infinite in extent and 

reflects this accordingly. If ∆ is infinitely short, then above 
expression reduces to the representation of a continuous 

signal as expected. 

In 2-D, a natural extension to (1) can be made as s 
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1 2
1 2

1 1 2 2

0 0
1 1 2 2 1 2

( , )
( , ) lim lim

( , )k k

a k k
a x y

x k y kδ

∞ ∞

∆ → ∆ →
=−∞ =−∞

∆ ∆
=

− ∆ − ∆ ∆ ∆∑ ∑  (2)  

There is an important difference between sampling of 1D 

signals and 2-D signals in practice. Assuming there is only 

one sampling device, 1D signal such as the one shown in 

Figure 3(a) can be sampled by taking values at discrete 

intervals. If the signal duration is infinite in extent, no 

truncation is needed as the transfer function defines the 

limit even if the signal is not periodic. For 2-D signals with 

infinite duration, this is not the case. As it can be seen in 

Figure 3(b), if the 2-D signal was sampled infinitely in one 

dimension, the part of the 2-D signal which extends in the 

other dimension will never be sampled. For 2-D signals, 

there is always a predefined limit on how many samples 

are taken in each dimension. After reaching the limit in one 

dimension, the coordinate on the other dimension is 

incremented by one sampling period and the sampling 

process continues until the number of samples in the first 

dimension again reaches the limit. The process is repeated 

until the pre-defined number of samples in the second 

dimension is reached. The consequence is that the process 

gives a train of sampled 2-D signals stretched out in 1D as 

shown in Figure 3(c). For 1-D discrete time processing of 

2-D signals, the signal must be sampled in this way so that 

the processor can implement the delays z1
-1
 and z2

-1
 using 

only one dimensional delay photonic element. The limiting 

of sample space is similar to windowing or truncation 

performed on 1-D signals for some signal processing 

operations such as discrete Fourier transform (DFT). 

Discrete space form of 2-D signal with predefined limits 

can be expressed by  

1 2

1 2

1 2 1 2 1 1 2 2

0 0

[ , ] [ , ] [ , ]
n n

k k

a n n a k k n k n kδ
= =

= − −∑∑    (3) 

1  2  3  4  . .  .  .  . . 

t  

 0  

  
(a) 

      

 

x 
(b )  

1 4  1 5  1 8  1 9  2 0  

2 1  2 2  2 3  

1 6  1 7  

2 6  2 7  2 4  2 5  

3 0  3 1  3 2  3 3  3 4  2 8  2 9  

3 7  3 8  3 9  4 0  4 1  3 5  3 6  

4 4  4 5  4 6  4 7  4 8  4 2  4 3  

y  

0  1  4  5  6  

7  8  9  

2  3  

1 2  1 3  1 0  1 1  

 

 1 2 3 4 

t 

(c) 

 0 6 7 8 9 5 . . . . . . 48 

 

Figure 3 (a) Infinite extent 1-D signal.(b) 2-D signal with finite 

predefined limit of 7×7(each index refer to the crossing at the bottom-left 

corner of the grid it belongs to) and (c) The signal in (b) fed into 1-D 

signal processor 

Using the above form of coding 2-D signals in a linear 

sequence, 2-D signal processing using 1-D medium such as 

optical fiber can be made possible. 

2.3 Multi-dimensional Discrete Signal Processing 

Having made a reasonable compromise in the size of the 

predefined limit, i.e. truncation window size, the Nyquist 

rate can be applied to 2-D signals to determine the 

sampling rate. In 1D, the Nyquist rate is twice the highest 

frequency component of the sampled signal and defines the 

sampling rate necessary to preserve the entire bandwidth of 

the signal. 

