
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009 

 

 

110 

Manuscript received May 5, 2009 

Manuscript revised May 20, 2009 

MultiMultiMultiMulti----dimensional Photonic Processing, A Discretedimensional Photonic Processing, A Discretedimensional Photonic Processing, A Discretedimensional Photonic Processing, A Discrete----Domain Domain Domain Domain 

Approach: Part II Approach: Part II Approach: Part II Approach: Part II –––– Decomposition Techniques and  Decomposition Techniques and  Decomposition Techniques and  Decomposition Techniques and 

Implementation Using Fiber Optic Delay LinesImplementation Using Fiber Optic Delay LinesImplementation Using Fiber Optic Delay LinesImplementation Using Fiber Optic Delay Lines    

Le Nguyen Binh 
Department of Electrical and Computer Systems Engineering, 

Monash University, Clayton Victoria 3168 Australia.  

  
 

Abstract 
 Ultra high bandwidth properties of fiber-optic signal processing 

systems could provide the necessary processing power for 

computationally demanding two-dimensional signal processing 

applications. The techniques of fiber-optic signal processing so 

far have not been applied to the area of two-dimensional signal 

processing. Further the matured fields of integrated optics and 

integrated photonics as well as recent developments of nano-

photonics allow innovative structures for processing of 

lightwaves in photonic domain. This paper as Part II of three part 

series on multi-dimension photonic signal processing, has sought 

to integrate the fields of discrete signal processing and fiber-optic 

signal processing, integrated photonics and/or possibly nano-

photonics to establish a methodology based on which physical 

systems can be implemented. Several photonic signal processing 

(PSP) architectures are proposed to enable efficient coherent 

lightwave signal processing. Although the structures are 

originally developed for 2-D processing, they are also applicable 

for 1-D structures. Using a combination of one-dimensional filter 

structures, 2-D fiber-optic filters can be constructed. The 

relationship between the fiber-optic model and the mathematical 

model has been linked to allow quick implementation. Using the 

developed methodologies, multi-dimensional coherent photonic 

signal processors can be designed. 

Key words: 
Multi-dimensional, Discrete-Domain, Fiber Optic. 

1. Introduction 

This paper is the Part II of the series of three parts on 

multi-dimension photonic signal processing. Part I outlines 

the motivation of this work and the fundamental theory for 

multi-dimension signal processing applicable in photonic 

domain.  

The demand for multi-dimensional photonic signal 

processing (M-D PSP) can be attributed to various factors 

due the growing feasibility of high-capacity digital 

transmission networks capable of transmitting ultra-high 

bit rate and time division multiplexing up to 160 Gb/s as 

well as fiber optical sensor networks. 

A problem with the implementation of such systems is the 

lack of devices that are capable of processing an enormous 

amount of data associated with multi-dimensional signals. 

With photonic transmission networks becoming the 

transport infrastructure, PSP technique has become 

increasingly more desirable compared to O/E and E/O 

conversion techniques. As discussed in Part I, fiber-optic 

signal processing systems are ideal for such processing 

demands for several reasons: all-optical (or photonic) 

processing of photonic information of optical 

communication systems are possible using fiber-optic 

signal processing; 2-D signals usually require much higher 

bandwidth than 1-D signals and therefore must be 

processed by a high bandwidth system to allow real-time 

performance; it is likely that future telecommunication 

networks would be all fiber-optic. 
This paper as the Part II of the series, outlines a number 
of techniques for multi-dimension signal processing 

which can be implemented in photonic domain and most 

importantly they must be simplified so that the optical 

lightwave paths are minimized and thus minimum losses 

occur in the photonic processors. This is very critical as 

lightwaves propagation is involved with the overall 

transmittance of the photonic circuit [1-5]. Thus if loss is 

high then optical amplification is required. If this 

amplification is implemented on the same optical 

integrated circuit then they would occupy a large area of 

the circuit. Therefore we propose a number of techniques 

such as the matrix decomposition methods [6, 7] as 

described in Section 2. We then present the methods for 

reduction for the design of 2-D optical filters in Section 3. 

Finally in Section 4 we present an implementation of 2-D 

optical filters using fiber optic delay lines. Finally Section 

4 gives some concluding remarks. 

2. Matrix Decomposition Methods 

As the second of the two streams of 2-D filter design 

methods, matrix decomposition methods are introduced. 

Matrix decomposition methods result in a set of separable 

1-D magnitude responses which can be implemented using 

any 1-D filter design methods. Using either this approach 
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or direct approach of Part I [1], a transfer function of the 

desired 2-D filter can be obtained which can then be 

implemented by the photonic implementation methods. 

2.1 Single-Stage Singular Value Decomposition 

In Part I, the application of matrix decomposition to 2-D 

filter design is briefly introduced. Matrix decomposition is 

a mathematical procedure where a matrix is split into a 

sum of products of vectors as  

1/2

1

n

i i

i

u vλ
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=∑H       (1) 

where λI is i
th
 eigenvalue of H and ui and vi are the 

decomposed vectors. An example of matrix decomposition 

is the well-known LU decomposition which splits a matrix 

into a lower triangular matrix and a upper triangular 

matrix. The LU decomposition can be used to express a 

matrix as sum of products of vectors. 
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A decomposition method particularly suited to 2-D filter 

design needs is the singular value decomposition (SVD). 

