
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

237

Manuscript received May 5, 2009

Manuscript revised May 20, 2009

Software Reuse Metrics: Measuring Component

Independence and its applicability in Software Reuse

DR. P. K. SURI
1
 , NEERAJ GARG

2

1. Professor, Department of Computer Science & Applications,

Kurukshetra university, Kurukshetra

INDIA

2. Associate Professor, Department of IT Engineering,

M. M. University, Mullana, Ambala

INDIA

Summary

In this paper we have enumerated the various metrics of

software to evaluate the reusability of the modules. We now

introduce a new metric for evaluating the independence of a

software component which will in turn accesses the degree of

reusability of that component. The more independent the

component is the more it is reusable.

Keywords
Software metrics-coupling-component-independence-software

reusability

Introduction
THE aim of Object Oriented (OO) Metrics is to predict

the quality of the object oriented software products.

Various attributes, which determine the quality of the

software, include maintainability, defect density,

normalized rework, understandability, reusability etc. The

requirement nowadays is to explore the relation of the

reusability attributes with the metrics and to find how

these metrics collectively determine the reusability of the

software component. To achieve both the quality and

productivity objectives, it is always recommended to go

for the software reuse that not only saves the time taken to

develop the product from scratch but also delivers the

almost error free code, as the code is already tested many

times during its earlier reuse.

Metrics have been developed in software engineering to

quantitatively measure these factors and such metrics have

been used to assess software modules for reusability. In

this research, the focus is whether or not coupling affects

database module reuse.

In this paper we have enumerated the various metrics of

software to evaluate the reusability of the modules. We

had introduced a new metric for evaluating the

independence of a software component which will in turn

accesses the degree of reusability of that component. The

more independent the component is the more it is reusable.

Software Reusability & its Measurement
 Software reuse is the use of existing software

components to construct new systems . Reuse is the

application of existing solutions to new problems. Reuse

can reduce the time spent in creating solutions by

avoiding duplicated efforts. In software engineering the

concept of reuse has been explored and has been reported

to be very beneficial. Frakes, for example, notes that

―using reusable software generally results in higher

overall productivity‖ [1]. The benefits are not only

realized in productivity but also in quality; software

developed using existing components can be more reliable

than those developed from scratch because the reused

components are usually well tested and have been used in

several developments. However, the reusable components

must exist before they can be reused. Reusing existing

parts or components is a standard part of software

engineering and human problem solving in general.

However, reuse in software development is more effective

if practice formally [2]. Formal reuse implies that reuse

must be viewed as a goal to strive for, not just a result that

happens by chance. Before reuse can take place, the

reusable components must exist in some form, and

designers must be aware of their existence and the

functionality they provide.

If formal reuse is part of an organization‘s overall

development goals, then the software construction process

is different; not only are developers tasked to find and use

existing artifacts, they also have to assure that the final

product can also be reused in future development.

Characteristics of Reusability

The reusability assets are different in different contexts.

However, there are some characteristics that generally

contribute to the reusability of assets. Although many of

these characteristics apply to assets in general, we focus in

this section on components as assets. [31].

Reusability = Usability + Usefulness

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

238

Usability is the degree to which an asset is ‗easy‘ to use in

the sense of the amount of effort that is needed to use an

asset. Usability as such is independent of functionality of

the component. Sub characteristics of usability are shown

in

Fig1: Characteristics of usability

Reusable Assets

Set of artifacts that can be considered reusable asset are

Requirements, Architectures, Design, Implementation,

Program code and Data. The use of commodity software

such as operating systems or database system is typically

not considered reuse. As a rule of thumb, if a component

is not considered as part of the design of a system, it is not

considered as being reuse.

Factors Affecting Reusability
Figure 2 shows a ―fishbone diagram‖ that represents the

factors affecting reusability. It can be observed from this

figure that reusability depends on Usefulness, Costs and

Quality. Each of these factors is explained below.

Figure 2: Factors affecting reusability [27]

Usefulness

To be reused, a prerequisite is that the component

implements functionality that is useful for the new system.