In 2-D, the direction in which the Nyquist rate is applied 

must be made clear as sampling in one dimension at the 

Nyquist rate may not guarantee the preservation of the 2-D 

signal if the signal varies faster with respect to the other 

dimension. To preserve the entire 2-D signal bandwidth, 

sampling must be performed at twice the highest spatial 

frequency component of the 2-D signal in any direction in 

the sampled space. For example, consider a signal which 

has a 20 GSamples/s component in n1-axis but has a 60 

GSamples/s component at 70° from n1-axis. In this case, 

the sampling rate of 40 GSamples/s in both dimensions is 

not adequate as the signal has a frequency component of 

60 GSamples/s ×sin(70°)=56 GSamples/s along n2-axis. 

Since the sampling rates in the both dimensions are usually 

kept the same, sampling rate of 56×2= 112 GSamples/s in 

both dimensions will preserve the entire 2-D signal 

bandwidth. 

In discrete-time signal processing, the term normalized 

frequency is used to describe a frequency independent of 

the system sampling frequency. The concept is applied in 

2-D processing with a straightforward extension to spatial 

frequency.  

2.4 Separability of 2-D Signals 

A 2-D sequence is separable if it can be represented by a 

product of two 1-D sequences as shown in (2.4.1). 

Separable sequences form an important and special, but 

limited class of 2-D sequences. Many results in 1-D theory 

have a simple extension for separable 2-D sequences 

whereas for non-separable sequences such extensions often 

do not exist. If a 2-D sequence is separable, the 
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separability can be exploited to reduce the processing 

requirements resulting in considerably less amount of 

computation. Unfortunately, most 2-D sequences are not 

separable. 

1 2 1 2[ , ] [ ] [ ]s n n f n g n=      (4) 

An example of a separable sequence is the unit sample 

sequence δ(n1, n2) shown in (5)(a) [10]. Other examples of 

separable sequences include the unit step sequence u(n1, 

n2) and the example in (5)(b). 

1 2 1 2[ , ] [ ] [ ]............( )n n n n aδ δ δ=   

1 2 1 2n n n n
a b b

++  = ( )1 1 2 ..............( )
n n n

a b b b+    (5) 

2.5 Separability of 2-D Signal Processing Operations 

Similar to 2-D sequences, a 2-D signal processing 

operation can be classified as separable or non-separable. 

The consequence of an operation being separable is that 

the operation yields the correct answer when it is 

performed in two independent cascade stages with each 

stage performing the operation with respect to only one of 

the independent variables. The situation is illustrated in 

Figure 4. 

  

Signal processing 

operation 

 

2D Input 2D Output 

S. P. 

Operation 

in n1 
2D Output 

S. P. 

Operation 

in n2 
2D Input 

 

Figure 4: A separable 2-D signal processing operation 

An example of a 2-D separable signal processing operation 

is double integration. A double integration procedure can 

be expressed as 

2 1

1 2 1 2 1 2( , ) ( , )
n n

F n n f n n dn dn

∞ ∞

=−∞ =−∞

= ∫ ∫    (6) 

The 2-D sequence f(n1, n2) is integrated with respect to n1 

first, and then with respect to n2. The two procedures can 

be put in cascade and thus double integration operation is 

classified as a separable operation. Note that the 

separability of the 2-D input sequence f(n1,n2) is not a pre-

requisite for the success of the operation. In addition, 

separable signal processing operations have separable 

impulse responses. The 2-D signal processing can be 

performed by convoluting the 2-D input with the 1-D filter 

impulse response in one dimension, and the operation can 

be completed by convoluting the result of the first 

convolution with the filter impulse response in the other 

dimension. It is therefore clear that the operations can be 

performed using a cascade stage of two filters. As with the 

case of separable sequences, separable operations form a 

special class of 2-D signal processing operations. Most 

signal processing operations are not separable. 

In discrete domain, separable operations can be expressed 

in terms of a product of two z-transform transfer functions. 

For example, is double integration using Simpson’s rule 

for digital integration [11]. 

1 1

1 1 2 2
1 2 1 1

1 2

1 1
( , )

2 1 2 1

T z T z
H z z

z z

− −

− −

   + +
= ⋅   − −   

  (7) 

It is clear that H(z1,z2) is separable. For other functions, the 

separability is often not the case. A circularly symmetric 2-

D digital low pass filter cannot be separated into a product 

of two functions each dealing with only one kind of delays 

(z1 or z2). In such cases, a way of dealing with non-

separability must be found as cascade stages will no longer 

work. It is the non-separability of most 2-D signal 

processing functions that makes implementation of 2-D 

filters a difficult task. 