The SVD reduces a 2-D matrix into two matrices U and V, 

and a diagonal matrix S of singular values of the original 

matrix. Singular values are related to the eigenvalues of the 

matrix and the result has the form 

1, 1,2..

N

xi ii xi

i x N= =

= • •

= ∑

A U S B

U S B
   (3) 

The unique feature of SVD is that the matrix ‘power’ is 

distributed to the singular values of the matrix in 

decreasing order of the position of the singular value in the 

matrix S starting from the top left corner. Consequently, to 

approximate the matrix A by the product of just one set of 

two vectors Uxi and Bxi, the best approximation will be 

made by the product of first set of vectors that result from 

SVD of the matrix. Mathematically, the property can be 

described as shown in Eq. 5-3. As an example, if we 

wanted to approximate the matrix 
1 2

3 4

 
 
 

 by the product 

of a set of vectors, SVD would be performed on the matrix 

resulting in U = 
0.4046 0.9145

0.9145 0.4046

 
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, V = 

0.5760 0.8174
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. Ux1 = 

[ ]0.4046 0.9145 , S11 = 5.4650, and Vx1 = [ ]0.5760 0.8174  

form the first set of vectors. The resulting approximation 

would then be 
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second set of vectors could be added. 
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In [8], the SVD is used to decompose a 2-D magnitude 

specification matrix into two 1-D magnitude specification. 

The result is a design procedure in which a 2-D filter 

design becomes a set of 1-D filter design. The matrix 

decomposition methods have several advantages over the 

direct methods of Part I [1] as follows: (i) The resulting 1-

D magnitude specifications can be met by any of the 

standard algorithms for 1-D filter design such as least-

squares method or Parks-McClellan algorithms available in 

many computer simulation packages; (ii) As long as 1-D 

filter sections are stable, the overall 2-D filter is also 

stable. The stability of final 2-D design can therefore be 

guaranteed easily without the need for heavy mathematical 

analysis or computationally expensive algorithms involved 

with 2-D filter designs; (iii) The filter designer is given the 

flexibility to decide how many sets of 1-D filter sections 

are included in the system; and (iv) The resulting 2-D filter 

is parallel in structure and therefore does not introduce 

unnecessary processing delays. 
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All 2-D filters designed using matrix decomposition can be 

described by (5) where Fi(z1) and Gi(z2) are 1-D filter 

sections and K is the number of singular values included in 

the system. 

1 2 1 2

1

( , ) ( ) ( )
K

i i

i

H z z F z G z
=

= ⋅∑     (5) 

A simple example of 2-D filter design using only one filter 

section as in [2] is given below. The example chosen is 

deliberately simple to show the fundamental concepts 

involved in 2-D filter design using matrix decomposition 

methods. 

A 2-D filter design using SVD with single parallel section 

Design Aim:  A low-pass filter with normalized cut-off 

frequency of 0.5 in both dimensions. 

Method: Single-stage singular value decomposition 

Program used: SVDFIR2-D.M 

Result: With single stage, the error of frequency response 

of the designed filter is 6.663%. Although this is quite low, 

it may not be acceptable in some cases for which an 

extension of single-stage singular value decomposition 

may be employed as shown in Section 2.2. 
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(a)                                    (b) 

Figure 1:(a) Magnitude specification of low-pass filter (b) Magnitude 

response of 15×15 2-D filter designed using single stage singular value 
decomposition 

The 1-D filters designed are FIR filters and the actual filter 

coefficients are given in a table format as shown below. It 

is noted that the first and the second filter sections are 

identical since the frequency specification is symmetric 

about the origin. Consequently for symmetric filters, only 

one 1-D filter needs to be designed to complete the design 

for a 2-D filter implying significant simplification in the 

filter design procedure. 

The filter designed in Table 1, when implemented takes on 

the structure shown in Figure 2. In case of a multiple-stage 

implementation, several of the structure shown below 

would be connected in parallel to form the 2-D filter. 

Coefficient order b1 b2 

0 -0.0007 -0.0007 

1 0.0010 0.0010 

2 0.0025 0.0025 

3 -0.0090 -0.0090 

4 -0.0273 -0.0273 

5 0.0197 0.0197 

6 0.1837 0.1837 

7 0.3553 0.3553 

8 0.3553 0.3553 

9 0.1837 0.1837 

10 0.0197 0.0197 

11 -0.0273 -0.0273 

12 -0.0090 -0.0090 

13 0.0025 0.0025 

14 0.0010 0.0010 

15 -0.0007 -0.0007 

Table 1: Coefficients of the FIR filter designed using single-stage singular 

value decomposition 

 1D filter in z1 

domain with 

coefficients b1 

1D filter in z2 

domain with 

coefficients b2 

2D 

output 

2D 

input 

 

Figure 2: Separable implementation of 2-D filter using single-stage 

singular value decomposition 

2.2 Multiple-Stage Singular Value Decomposition 

Multiple-stage SVD takes the leap forward from single-

stage SVD method and includes stages that belong to 

second largest singular values and smaller. Depending on 

the relative magnitude of singular values, the inclusion of 

extra stages can result in a sizable reduction in error, or 

sometimes it has no effect at all. The sampled design given 

below shows a case where inclusion of multiple stages 

results in more than 30% reduction in the error of the 

single stage implementation. 

A 2-D filter design using SVD with multiple parallel 

sections. 

Design Aim:  A 90° fan filter of order of 32×32 
Method: Multiple stage singular value decomposition with 

1-D FIR filters 

Program used: SVDFIR2-D.m 

Result:  The error of frequency response of the 

filter is given as 18.65%
1
. 