It is extremely hard to decide in an automated way

whether or not a component will be useful in a new

system, since this decision is based on domain knowledge

and the requirements of the new system. However, an

indirect automatable measure of usefulness was developed

to measure the reusability of the existing component

within the analyzed system itself (i.e., its origin). The

assumption is that the highly used components within a

system are a good candidate for reuse in a new context.

There is also a limitation because of our assumption: We

tend to exclude those domain specific components that are

not frequently used in the existing system. It is important

to note that the domain expert is crucial to decide about

the usefulness of a component candidate.

Cost
Reuse cost includes cost of identifying a component from

the existing system, modifying and integrating them into

a new system. Measures of size and complexity of a

component provide a partial indication of difficulty in

adapting it to reuse in a new system. The cost to reuse the

component is influenced by the readability of its code, a

characteristics that can again be partially evaluated using

size and complexity measures. That is, small and simple

code fragments are usually easier to read and adapt than

larger and complex fragments.

Quality

The quality of the component is important in order to

succeed in reuse-driven development. Several qualities

that are important for component reuse are correctness,

readability, testability, ease of modification, and

performance, but most of them are not directly measurable.

Measures of size and complexity of a component however

provide a partial indication of the presence of these

qualities in it.

The Factor, Criteria, Measurement (FCM) Model
In software engineering, several measures have been used

to evaluate software quality. At minimum, for a

component to be considered for reuse, it must be of good

quality. Measuring quality quantitatively is not a simple

task. As stated by Fenton et al., ―quality is multi-

dimensional; it does not reflect a single aspect of a

particular product‖ [3]. Many software metrics text and

papers [3,4] give models for measuring software quality.

One of these models, proposed by Fenton and colleagues

[2], define factor, criteria, and metric (FCM) for each

measurement. FCM is a tree- like structure where the top

level lists the factors—items that are known to be the

major indicators in the evaluation of the attribute in

question. For instance, in evaluating quality, one may

look at usability, testability, and portability as factors

giving indication of the quality of a product. The second

level in FCM consists of a list of criteria for each factor.

These lower level items are easy to understand and

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

239

measure. The last level comprises of the actual metrics

that define the specific measurements for each criterion.

For instance the criteria comment ratio may be defined as

criteria for evaluating understandability.

Metrics

Metrics may play an important role in quality assurance,

specially in the acquisition of components and in deciding

whether they should be used or not. Metrics should

provide a basis for deciding whether reuse is sensible ,

whether it is cost effective to adapt existing component or

build a component from scratch. In short, metric which

address cost savings on component basis are needed.

Metrics can seen as part of the topics acquisition and

usage.

Software Reuse Impacts

Empirical studies, in both industry and academia, with the

aim of assessing the relationship between software reuse

and different quality and cost metrics have been reported

in the literature [5,6,7,8]. All of the reported studies dealt

with a very limited number of projects, which made their

results inconclusive, but the general notion that software

reuse and software quality are intrinsically related held

true for all cases, while the inverse relation between

software reuse and development cost failed to hold for

some of the studies. Table 1 summarizes the measurable

impacts of software reuse.

Table 1. Measurable impacts of software reuse.

Error density is the average number of severe errors a

piece of software presents per line of code, while fault

density accounts for less severe errors. The studies show

that projects with higher reuse activity tend to have lower

error density. The reason is that a reused piece of software

has been tested and debugged in previous systems, thus

leading to fewer errors. Besides having fewer errors, the

ratio between major errors and total number of faults

tends to be smaller for projects that reuse more software.

As direct consequences, the overall rework effort and the

number of module deltas tend to be smaller. Since there

are fewer errors, less effort must be spent fixing errors and

fewer changes (deltas) will be necessary. The software

quality as perceived by developers is a subjective

measure based on the experience of the developers during

the development process. Developers fill out forms

describing their impressions of the quality of the software

built and the difficulties they had to deal with and the

results are compared between projects that considered

reuse and projects that did not consider reuse during the

entire development cycle. Although there is no definitive

conclusion about the actual impacts software reuse has on

different aspects such as quality and cost, studies have

shown that there is a correspondence between them.