1 1 1 1

1 2 1 2

2 1 2 2 1

1 1 2 1 21 2

2 3 3 1

2 1 1 2

3 2 2 3 3 3

1 2 1 2 1 2

1 0.9 0.9 0.8

0.1 0.05 0.05( , )

0.1 0.1 0.1

0.07 0.07 0.05

z z z z

z z z z zH z z

z z z z

z z z z z z

− − − −

− − − − −

− − − −

− − − − − −

+ + +

− − −=

− + +

+ + −

 (8) 

Another advantage of having a separable implementation is 

the issue of stability. The stability analysis of non-

separable filters is very difficult and there are no known 

simple methods of checking the stability of 2-D filters 

directly from the transfer function or from pole-zero plots 

as is the case with 1-D systems
1
. However, with separable 

filters if 1-D sub-sections are stable, then the overall 

stability is guaranteed. Stability of 1-D filters can be 

guaranteed by having all system poles inside the unit 

circle. 

3. Filter Design Methods for 2-D PSP 

In Section 2, the concepts of 2-D signal processing have 

been introduced. Out of many possible mathematical 

                                                           
1 For more detailed discussion on stability checking using 

position of poles, refer to Section 4, [25]. 
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models for 2-D systems, the model best suited to fiber-

optic signal processing must be found. In this section, two 

different mathematical models of representing 2-D systems 

are presented and a brief introduction to 2-D filter design 

methods is given. 

3.1 2-D Filter Specifications 

To specify a filter, two approaches can be adopted. One 

approach specifies a filter in mathematical form by 

specifying the transfer function or the state-space equations 

of the filter. This method can specify the exact behavior of 

the filter. The other approach specifies a filter by its 

transfer characteristics of magnitude and phase response or 

impulse response of the filter. This later approach is more 

intuitive than the former because it is easy to see how the 

filter would behave in practical implementation. However 

the accuracy of the filter then depends on the accuracy of 

the specification therefore can sometimes be inadequate. In 

any case, the later approach must go through the 

mathematical description before implementation. 

Developing a method for designing and implementing a 

filter from its dynamic characteristics therefore 

encompasses the mathematical description. 

The method developed in this section assumes the spatial 

frequency responses of the filter to be specified. The 2-D 

photonic filter design process can be as follows: 

Specification of magnitude or impulse response the desired 

2-D filter; Development of transfer function or state-space 

description of the 2-D filter; Development of signal flow 

diagram of the 2-D filter and Development of photonic 

implementation of the 2-D filter. 

To specify a filter using its frequency response, both 

magnitude and the phase responses need to be supplied. 

However, designing a filter with a certain phase response 

is a very difficult task. In many cases of interest, a 

condition of linear phase is all that is required and in this 

paper, the condition is adhered to. The reason for requiring 

a linear phase can be explained by the Fourier transform of 

a 1-D linear phase filter as 

( ) ( )jV f e v tϕω ϕ− ⇔ −       (9) 

In (9), the phase φω is proportional to frequency. The 
Fourier transform (FT) of linear phase on the right of   

shows that a linear phase corresponds to pure time delay. 

The result is extendible to 2-D simply by substituting 

frequency by spatial frequency and time delay by spatial 

delay. A non-linear phase response leads to non-uniform 

delays and thus inter-symbol interference (ISI). 