                                                           
1 Although this value is quite large compared to the single digit figure we 

have been obtaining so far, it should be kept in mind that the error 

largely depends on the specification. Therefore it is only meaningful 

to compare error between different implementations of the same 

magnitude specification. 
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The filter is obtained after six parallel stages. Figure 4 

shows the error and magnitudes of the singular values 

against. the number of included parallel stages. Figure 4 

appears to show that there is roughly a linear relationship 

between the error curve and the singular values curve. The 

relationship is actually more subtle than this. A little 

thought will reveal that greater the gradient of singular 

value curve is, flatter the error curve will be. This is 

because if there is a large difference between two singular 

values, adding the stage which belongs to the smaller 

singular value will have little effect on the overall 

performance. As a rule of thumb, if the singular value of a 

paralle stage is less than one-tenth of the first singular 

value, then it is probably not worth including. 
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(a)                                                        (b) 

Figure 3(a) Magnitude specification of 90° fan filter (b) Magnitude 

response of 32×32 2-D filter designed using multiple-stage singular value 

decomposition. 
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Figure 4: Errors and magnitudes of singular values 

With the current computer technology, calculations for 

around ten 32nd order 1-D filters can be done virtually in 

real time and therefore the SVD method is practical even 

for adaptive filtering. The resulting filter structure is shown 

in Figure 5. 

 1D filte r s ec tio n  

F1(z1) 

1D filte r s ect io n  

G1(z2) 

1D filte r s ec tio n  

F1(z1) 

1D filte r s ect io n  

G2(z2) 

1D filte r s ec tio n  

F6(z1) 

1D filter s ect ion  

G6(z2) 
 

Figure 5: Structure of 2-D 90° fan filter 

2.3 Iterative Singular Value Decomposition 

There are many variations on the theme of matrix 

decomposition, in particular the SVD. The iterative 

singular value decomposition (ISVD)[18] is devised in 

order to avoid ‘negative’ magnitude definitions that arises 

from the plain SVD procedure of the previous section. By 

keeping the 1-D magnitude positive, the paper claims that 

the 1-D filter design procedure becomes less intricate. 

Iterative singular value decomposition [19] 

1. Let the 2-D magnitude specification be A. Let A
+
1 = A 

and A
-
1 = 0. 

2. Perform singular value decomposition on A
+
. λ1i are 

the singular values of A
+
1. By the definition of SVD given 

in [18], λ11 is larger than any other λs. 

∑
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3. Because of Perron’s result on non-negative matrices 

[18], the vectors u11 and v11 are also non-negative. It is 

then possible to estimate A
+
 by 

t

11

2/1

11

2/1

1111 vu λλ ⋅ . 

Assigning the first of the pair as F
+
1 and G

+
1 gives the first 

non-negative 1-D magnitude specifications. F1 and G1 are 

assigned F
+
1 and G

+
1 

1

1 1

1 1

1S

+

+

=

=

=

F F

G G

  

4. A2 can now be calculated using Eq. 5-5. This matrix 

can now be separated into 
+
2A  and 

−
2A  sum of which 

make up the error matrix A2. 
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5. Singular value decomposition is performed on 

both matrices resulting in two sets of vectors 
2 2 2, ,S + +F G  

and 2 2 2, ,S − −
F G . S2 is 1 for the vectors resulting from 

decomposition of A
+
, and -1 for the vectors from A

-
. 

6. Euclidean norms are calculated for resulting error 

matrix defined in Eq. 5-6. The same operation is 

performed with 
2 2 2, ,S

− −
F G  in place of 2 2 2, ,S + +F G  in Eq. 5-6 

with 
−
2E  as the result. 
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7.  
+
2E  and 

−
2E  are compared. Since smaller error 

means closer approximation to the original matrix, the set 

of vectors that results in the lower Euclidean norm is 

chosen as F2 and G2. 

8. A3 is assigned the error matrix A2-A
+
 or A2-A

-
 

depending on whether 
+
2E  is greater or smaller than 

−
2E . 

Steps 4,5,6 and 7 are then repeated with appropriate 

substitution. 

The procedure is repeated until a satisfactory 

approximation of the original matrix is obtained.  

 

Compared to plain singular value decomposition 

algorithm, ISVD algorithm converges more slowly because 

adding an extra stage does less to compensate for the error 

than plain SVD algorithm since only a part of the error is 

compensated. An example of a filter designed using the 

iterative singular-value decomposition is given as 

 

2-D Filter design example using iterative singular value 

decomposition 

Design aim: A bandpass filter of order of 32×32 with 
normalized passband between 0.3 and 0.6. 

Method: Iterative singular value decomposition algorithm 

Program used: ISVDFIR2-D.m 

Result:
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(a)                                                        (b) 

Figure 6: Iterative singular value decomposition(a) Ideal magnitude 

response (b) Actual filter magnitude response 

 

The filter error is reasonably low at 9.88% after seven 

approximation stages. Overall, the filter requires seven 1-D 

FIR filter design stages as the magnitude specification is 

symmetric about the two axis. Because of the complexity 

of the magnitude specification, the designed filter does not 

perform as well as one might expect. This can be corrected 

to some extent using better 1-D filter design procedures 

such as the Parks-McClellan algorithm.  