Software Structure Oriented Metrics
The whole point of software reuse is achieving the same

or better results at the same or smaller cost when

compared to a non-reuse oriented software development

approach. From this perspective, the previous sections on

economically oriented metrics and software reuse impacts

would be enough for the reuse metrics field. The problem

with these metrics is that they rely on a set of basic

observable data that in some cases may lead to incorrect

results. Such metrics are concerned on how much was

reused versus how much was

developed from scratch, but fail to help on the analysis of

what was reused and how it was reused. Software

structure oriented metrics aim to fill this gap by providing

more elaborate ways of analyzing the relationship

between reused and new code on a software system. The

software structure oriented metrics are divided into two

main categories: the amount of reuse metrics and the

reusability assessment metrics. The former target

assessing the reuse of existing items, while the later aim

to assess, based on a set of quality attributes, how reusable

items are. Table 2 summarizes the main amount of reuse

metrics .

Object oriented Structures
A brief description of the structure is given in this section

using the pictorial description in Figure:3.The new object-

oriented development methods have their own

terminology to reflect the new structural concepts.

Referencing Figure 3, an object-oriented system starts by

defining a class that contains related or similar attributes

and operations (some operations are methods)

The classes are used as the basis for objects forming

hierarchical trees. An object inherits all of the attributes

and operations from its parent class, in addition to having

its own attributes and operations.. An object can also

become a class for other objects .When an object is

applied and contains data or information, it is an

instantiation of the object. Objects interact or

communicate by passing messages . When a message is

passed between two objects, the object are coupled. The

degree to which the methods within a class are related to

one another . Object X is coupled to Y if and only if X

sends message to Y . Inheritance is a relationship among

classes, wherein one class shares the structure or methods

Aspect Measurable Impacts

Quality  Error Density

 Fault Density

 Ratio of Major errors to total

faults

 Rework effort

 Module deltas

 Developers perception

Productivity  Lines of code per effort

Time –to – Market  Development cycle time

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

240

defined in one or more other class . Instantiation , a

process of creating an instance if object and binding or

adding the specific data.. Message , a request that an

object makes of another object to perform an operation.

Table 2. Amount of reuse metrics.

Metric Definition

Reuse level (RP) Ratio of the number of reused lines

of code to the total number of lines

of code

Reuse Level (RL) Ratio of the number of reused

items to the total number of items.

Reuse Frequency(RF) Ratio of the references to reused

items to the tota number of

references

Reuse size & Frequency(RSF) Similar to Reuse Frequency , but

also considers the size of items in

the number of lines of code

Reuse Ratio(RR) Similar to Reuse percent, but also

considers partially changed items

as reused .

Reuse Density Ratio of the number of reused

parts to the total number of lines of

code

Object-Oriented Specific Metrics

The object-oriented metrics that were chosen measure

principle structures that, if they are improperly designed,

negatively affect the design and code quality attributes.

The selected object-oriented metrics are primarily applied

to the concepts of classes, coupling, and inheritance.

Preceding each metric, a brief description of the object-

oriented structure.
We make use of the Overview Pyramid is a metrics-based

means to both describe and characterize the structure of an

object-oriented system by quantifying its complexity,

coupling and usage of inheritance

The Overview Pyramid [28]

The overview of an object-oriented system must

necessarily include metrics that reflect three main aspects:

1. Size and complexity. We want to understand how big

and how complex a system is.

2. Coupling. The core of the object-oriented paradigm is

objects that encapsulate data and that collaborate at run-

time with each other to make the system perform its

functionalities. We want to know to which extent classes

(the creators of the objects) are coupled with each other.