 

3.2 Mathematical Model of 2-D Discrete Photonic 

Systems 

3.2.1 Transfer Function Description 

2-D transfer function description of the filter can also be 

explained by using a 2-D difference equation. As in 1-D, 

2-D transfer functions can readily be turned into 2-D 

difference equations 

1 1

1 1 2 2
1 2 1 1

1 2

1 1
( , )

2 1 2 1

T z T z
H z z

z z

− −

− −

   + +
= ⋅   − −   

   (10) 

The equivalent difference equation is given by  

1 2
1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

( , ) [ ( , ) ( 1, ) ( , 1)
4

( 1, 1)] ( 1, )

( , 1) ( 1, 1)

T T
y n n x n n x n n x n n

x n n y n n

y n n y n n

= + − + −

+ − − + −

+ − − − −

 

Figure 5 illustrates the sample points which are summed in 

y(n1,n2) of (10). Because we are dealing with spatial delay 

and not time delay, the actual implementation of delay 

depends on the signal transmission format. If all points of 

the 2-D signal are transmitted in parallel, then the delays 

need not be time delay raising the possibility of parallel 

processing similar to that of spatial and temporal 

architecture. 

 

y31 y33 y32 

y21 y23 y22 

y11 y13 y12 

x31 x33 x32 

x21 x23 x22 

x11 x13 x12 

Input array Output array 

Current 

 output  

 

Figure 5: Illustration of the difference eqn. (10)  

A 1-D integrator transfer function amounts to just the first 

half or the second half of H(z1,z2) in (10) and can readily 

be turned into a signal flow graph  (SFG) as shown in 

Figure 6. 

 

z
-1
 

1 

1 

1 

-1 

Input Output 

 

Figure 6: 1-D trapezoidal integrator signal flow diagram 
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The SFG of 2-D version of the trapezoidal integrator 

transfer function H is shown in Figure 5. A notable 

difference is the presence of two different delay elements. 

In spatial terms, one represents the vertical delay and the 

other represents the horizontal delay. 

 

z1
-1
 

z2
-1
 

z1
-1 

-1 

-1 

1 

1 

1 

1 

1 1 Input Output 
T1 /2 T2 /2 

 

Figure 7: 2-D trapezoidal integrator SFG diagram 

Whether a SFG can readily be turned into photonic domain 

depends on its structure. A major obstacle that prevents a 

direct translation of SFGs into photonic circuits is the 

number of complex interconnections. Too many complex 

interconnections can result in the loss of modularity 

making the photonic implementation of the transfer 

function difficult. 

Transfer functions can be manipulated into potentially 

useful forms for photonic implementation. One such 

manipulation technique is called continued fraction 

expansion realization (CFER) as described below. 

Although the method results in reduced number of filter 

components, not all transfer function can be expanded 

easily. A method of designing a filter transfer function that 

can be expanded using continued fraction expansion is 

therefore required. Such a design method does not exist 

currently and as a consequence the use of CFER is 

confined to only transfer functions that are expandable. 

Continued Fraction Expansion 

Given a transfer function, the numerator of the transfer 

function is recursively long-divided by the denominator 

until the remainder is only a simple fraction. A possible 

form for a fraction which has been expanded using 

continued fraction expansion as 

1 2 1

1 1

2

1 2

1
( , )

1

1

1

H z z C

A z

C

B z

= +
+

+
+
O

   (11) 

It is intuitively obvious that such expansions do not exist 

for all polynomial fractions. A method of checking the 

existence of such expansion is given in [12-16]. 

 

3.2.2 State-Space Equation Description  

State-space description can be seen as an alternative 

description method to the transfer function description. 

The advantages offered by state-space description include 

the notion of observability and controllability. Although 

such concepts are useful in 2-D dynamic control system, 

the applications of the concepts are not obvious in 2-D 

signal processing. At best, the main advantage of using 

state-space approach can be stated as the established 

techniques of 1-D state-space theory such as algorithms to 

manipulate state-space matrices to obtain a reduced order 

system. 

An Algorithm for Conversion of a 2-D Transfer Function 

into 2-D State-space Equation 

In [14], a 2-D state-space description is formulated from a 

2-D FIR transfer function description using the following 

method. Ref.[12] has given a more generalized case of 

transfer functions of 2-D IIR filters.  