2.4 Optimal Decomposition 

Optimal decomposition is an improvement on ISVD which 

is based on optimization of the 1-D magnitude vectors so 

that the Euclidean error is minimized. The error is found to 

be 9.68%, which is only slightly better than that of ISVD. 

Optimal decomposition[4] 

In Eq. 5-6, the definition of the Euclidean norm is defined. 

In the optimal decomposition, the objective is to minimize 

the value of this error estimate to provide the best set of 

vectors that will make up the original specification matrix. 

Continuing with the constraint that magnitude vectors must 

all be positive, we then perform exponential mapping to Fi 

and Gi. 
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i il iM

i il iN
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y y y

i

e e e

e e e

 =  

 =  

F

G

L

L

   (8) 

The purpose of exponential transformation is so that the 

optimizing variables xij and yij are not constrained to be 

positive. However the condition of positive magnitude is 

retained as all values of Fi and Gi will be positive no matter 

what the values of xij and yij are. Non-linear optimizing 

technique must be applied since this problem is non-linear. 

Numerous algorithms exist for non-linear optimization of 

several variables and any technique can be used to obtain 

the answer.  
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Choosing bad starting points for optimization routines 

results in local minima or bad convergence points and it 

recommended that iterative singular value decomposition 

algorithm be used to provide the initial points for 

optimization. 

2-D filter design example using optimal decomposition 

Design aim: A 2-D bandpass filter with normalized 

passband frequencies of 0.33 and 0.66 in both dimensions. 

Method:  Optimal decomposition[6] 

Program used: ODFIR2-D.m 

Result:  The error is 9.65% compared to 9.88% 

for ISVD algorithm after seven stages. The number of 

filter designs required is seven(same as ISVD), however 

each filter stage requires a great deal more computational 

effort than the ISVD method as it requires non-linear 

optimization to be performed on quite a large number of 

variables. 
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 (a)                                                  (b) 

Figure 7: Optimal decomposition(a) Ideal magnitude response(b) Actual 

filter magnitude response 

Due to the computational constraints, full optimization is 

not performed. Even then the optimization routine took a 

very long time to perform and the reason is attributed to 

the number of variables to be optimized being so large (20 

to 30 variables depending on the order of the filter transfer 

function). 

2.5 Other 2-D Filter Design Methods Based on 

Matrix Decomposition 

There are many other 2-D filter design methods that are 

based on the idea of matrix decomposition. So far, all the 

methods discussed decompose the 2-D magnitude 

specification into a set of two 1-D magnitude 

specifications so that the 2-D filter design procedure is 

essentially reduced to that of 1-D. It is shown that using 

this approach, the design problem is reduced significantly, 

but it is also shown that since the approach produces only 

an approximation to the 2-D transfer function the methods 

based on magnitude decomposition does not perform as 

well as direct methods. 

One notable 2-D filter design method uses matrix 

decomposition but is not based on magnitude 

decomposition is by Shaw and Mistra [7]. In this approach, 

it is assumed that the 2-D transfer function is already 

obtained using some 2-D filter design.  

 A 2-D transfer function can be represented by matrices as 

shown in (9). 
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 (9) 
In Shaw’s method, the decomposition is performed on 2-D 

transfer function matrices. The method can result in 

efficient filters in terms of the required elements, however 

it results in 1-D filter sections with different orders and 

thus does not offer the modularity of the other 

decomposition methods [7]. Other methods exist for yet 

more efficient filter design and a 2-D filter order reduction 

method is described in Part I [1]. 

3. 2-D Filter Order Reduction Using Balanced 

Approximation Theory 

Keeping the filter order to the minimum is important for 

photonic circuit implementation as coupling losses of 

higher order filters may render the actual implementation 

impossible. To achieve lower order filters with good 

performance, the balanced approximation method used in 

control systems theory is applied to the order reduction of 

2-D digital filters. 

3.1 Motivation for Lower Order Photonic Filters 

For an adequate filter performance, that is satisfying the 

roll-off factor and the passband ripple, the order of the 

filter must be appropriately chosen. In general, increasing 

the order of the filter can significantly reduce the error. 
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However, higher filter order directly translates to extra 

filter components, noise, and higher attenuation which are 

unacceptable in many cases including fiber-optic 

implementations. It is therefore critical that the order of the 

filter remains low without sacrificing overall performance 

measures such as error response. 

The motivation for keeping filter order low is greater for 

fiber-optic systems than in other filter implementations for 

the reason that higher order filters cause large coupling 

loss which must be compensated by a pre-amplifier which 

in turn introduces noise when the amplification factor is 

large. It is generally accepted that filters with order greater 

than 16 start becoming difficult to realize in practice with 

the current technology. However, as we have seen in 

Sections 2 and 3, 2-D filters with orders of around 30×30 
are quite common. 

Balanced approximation, derived from control theory, is a 

model reduction technique for 1-D systems. As 2-D filters 

usually have high orders, application of the filter order 

reduction method to 2-D filters may prove to be very 

rewarding especially for fiber-optic filters which must have 

low orders for feasibility. 

3.2 Description of 2-D System in State-Space Format 

As balanced approximation is originally developed for 

model reduction of dynamic systems, it uses the state-space 

model of digital systems. The implication is that 2-D 

systems, which we have been representing using transfer 

functions must now be represented in state-space format. 

The representation of 2-D systems in a state-space format 

has been a topic for research for a number of years and 

several models have been proposed [22,23]. It is noted in 

[12] that the model in [22](see Box 3-2) is most general 

and the model proposed in [23] can actually be embedded 

into the model in [22]. 