Figure 3- Object oriented Structures

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

241

Table 3: Object Oriented Metrics

Metric Object oriented

Feature

Concept Measurement

Method

Interpretation

CC Cyclomatic

complexity

Method Complexity Algorithmic test

paths

Low => decisions

deferred through
message passing

Low not necessarily

less complex

SIZE Lines of code Method Complexity Physical lines ,
statements , and/or

comments

Should be small

COM Comment
percentage

Method Usability
Reusability

Components
divided by the total

line count less

blank lines

20 to 30 %

WMC Weighted methods
per class

Class/ method Complexity
Usability

Reusability

1)Methods
implemented within

a class

2)Sum of
complexity of

methods

Larger => greater
complexity and

decreased

understandability ;
testing and debugging

more complicated

LCOM Lack of cohesion
of methods

Class/ Cohesion Design
Reusability

Similarity of
methods within a

class by attributes

High=> good class
subdivision

Low=> Increased

complexity – subdivide

CBO Coupling between

Objects

Coupling Design

Reusability

Distinct non-

inherited related

classes inherited

High=> poor design ,

difficult to understand ,

decreased reuse ,
increased maintenance

DIT Depth of

Inheritance tree

Inheritance Reusability

Understandability

Testability

Maximum length

from class node to

root

Higher=> more

complex , more reuse

NOC Number of

children

Inheritance Design Immediate Subclass Higher=> more reuse ;

poor design increasing

testing

3. Inheritance. A major asset of object-oriented languages

is the ease of code reuse that is possible by creating

classes that inherit functionality from their super classes.

We want to understand how much the concept of

inheritance is used and how well it is used.

To understand these three aspects we use Overview

Pyramid, which is an integrated, metrics-based means to

both describe and characterize the overall structure of an

object-oriented system, by quantifying the aspects of

complexity, coupling and usage of inheritance.

Figure 4: The Overview Pyramid[28]

lowest level units (i.e., code lines and independent

functionality blocks). For each unit there is one metric in

the Overview Pyramid that measures it. The metrics are

placed one per line in a top-down manner, from a measure

for the highest level unit (i.e., Number of Packages

(NOP)) down to a complexity measure counting the

number of independent paths in an operation (i.e., the

Cyclomatic complexity (CYCLO)). We use the following

metrics for the size and complexity side of the Overview

Pyramid:

Size and complexity: direct metrics. We need a set of

direct metrics (i.e., metrics computed directly from the

source code) to describe a system in simple, absolute

terms. The metrics describing the size and complexity are

probably some of the simplest and widely used metrics.

They count the most significant modularity units of an

object-oriented system, from the highest level (i.e.,

packages or namespaces), down to the there is one metric

in the overview pyramid that measures it. The metrics are

placed one per line in a top-down manner.

• NOP — Number of Packages, i.e., the number of high-

level packaging mechanisms, e.g., packages in Java,

namespaces in C++, etc.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

242

• NOC — Number of Classes, i.e., the number of classes

defined in the system, not counting library classes.

• NOM — Number of Operations, 1 i.e., the total

number of user defined operations within the system,

including both methods and global functions (in

programming languages that allow such constructs).

• LOC — Lines of Code, i.e., the lines of all user-defined

operations. In the Overview Pyramid only the code lines

containing functionality (i.e., lines of code belonging to

methods) are counted.

• CYCLO — Cyclomatic Number, i.e., the total number

of possible program paths summed from all the operations

in the system. It is the sum of McCabe‘s Cyclomatic

number [[29] for all operations.

The Right Part: System Coupling

The second part of the Overview Pyramid provides an

overview with information about the level of coupling in

the system (see Fig. 3.3),by means of operation

invocations.

System coupling: direct metrics. The key questions

when trying to characterize the level of coupling in a

software system are: How intensive and how dispersed is

coupling in the system? The two direct metrics that we

use are:

• CALLS — Number of Operation Calls, i.e., this

metric counts the total number of distinct operation calls

(invocations) in the project, by summing the number of

operations called by all the user-defined operations. If an

operation fo () is called three times by a method f1() it

will be counted only once. If it is called by methods

f1(), f2() and f3(), three calls will be counted for this

metric.