Formulation of state-space equations from transfer 

function [14] 

A 2-D FIR transfer function can be expressed by 
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State-space form can be expressed as 
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An Algorithm to Convert a 2-D State-space equations into 

a 2-D Transfer Function 

For state-space approach to be useful, there must be a 

method of converting 2-D state-space Eqs into 2-D transfer 
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function form. An algorithm to perform such a task could 

not be found in standard text books of digital signal 

processing, and therefore it had to be devised 

independently. The algorithm given in this section 

performs conversion from a 2-D state-space equations 

specified in (15) to a 2-D transfer function description. 

By rearranging (12), we can obtain the transfer function 

form of the same system with input denoted by x and 

output denoted by y as 

1

1

1 2

2

( , )
m

n

z
H z z

z

−
  

= −  
  

I
C A B

I
  (15) 

What makes the implementation of above equation 

difficult is the presence of matrix inverse. Because the 

matrix inside the bracket in (15). (15) describes a 2-D 

system, the determinant of the matrix contains two 

independent variables z1 and z2 and cannot therefore be 

solved by simply obtaining the eigenvalues of the matrix 

and cross-multiplying to get coefficients of variables as in 

1-D determinant calculation. 

An Algorithm to obtain the characteristic polynomial of a 

matrix describing a 2-D system 

1. Let A be the matrix of size m×n describing a 2-D 
system and Z be a zero matrix of size m×n. 
2. Let z1 = 0, z2 = 0. 

3. Let A’ be a matrix formed by eliminating m-z1 rows 

and n-z2 columns from matrix A. 

4. Let Zz1,z2 = Zz1,z2 + ∆(A’). ∆ is 1-D determinant 

operator. 

5. Repeat step 3 and 4 until all combinations of z1 rows 

and z2 columns are tried. 

6. Repeat step 3 to 5 with different value of z1 and z2 

until all coefficients of the characteristic polynomial Z are 

found. 

7. Reverse the signs of elements of Z whose indices sum 

to an odd number. 

The resulting matrix Z contains the coefficients of 2-D 

characteristic polynomial in format as. 
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For the 2-D transfer function description, denominator and 

the numerator can be calculated by 

det( )

det( ) det( ) ( 1)

a

b D

=

= − × − × −

h A

h A B C A
  (17) 

3.3 Filter Design Methods 

3.3.1 Direct Design Methods 

Direct design methods include window method, frequency 

sampling method, transformation method for FIR filter 

implementations, and impulse response method for IIR 

filters. All of the design methods listed are similar to the 1-

D methods of the same name involving some extensions of 

the concepts into 2-D and they all result in non-separable 

transfer functions. 

The general format of non-separable filter transfer 

functions generated by FIR filter design methods is given 

in Section 2 and the most general form of 2-D FIR filter 

signal flow diagram is shown in Figure 8. In Section 4, the 

details of the algorithms and the implementations of 2-D 

direct design FIR filters are discussed. Direct design 

methods for IIR filters are also discussed. 
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Figure 8: General form of FIR filter signal flow diagram [15] 

3.3.2 Use of Matrix Decomposition 

In [16], Mitra introduces a method where matrix 

decomposition is used to separate a non-separable function 

into a cascade of two separable filter stages each one 

involving only one set of delay elements. A drawback with 

Mitra’s method is that there is no general structure for 

filter implementation. The filter structure is therefore 

heavily dependent on the transfer function and this lack of 

generality of filter design limits the usefulness of the 

method in photonic filter implementation where the final 

product corresponds closely to the SFG representation of 
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the filter transfer function. Figure 9 shows a part of the 

filter implementation. 

 

+ z2
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 z2
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 + z2
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 + 

2 -

 

Figure 9: A subsection of filter in [16]. 

Another approach which uses matrix decomposition is by 

decomposition of 2-D magnitude specification into the sum 

of products of 1-D magnitude specifications. Because 2-D 

magnitude specification becomes a set of two 1-D 

magnitude specifications, design process of a 2-D filter 

reduces to a set of 1-D filter designs for which established 

design methods are aplenty. In addition, the resulting 2-D 

filter is separable. Section 4 discusses a number of 2-D 

filter design algorithms based on matrix decomposition of 

2-D magnitude specification. 