Although converting from 2-D transfer function 

description to 2-D state-space description involves only 

plug-in formulae, converting from 2-D state-space 

description to 2-D transfer function is much more involved 

and a novel algorithm is described in Part I [1]. Using the 

two algorithms, the balanced approximation method can be 

applied to 2-D systems. 

3.3 Balanced Approximation Method 

Using a known 2-D filter transfer function, the balanced 

approximation method (BAM) finds the balancing 

transformation matrix T which ‘balances’ the system. The 

order reduction is subsequently performed by removing 

states that do not contribute substantially to the system 

behavior. 

The first task is to find the generalized reachability and 

observability Gramians defined as 
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Fortunately, the double integrations do not have to be 

solved directly and can be partially solved (as distinct from 

partial integration) using the Lyapunov approach. If K11 

denotes the upper left upper block of K and K22 denotes 

the lower right block of K, then K11 and K22 can be 

obtained. The same notations apply to the observability 

Gramian, W. 
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A system is said to be balanced if its Gramians satisfy the 

following condition where σij are the Hankel singular value 
of the system. 
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To balance a system, the similarity transform T that will 

achieve the above condition must be found. Applying the 

balancing similarity transform T to the subsections of 

Gramians will result in the condition satisfied. 

1ˆ

ˆ

T

T

K T KT

W T WT

− −=

=
    (13) 

The balancing transformation T can be found by applying 

the algorithm given in [24]. 
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Determination of the balancing transformation T  

1. Cholesky factorization of K11: The resulting lower 

triangular matrix is assigned Lc. 

2. Formation of Lc
T
W11Lc 

3. Symmetric eigenvalue/eigenvector problem, 

11 11 11 11 11 11( )T T T

c c = ΛU L W L U . 

4. Formation of T11: T11=LcU1Λ11
-1/2

 

The same procedure with appropriate subscript 

substitutions can be used to find T22. Once both T11 and 

T22 are found, the overall transformation matrix T can be 

found by performing an operation denoted by ⊕ in [21]. 

11 22

11

22

= ⊕
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T T T

T 0

0 T

    (14) 

Using the balancing matrix T, a balanced realization of the 

system can be found by similarity transformation of state-

space matrices as shown in Eq. 6-6. 
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By observing how many significant Hankel singular values 

exist, one can make the decision on how many states 

should be preserved thereby determining the order r1 and 

r2. The state-space matrices can then be partitioned using 

the following scheme. 
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 (16) 

A1r is a [r1×r1] matrix if r1 is greater than r2 and a r1×r2 
matrix if r2 is greater than r1. On the other hand A2r is a 

r2×r1 matrix if r1 is greater than r2 and a [r2×r2 ] matrix if r2 

is greater than r1. The dimensions of A3r and A4r are the 

same of that of A1r and A2r, respectively. Finally, the 

reduced system is obtained by forming new system 

matrices by 
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The resulting system which is described by the matrices Ar, 

br, and cr is of order of [r1×r2]. From the new 2-D state-

space description of the reduced system, one can obtain the 

2-D system transfer function of lower order. 

3.4 Filter Order Reduction Using Balanced 

Approximation: An Example 

In this section, a 15×15 order bandpass filter is designed 
using optimal decomposition method, and the balanced 

approximation method is applied to reduce the filter order. 

Application of balanced approximation method for 2-D 

filter order reduction 

Design Aim: 2-D bandpass filter with normalized 

passband frequency between 0.33 and 0.66 with lowest 

order acceptable. 

Method Used: Optimal decomposition for filter design, 

and balanced approximation for order reduction. 

Programs Used:  ODFIR2-D.m, BA.m 

Results:  Using optimal decomposition method, a 

filter with specifications shown below is designed. The 

error is approximated at 11% after 6 stages of 

approximations. 
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(a)                                                (b)\ 

Figure 8: (a) Ideal magnitude response of the filter and (b) Actual filter 

response of the 16×16 order filter 

Balanced approximation is then applied to the filter design. 

To apply the order reduction however, a new reduced 

order had to be chosen and the choice is made based on the 

Hankel singular values of the system plotted in Figure 9. 

Clearly, it seems reasonable to retain only up to 10th order 
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in both dimensions since from 11th order onwards, the 

Hankel singular values become very small indeed. 
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(a) Hankel singular values of N1 dimension
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(b) Hankel singular values of N2 dimension

 

Figure 9: Hankel singular values of the filter 

Choosing the new order of the filter as 10×10, the BAM is 

applied with the following excellent results. 

As the plots of magnitude characteristic shows, there is 

hardly any difference between the original design and the 

reduced order design. The error estimate of 11.46% 

compared to 11% of the original 15×15 order design 
confirms this point and shows that balanced approximation 

indeed produces filters of significantly lower order with 

very little sacrifice in performance. 
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(a)                                  (b) 

Figure 10: Reduced order(10×10) filter (a) Ideal characteristic of the 
filter (b) Actual characteristic of the filter 

The result of application of BAM to a 2-D filter transfer 

function can be summarized as follows: (i) Reduced order 

filter; (ii) Usually IIR structure; (iii) If the original filter 

has a separable denominator, then the reduced filter also 

has a separable denominator allowing a separable 

implementation; and (iv) Little sacrifice in 

performance(magnitude error and phase linearity). The 

phase remains nearly linear for the resulting IIR structure 

as well which is a feature difficult to achieve with other 2-

D IIR filter design methods. The proof of the linearity is 

given in [5]. 