• FANOUT — Number of Called Classes, this is

computed as a sum of the FANOUT [30] metric (i.e.,

classes from which operations call methods) for all user-

defined operations. This metric provides raw information

about how dispersed operation calls are in classes.

System coupling: computed proportions. Again, the

numbers above describe the total coupling amount of a

system, but it is difficult to use those numbers to

characterize a system with respect to coupling. We can

compute, using the number of operations (NOM), two

proportions that better characterize the coupling of a

system.

• Coupling intensity (CALLS/Operation). This

proportion denotes the level of collaboration (coupling)

between the operations, i.e., how many other operations

are called on average from each operation. Very high

values suggest that there is excessive coupling among

operations, i.e., a sign that the calling operation does not

―talk‖ with the right ―counterpart‖.

Fig. 5. Characterizing a system‘s coupling.[28]

• Coupling dispersion (FANOUT /Operation Call).

This proportion is an indicator of how much the coupling

involves many classes (e.g., 0.5 means that every two

operation calls involve another class).

Top Part: System Inheritance
The top part of the Overview Pyramid is not a adder as in

the previous cases; it is composed of two metrics that

provide an overall characterization of inheritance usage.

These proportion metrics reveal how much inheritance is

used in the system, as a first sign of how much ―object-

oriented ness‖ (i.e., usage of class hierarchies and

polymorphism) to expect in the system.

Measuring Coupling & Independence

Coupling is defined as physical connections between

elements of the Object Oriented (OO) design e.g. the

number of collaborations between classes or the number

of messages passed between objects represent coupling

within an OO system

Measuring Software Coupling [27]
Coupling refers to the degree of interdependence between

software system components. It is a software internal

attribute that has been correlated to important software

quality attributes such as maintainability, traceability, and

robustness [10]. Coupling metrics can be used to assist

managerial decisions because high levels of coupling were

associated with lower productivity, greater rework, and

greater design effort [11]. They can be used to assist in

design decisions, where high coupling was associated

with fault proneness of classes [I12, I13] and can also be

used to aid in program re-factoring [10]. Therefore,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

243

software designers are expected to determine, trace, and

manage the factors that contribute to coupling, as a means

of developing reliable and maintainable software and

reducing costs. This paper introduces a technique that

was successfully used in document information retrieval

into software coupling measurement. This technique

makes the coupling measurement in two steps and

provides a systematic procedure for each step. The first

step captures information about the elements of each

component of the system into a description matrix without

considering interactions between different components.

The second step calculates coupling between components

from the description matrix directly, according to a

coupling formula.

Related work is discussed briefly in the next section. Then

two examples of coupling metrics are provided, followed

by a broad classification of coupling measures. Our

coupling measure is then presented. Some results and

comparisons of various metrics are then presented,

followed by some concluding remarks and observations.

Related Work
In their seminal work, Stevens, Myers, and Constantine

introduced the concept of coupling in procedural

programming [14]. Six levels of coupling based on the

Myers classification were then defined in [16]. We

provide formal definition of these coupling classifications

as binary relations on a pair of system components, x and

y; these classifications are shown here in order from worst

to best:

 Content coupling relation R5: (x,y) €R5 if x refers

to the internals of y , i.e., it branches into,

changes data, or alters a statement in y .

 Common coupling relation R4 : (x,y) €R if x and

y refer to the same global variable.

 Control coupling relation R3 : (x,y) €R if x

passes a parameter to y that controls its behavior.

 Stamp coupling relation R2 : (x,y) €R if x passes

a variable of a record type as a parameter to y ,

and y uses only a subset of that record.

 Data coupling relation R1 : (x,y) €R if x and y

communicate by parameters, each one being

either a single data item or a homogeneous set of

data items that does not incorporate any control

element.

 No coupling relation R0 : (x,y) €R if x and y have

no communication, i.e., are totally independent.

This ordered classification has obtained general

acceptance and has formed the basis for several software

metrics such as the coupling metrics proposed by Fenton

and Melton [16] and by [17]-Dhama, which we describe

briefly.