4. Direct 2-D Filter Design Methods 

As the first of two streams of 2-D filter design methods, 

direct 2-D filter design methods are introduced. This class 

of 2-D filter design methods does not use matrix 

decomposition and instead uses 2-D magnitude 

specifications directly to produce non-separable designs. 

4.1 FIR and IIR Structures in 2-D Signal Processing 

A digital filter can be divided into two broad classes, FIR 

(Finite Impulse Response) and IIR (Infinite Impulse 

Response). FIR filters only use feed forward structure and 

therefore are non-recursive, whereas IIR filters use 

feedback as well as feed forward structure and therefore 

are recursive. The impulse response of an IIR filter is 

infinite in duration, therefore the name ‘infinite impulse 

response filter’. 

Given a 2-D frequency response specification, one can 

either try to formulate a FIR filter transfer function or an 

IIR filter transfer function. There are several factors which 

must considered when deciding which structure to 

implement for a given frequency response specification. (i) 

Linearity of the phase response of the filter; (ii) Stability of 

the filter; and (iii) Order of the implemented filter. 

Linearity of the designed filter’s phase response is very 

important as explained previously in Section 3.1. Linear 

phase FIR filters are very easy to design as the condition 

for the linear phase is simply a symmetric impulse 

response which in turn is guaranteed if the magnitude 

response of the 2-D filter is symmetric about the two axis. 

For 2-D IIR filters, phase linearity is much more difficult 

to guarantee. Often IIR filters are specified only with 

magnitude characteristics and the phase response is 

generally accepted for what it is(which is non-linear). The 

lack of control over phase response of IIR filters limits its 

usefulness in many applications [10]. 

Stability is a very important issue in designing of any 

dynamic system which requires no explanations. The 

advantage of 2-D FIR filter over 2-D IIR filter regarding 

the issue of stability is that for 2-D FIR filters, stability is 

inherent in its definition. Since the impulse response of 

FIR filter is finite in duration, bounded input results in 

bounded output and the filter is therefore always stable. 

Although 2-D IIR filters can be designed to be stable, as 

mentioned in Section 2.5 there is no simple algorithm for 

checking the condition for stability of a 2-D IIR filter. A 

mathematical theory involving complex cepstrum to check 

for the stability condition of 2-D filters is quite involved 

and most algorithms for checking the 2-D stability simply 

repeat 1-D stability condition over the 2-D space many 

times over which can be computationally very inefficient 

[10]. As a consequence of the lack of usable algorithms or 

simple method for stability testing, there is no known 

method of designing stable 2-D IIR filters [10]. In practice, 

2-D FIR filters are therefore much more preferred to 2-D 

IIR filters. 

Order of the filter refers to the number of delay elements 

in the numerator (or the denominator if the filter is IIR). 

Order of the filter has a direct consequence in the final 

implementation of the filter as the determining factor of 

number of processing elements. Higher order filters require 

more processing elements than lower order filters which 

makes low order filters more desirable. One distinctive 

advantage of IIR filters over FIR filters is that the order of 

the filter required for a given magnitude specification is 

smaller. FIR filters can sometimes require an excessive 

order(the definition of ‘excessive’ depends on the 

implementation medium - for example in software 

implementation of a digital filter, a 1000th order filter 

might be quite acceptable but with fiber-optic delay line 

filters, the maximum order is well below 50). For example 

an integrator, which has an infinite impulse response by 

nature can be described using a first order filter within 

12.5% error [11] whereas achieving the same error with 1st 

order FIR filters would be impossible. In addition, 2-D 

filters usually require much higher order filters than 1-D 

filters of similar transition band requirements and it is 
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therefore important that the 2-D filter design methods keep 

the order of the filter to an acceptable level. 