All in all, the BAM provides an excellent method of 

reducing filter order to a realizable level without a large 

deterioration in performance and should therefore be given 

a consideration before implementation of 2-D filters. 

4. Fiber-Optic Delay Line Filters 

As introduced in Part I [1], fiber optic delay line 

architecture is an alternative architecture to spatial and 

temporal architecture. The fiber optic delay line 

architecture used in this paper to implement 2-D filters is 

described in further detail with a mathematical analysis. 

4.1 Coherent and Incoherent Operation of Photonic 

Filters 

When the advances in laser technology first made guided 

wave photonic systems possible, most pioneering photonic 

systems used multi-mode propagation of light as the main 

mode of signal transmission. However with the advent of 

lasers with narrower line-widths, it has become possible to 

operate lighwave systems in single mode resulting in 

greater bandwidth-distance product. Single mode systems 

are becoming increasingly popular and the trend towards 

single mode systems is set to continue. 

Aside from the mode of propagation, another factor that 

determines the characteristic of a lightwave system is 

whether system is operating in coherent or in incoherent 

modes. The differences between the two operations can be 

summarized as follows: in a coherent system, the light 

source can be regarded as operating in a single wavelength 

(although in reality, no matter how small the linewidth is, 

the emitted lightwave is certain to contain more than one 

wavelength component). The use of coherent light as the 

signal carrier simply means that the phase as well as the 

amplitude of the lightwaves must be regarded as a part of 

the information being carried by the lightwave. In 

incoherent systems, the information is carried only by the 

intensity of the lightwave. One may therefore consider 

incoherent systems as the amplitude modulated system 

with intensity modulation instead of amplitude modulation. 

It is obvious that negative range cannot be expressed by 

intensity-based incoherent systems unless one biases the 

light intensity to a predefined level. The receiver can then 

detect negative range by comparing the received intensity 

value to the predefined level. 

The differences between coherent systems and incoherent 

systems are shown in Table 2. For signal processing 

purposes, incoherent operation implies that the modulating 

frequency of the source must be much lower than the 
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photonic frequency implying that the full bandwidth of the 

laser cannot be used. Coherent operation on the other hand 

allows utilization of the full bandwidth of the system 

resulting in greater processing speed. However, because 

coherent systems tend to be more vulnerable to 

environmental effects such as phase jitter, some shielding 

must be used to reduce the adverse effects to a negligible 

level [3]. Another important advantage coherent systems 

have over incoherent systems is the flexibility in system 

design. Incoherent systems fall into the category of so 

called positive systems and have restrictions on quantities 

such as number and positions of system poles and zeros 

[5]. In spite of such constraints, most of the research works 

reported so far on fiber-optic delay line signal processing 

have been using incoherent systems [3-7]. The reasons for 

avoiding coherent systems have been that ‘coherent 

systems are more difficult to implement in practice and are 

usually more complicated than incoherent systems because 

of the stringent requirements on the stability of the source 

and photonic delay paths’ [4]. In future however, it is 

likely that lasers capable of coherent operation over longer 

distances as well as better techniques for controlling the 

delay paths will be available. Coherent systems thus may 

yet represent the possibility for full bandwidth all-photonic 

processing. 

 
 COHERENT 

SYSTEM 

INCOHERENT 

SYSTEM 

Information carrier amplitude, phase intensity 

Bandwidth very wide wide 

Required linewidth 

of the source 

very narrow narrow 

Negative range amplitude and phase 

can combine to 

express a negative 

value 

predetermined 

bias value is 

necessary 

Table 2: Differences between coherent and incoherent lightwave system 

4.2 Using Optical Fibers to Realize Delayed Line 

Filter 

Three main components are required in most forms of 

discrete-time filters: delay, coefficient, and 

summer/splitter. To illustrate how the components are 

realized in photonic domain, discrete-time tab filter shown 

in Figure 11 is used as an example. As the signal flow 

diagram for a discrete time tab filter is general, the 

photonic components used to realize a discrete-time tab-

filter can be used in other filter structures. 

4.2.1 Photonic Realization of Delay 

In fiber-optic delay line filters, photonic fibers are used as 

delay elements as signal propagation time can be 

controlled using the length of the fiber. The transfer 

function of optical fiber, ignoring the fiber signal 

dispersion and the fiber intensity loss, can be expressed 

mathematically by. 

( ) j LH e βω −=      (18) 

where L is the length of the delay lines, β is the 
propagation constant of the guided fundamental mode. The 

propagation constant β is defined by β = ωneff/c where neff 
is the effective refractive index of the guided mode in the 

fiber or optical planar channel waveguide, ω is the 
operating optical frequency in radians, and c is the speed 

of light. The inverse of the time delay T is  neff f/c and 

equals to the sampling frequency of the filter. Choosing a 

reference length of the optical delay as Ld, if L is a integer 

multiple of Ld the transfer function can be expressed as 
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Upon comparing (19) (a) and (18) (b), it can be observed 

that the two equations are very similar and in fact, if ωT in 
(19)(b) is replaced by (2πf)(neff Ld/c), then the two 
equations are identical. It is therefore clear that fiber can 

act as a delay whose length is controlled by neff and L. 
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Output  Input  

h 0  
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Figure 11: Signal flow diagram of discrete-time tab filter, the unit delay is 

the traveling time of lightwaves over a distance equivalent to the unit 

sampling time . The coefficients h’s are the transmittances over the 

specific path. 