4.2 Frequency Sampling Method 

As the first of the direct 2-D filter design methods, 2-D 

frequency sampling method produces an FIR filter with the 

minimum of fuss. Using the fact that the transfer function 

of a FIR filter is same as the impulse response of the filter, 

2-D frequency sampling method takes discrete Fourier 

transform of even-spaced samples of 2-D frequency 

response and uses the result as the coefficients for 2-D 

transfer function. It is noted that the procedure is identical 

to that of 1-D frequency sampling method. 

It is observed in [10] that the filter designed using 

frequency sampling method is not optimal as far as number 

of delay elements is concerned. Also, the frequency 

response of the filter is controlled only by the sampling 

rate of the frequency sampling and the nature of the 

frequency samples. For example, increasing the frequency 

sampling rate will increase the number of discrete 

sampling points of the impulse response and hence will 

result in a filter with a better frequency response but with a 

larger order. It is also found that frequency response can be 

improved considerably especially around the transition 

band if the ideal frequency response takes account of the 

transition frequency values. 

 

A filter design example using frequency sampling method 

Design Aim:  A low pass filter with normalized cut off 

frequency of 0.5 in both dimensions. 

Method:  Frequency sampling method 

Program used: FIR2-DFS.m 

Result:  The magnitude response of the designed 

filter is shown below. Filter is of 33×33 rd order and the 
error is 3.63%. 
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Figure 10: Magnitude response of a filter designed using frequency 

sampling method 

The filter error is calculated using Eq. 4-1 where 2N1+1 

and 2N2+1 are order of the filter in n1 and n2 dimension, 

respectively. Hd is the ideal frequency response, Hf is the 

actual filter response, and Ω1 and Ω2 are the frequency 

sampling rates. 
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The magnitude response shown below is obtained by 

incorporating the transition band values into the ideal 

frequency response parameter. It can be seen that the 

ripple in the transition band has disappeared and the error 

is found to be only 2.74% which is nearly 1% less than that 

obtained without any transition band consideration. 
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Figure 11: Magnitude response of the filter designed with transition band 

consideration 

The response shown below is obtained with a filter of 

order 20×20. The error is found to be 5.85% which 

compares unfavorably with 3.63% obtained with the first 

design. Clearly lower order filters result in considerably 

worse performance. 
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Figure 12: Magnitude response of filter of order 20×20 

4.3 Windowing Method 

The window method for 2-D filters use a 2-D window 

instead of 1-D window to achieve  a finite impulse 

response sequence in 2-D. As with 1-D windowing 
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method, the 2-D windowing method begins by performing 

a Fourier transform on the desired frequency response 

expression. The impulse response of the filter in 2-D is 

then multiplied by the expression for window. The purpose 

of multiplying by a windowing function is to reduce the 

effect of sharp transitions in the transition band and also to 

make the impulse response finite through truncation. The 

windowing function is chosen so that the frequency 

response is least affected and the impulse response is as 

short as possible. It is noted in [10] that the performances 

of window method and the frequency sampling method are 

similar and an example is therefore omitted.  

4.4 McClellan Transformation Method 

McClellan transformation method takes an entirely 

different approach to the design process of 2-D filters. The 

idea is to transform a 1-D FIR filter into a 2-D filter of the 

desired characteristic. The 1-D filter can be designed using 

any 1-D filter design method so that its frequency response 

is a cross-section of the desired 2-D filter response (see 

Figure 13). 

 

0 0.5π 0.5π 0.5π 0.5π 

0.5π 

0.5π 

ω1 

ω2 

ω2 

(a) 2D filter magnitude response 
(b) A cross-section of the 2D filter 

magnitude response 
 

Figure 13: Desired 2-D filter magnitude specification and the required 1-

D filter specification 

Given the transfer function of 1-D FIR filter, each 

coefficient is multiplied by the transformation function T 

which is a function of ω1 and ω2. The resulting transfer 

function is also a function of ω1 and ω2 and describes a 2-

D filter with the desired magnitude response. 
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In (19), RT is the region of support of t(n1, n2) which 

describes the transformation function. It should be noted 

that using different transformation functions, many 2-D 

filters can be designed from a single 1-D filter. It is also 

important to note that as long as the 1-D filter is a linear 

phase filter, the transformed 2-D filter is also a linear 

phase filter as long as phase of the transformation function 

T is linear (i.e. the transfer function is symmetric about the 

zero delay point since multiplying a linear phase function 

by another linear phase function does not affect the 

linearity of the phase of the resultant function. 