Optical fiber has several properties which enable it to be 

an ideal delay line medium: flexibility which enables a 

relatively compact implementation of the system, the 

accuracy of time interval between tabs that can be 

produced, insensitivity to electromagnetic interference 

which is useful when used in electro-magnetic 

environments - quite often the case with signal processing 

equipment. 
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4.2.2 Photonic Realization of Tab Coefficients 

General form of a feed forward transfer function in z-

domain can be expressed as.  

0

( )
n

d

d

d

H z h z
−

=

=∑      (20) 

There are several ways to realize the coefficients 

magnitude |hd| such as OAs /attenuators[6](earlier methods 

of achieving filter coefficients included reflectors, 

radiation due to bending, and evanescent coupling by 

polishing the cladding down very close to the fiber core 

[8]). However the negative sign can be difficult to realize 

as it represents a negative intensity in an incoherent 

system! The inability to represent negative quantities 

effectively is a major limitation of incoherent systems. On 

coherent systems a multiplication by a negative coefficient 

represents a phase shift of 180°. 

4.2.3 Photonic Realization of Summer/Splitter 

In photonic domain, summing/splitting of signals can be 

performed by optical couplers (see Figure 12). 
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Splitting of signal can be performed by using just one of 

the input terminals (E3, E4) and both output terminals (E1, 

E2) - see Figure 13(a). Summing can be achieved by using 

just one output signal port and both input ports - see Figure 

13(b). 

 
E1 

E2 E4 

E3 
√1-k1 

√1-k2 

-j√k1 

-j√k2 

 

Figure 12: Schematic diagram of an optical coupler 
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(a)                                                              (b) 

Figure 13:(a) Optical coupler as a splitter (b) Optical coupler as a summer. 

When using an optical coupler as a summer/splitter, there 

are two undesirable properties that must be taken into 

account. Firstly, as can be seen from the transfer matrix, 

when photonic signal goes through a coupler the signal 

amplitude (and therefore intensity) is attenuated by the 

coupling factor of the optical coupler which for a half 

intensity splitter is 1/√2. A photonic filter is likely to have 
cascaded stages of optical couplers and the combined 

coupling coefficients cause quite substantial attenuation of 

the original input. OAs are therefore usually necessary to 

compensate for the amplitude attenuation [6]. Second 

problem arising from the use of optical couplers as 

splitter/summer is the phase shift of -90° associated with 
cross-coupling of photonic signals. The phase shift is not 

an issue for concern in an intensity-based system 

(incoherent system), however it can cause difficulty in 

coherent systems, especially when coupler is being used as 

a summer as the signals that are being added must be in the 

same phase at the output of the coupler. To illustrate this 

problem, consider adding two signals E1 and E2 that are in 

phase before they enter the coupler (21). At the output of 

the coupler, only one output is cross-coupled and therefore 

phase shifted whereas the other output retains the phase of 

the input signal. The added signal is therefore an 

inaccurate representation of the summing operation. 
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   (22) 

However, the phase shifting property of couplers, if 

manipulated well can act be used as perfect phase-shifters 

necessary in implementing negative coefficient taps. It is 

therefore conceivable that with the right choice of input 

and output terminals, a coherent signal processing system 

that represents negativity without biasing (as in incoherent 

systems) is feasible. 

4.3 Graphical Representation of Photonic Circuits 

A photonic circuit can be translated directly into a signal 

flow diagram (SFG) as the elements in an photonic circuit 

and the elements in its SFG have a direct one-to-one 

correspondence. To effectively utilize the SFG 

representation in analyzing photonic circuits, the well 

known Mason’s rule
2
 of analyzing the SFGs is applied to 

the photonic circuits [5]. The key to the application of the 

rule is the planar SFG representation of optical coupler as 

shown in Figure 14 [5]. 

Photonic components other than couplers such as fiber 

delay lines and amplifier/attenuators have a straightforward 

representation in the SFG. Using the above representation 

for optical couplers, photonic circuits can be analyzed 

systematically. The result is a very powerful technique that 

                                                           
2 Mason’s rule can be found in many digital signal processing textbooks. 

The rule is applied without modifications to SFG representations of 

optical circuits. 
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enables a systematic mathematical analysis of photonic 

lumped circuits. Using this technique, the z-transfer 

function of a system from any one node to another (instead 

of just from one preset input node to a preset output node) 

can be calculated allowing the system designer more 

degrees of freedom in designing and using photonic 

circuits. Once the transfer function in z-domain has been 

obtained, as z-transform theory is very well developed one 

can simply apply the conventional analysis to the photonic 

circuits. 
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Figure 14: Graphical representation of optical coupler 

Alternative to this method of analyzing photonic circuit is 

the matrix-method which attempts to analyze photonic 

circuit by direct manipulation of the coupler transfer 

matrix.  The disadvantage of such approach is that when 

the photonic circuit consists of more than a few photonic 

elements, it becomes extremely difficult to recognize what 

effect each element is having on the overall function of the 

system. Graphical approach allows direct manipulation of 

the photonic circuit as the correlation between a SFG and 

the photonic circuit it represents is very high. 