2-D filter design using transformation method 

Design Aim: 2-D low pass filter with frequency cut 

off at 0.5 in both dimensions 

Method:  McClellan transformation method. The 

filter order is 13×13 and the transformation function used 

is given by 
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Graphically, above transformation function can be 

expressed as in Figure 14. Figure 15 shows the frequency 

response of the designed filter. It is clear that the 

performance of the filter designed using the transformation 

method is somewhat worse than that designed using 

frequency sampling method. A factor which should be 

taken into consideration is the order of the filter. The order 

of the filter in is only 13×13. The reason for such large 
difference lies with the coefficients of the resulting filter of 

transformation method. In Figure 15(b), the coefficients of 

the filter as originally designed by the transformation 

method is shown as the form of impulse response of the 

filter. Clearly, it is a 33×33 order filter, however the 
surrounding 10 rows and columns do not contribute to the 

filter response at all and therefore can be removed without 

affecting the response of the filter and the remaining 

coefficients constitute a 13×13 order filter. 
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Figure 14: Transformation sequence used [10] 

Matlab program used: FIR2-DTF.m 

Result: The error calculated = 13.71%. 
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The transform function has a large bearing on the eventual 

filter transfer function. The filter shown in Figure 16 is of 

the same order as the filter in ) 
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Figure 15: (a) Frequency response of a filter of order 13×13 designed 
using transformation method (b) Impulse response(filter coefficients) of 

the filter designed by transformation method. 
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Figure 16: 2-D filter designed using a different transform function 

Figure 15(a) and 1-D prototype function is identical. 

However, the transformation function is now a 7×7 

function
2
. It can be seen that the transition band is much 

more distinct whereas the stopband is not as well 

attenuated as the filter response in ) 

Figure 15(a). The overall error of the filter whose 

frequency response is shown in Figure 16 is found to be 

12.84%. It is clear that the good performance in passband 

and the transition band is offset by the poor stopband 

attenuation. Finally, it is noted that the resulting transfer 

function is a non-separable FIR transfer function. 

5. Concluding Remarks: Part I 

The objective of the research this series of three parts is to 

explore possible ways of realizing a 2-D signal processing 

system using fiber-optic signal processing architecture. 

This part I describes a general technique for designing 2-D 

filters. Numerous examples of utilization of the technique 

are given. Although the discussion is focused on fiber-

optic systems, the design procedure for 2-D filters are just 

as applicable to any other signal processing architectures. 

For example, the 2-D filter order reduction method given 

in Section 4 can be used to simplify 2-D lightwaves 

systems which may or may not be fiber-optic systems. 

The design of 2-D filters is classified into two different 

classes. One class used matrix decomposition to reduce the 

design of 2-D filters into a set of 1-D filter design 

procedures. The other class uses direct extensions of 1-D 

filter design methods. It is found that neither has a 

distinctive superiority over another and that the designer 

has to choose what is the best for the particular application, 

most likely by designing both and comparing the 

performances. All of the design procedures are 

implemented using the MATLAB programming 

language.  

Part II will describe the techniques of matrix 

decomposition methods.ong these techniques, the multiple 

stage singular value decomposition method performs the 

best whereas for direct methods, frequency sampling 

method produced filters with smallest errors. A 2-D Filter 

order reduction method is applied to make fiber- and 

integrated optic signal processing more feasible. The 

technology allows the filter designer to produce filters of 

orders that are implementable in practice without sacrifices 

in performance. Part III will deal with different possible 

filter structures are proposed and illustrated for photonic 

implementation of 2-D filters. Filter structures for FIR and 

IIR filters are also shown and examples are given in 

Section 9. 

                                                           
2 [13] discusses methods of designing such transformation 

functions in great detail 
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