The graphical method is best suited to analyzing a lumped 

photonic system, most likely to confirm the operations of 

an photonic circuit or to find new functions of an photonic 

circuit configuration. For further discussion on the uses of 

the graphical method, see Part I [1]. 

Graphical method of analysis of double-coupler feedback 

photonic resonator 

Double coupler feedback photonic resonator (DCFBOR) is 

a configuration which results in one optical energy storage 

element through feedback and one interferometer through 

different path lengths in the feed forward path. The 

resulting transfer function contains one pole and one zero 

at the origin, and therefore the configuration can be used to 

realize all pole IIR filters. 

 

Method:  Graphical technique for photonic circuit 

analysis [5] 

Result:  The photonic circuit of double coupler 

feedback optical resonator is shown in Figure 15. The SFG 

of DCFBOR is shown in Figure 16. 
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Figure 15: Schematic diagram of DCFBOR 
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Figure 16: Signal flow diagram representation of DCFBOR 

The details of application of Mason’s rule of determining 

the signal flow diagram transfer functions can be found in 

[5]. The resulting transfer function, as expected has one 

zero at the origin and one pole at a location in z-plane 

determined by the circuit parameters. 
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In conclusion, the graphical technique presents a 

previously unavailable systematic method of analysing 

photonic circuits. The greatest potential will be realized 

when the technique is implemented in a software form as 

the technique can be time-consuming to apply manually if 

there are more than two feedback loops. 

4.4 Remarks 

In this section we have described: (i) The differences 

between coherent and incoherent operation of lightwave 

systems. (ii) The architecture and components of delayed 

line filters; (iii) Table 3 showing components that make up 

a photonic digital filter with corresponding element in a 

SFG. 

(iv) A method of representing photonic circuits in 

signal flow diagram is introduced and its advantages are 

outlined. It is stated that using Mason’s rule, the transfer 

function of an photonic circuit can be obtained directly 
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from signal flow diagrams. An example of application of 

the graphical method is also given. 

 

Photonic implementation 
Signal flow diagram 

element 

unit length fiber delay line 

optical amplifier, optical 

attenuator, etc. 

multiplicative 

coefficient 

coupler 
summing/splitting 

point 

Table 3: Comparison of photonic and signal flow diagram elements. 

5. Concluding Remarks: Part II 

The objective of the research presented in this Part II paper 

is to explore possible ways of realizing a 2-D signal 

processing system using fiber-optic signal processing 

architecture. A general technique for designing a 2-D filter 

is illustrated and numerous examples of utilization of the 

technique are given. Although the discussion is focused on 

fiber-optic systems, the design procedure for 2-D filters are 

just as applicable to any other signal processing 

architectures. For example, the 2-D filter order reduction 

method given in Section 3 can be used to simplify 2-D 

lightwaves systems which may or may not be fiber-optic 

systems. 

The design of 2-D filters is classified into two different 

classes. One class used matrix decomposition to reduce the 

design of 2-D filters into a set of 1-D filter design 

procedures. The other class used direct extensions of 1-D 

filter design methods. It is found that neither has a 

distinctive superiority over another and that the designer 

has to choose what is the best for the particular application, 

most likely by designing both and comparing the 

performances. All of the design procedures are 

implemented using the MATLAB programming 

language.  

Among the matrix decomposition methods, the multiple 

stage singular value decomposition method of Section 3.2 

performed the best whereas for direct methods, frequency 

sampling method produced filters with smallest errors. 

However, the result should be taken with caution as there 

are many factors to be considered before declaring one 

method superior over another. The differences between the 

various methods are outlined. 

A 2-D Filter order reduction method is applied to make 

fiber- and integrated optic signal processing more feasible. 

The technology allows the filter designer to produce filters 

of orders that are implementable in practice without 

sacrifices in performance. 

Different possible filter structures are proposed and 

illustrated for photonic implementation of 2-D filters. Most 

of the filter structures discussed can be used in 1-D 

coherent fiber-optic signal processing and are not limited 

to 2-D coherent fiber-optic signal processing. Some of the 

proposed structures such as transversal structure are 

extremely efficient in the number of components used to 

achieve a certain performance requirement. To make the 

efficient structures possible, the phase shifting property of 

optical couplers when the incoming lightwaves is cross-

coupled is utilized. Filter structures for FIR and IIR filters 

are also shown and examples are given in Section 9. 

 It is evident that the fiber-optic signal processing 

technology presents a new direction in the usage of optical 

fiber, lasers, and photonics technologies which are 

evolving very fast. In [4] an incoherent signal processing 

system operating at 100 MHz is demonstrated. The authors 

note that the raising this capability to over 10 GHz is a 

relatively straightforward procedure involving shorter fiber 

lengths and lasers and detectors with faster rise and fall 

time. They also note that although conventional digital 

signal processing and analog signal processing techniques 

are limited in their usefulness for signal bandwidths 

exceeding one or two GHz. Current research efforts on 

fiber-optic signal processing on lightwaves of millimeter 

wavelength region will allow signal processing at 

bandwidths of up to 100 GHz even to THz region if 

parametric amplification is employed. The field of 2-D 

signal processing which requires ultra-fast processing 

capability has a great deal to gain from the usage of the 

high speed processing capability of fiber-optic 

architectures. In particular especially with the fast pace of 

research and inventions of photonic circuits reaching the 

nano-scale  employing photonic crystal wave guiding 

techniques will allow multi-dimensional processing in the 

photonic domain flourishing in the near future. 
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