Fenton and Melton Software Metric
Fenton and Melton [16] have proposed the following

metric as a measure of coupling between two components

x and y :

 C(x,y)= i +n/(n+1) where,

n = number of interconnections between x and y , and

i = level of highest (worst) coupling type found between x

and y .

Table 4 : Fenton and Melton Modified definition for Myers Coupling

levels.

Coupling

Type

Coupling Level Modified Definition between

components x and y

Content 5 Components x refers to the

internals of components y i.e. it
changes data or alerts a statement

in y.

Common 4 Components x and y refer to
same global data.

Control 3 Components x passes a control

parameter to y.

Stamp 2 Component x passes a record type
variable as parameter to y.

Data 1 Components x and y

communicate by parameters ,
each of which is either a single

data item or a homogenous

structure that does not incorporate
a control element.

No Coupling 0 Components x and y have no

connection ,i.e. are totally

independent.

The level of coupling type is based on the Myers

classification and is assigned a numeric

value, as shown in Table above.

Dhama Coupling Metric

Coupling is a measure of how closely tied are two or more

modules or class. I particular, a coupling should indicate

how likely would be that a change to another module

would affect this module .. The basic form of coupling

metric is to establish a list of items that cause one module

to be tied to the internal working of another module. One

of the metric to measure coupling is Dharma‘s Module

coupling [25]

Dhama [17] proposed a coupling metric that measures the

coupling of an individual component C , which is equal

to:

 1/(i1 + q612+u1+q2u2+g1+q8g2+w+r) where

q6,q7,q8 are constants assigned a value of 2 as a heuristic

estimate, and

i1 is the number of in data parameters,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

244

i2 is the number of in control parameters,

u1 is the number of out data parameters, and

u2 is the number of out control parameters.

For global coupling:

g1 is the number of global variables used as data, and

g2 is the number of global variables used for control.

For environment coupling:

w is the number of other components called from

component C, and r is the number of components calling

component C; it has a minimum value of 1.

Coupling Metric Proposed by Alghamdi S.

jarallah[27]

This metric proposes a framework that can be applied to

both of the above paradigms. Each paradigm requires a

different process to deal with the first step of collecting

coupling data from either the system design or the code.

The second step, which calculates the actual coupling

values, operates in an identical manner regardless of the

paradigm used.

The general approach of other coupling metrics is to

calculate the coupling values for a system in one step.

This metric involves breaking the calculation of coupling

into two steps. The first step is to generate a description

matrix that captures the factors that affect coupling in a

system. The second step is to calculate the coupling

between each two components of the system from the

description matrix to produce a coupling matrix. The

objective of generating a description matrix is to create a

structure that captures all of the characteristics of a

software system that relate to coupling, which can then be

used to calculate coupling information for that system.

Each component of the software

system is represented by a row of the description matrix.

Components are classes in an object-oriented system, or

functions, procedures, and subroutines in a procedural

system. Columns of the description matrix represent

elements. Elements are methods and instance variables in

an object-oriented system, or variables and parameters in

a procedural system.

Limitations of these metrics
There are two difficulties with these metrics . One is that

an inverse means that the greater the number of situations

that are counted , the greater the coupling that this module

hs with other modules and smaller will be the value of mc.

The other issue is that the parameters and calling counts

offer potential for problems but do not guarantee that this

module is linked to the inner working of the other

modules , The use of global variables almost guarantees

that this module is tied to the other modules that access

the same global variables .

The following observations can be made concerning these

coupling metrics:

1. The Fenton and Melton metric is a direct quantification

of the Myers coupling levels, whereas the Dhama metric

considers the number of variables or parameters belonging

to categories that are less directly influenced by the Myers

classification.

2. The highest coupling level between two components is

the main determinant of their coupling value in the Fenton

and Melton metric. The coupling value approaches the

value of next coupling level as the number of

interconnections between the two components increases.

3. The Fenton and Melton metric considers all types of

interconnections between components to have the same

complexities and have the same effects on coupling.

4. The Dhama metric considers the effect on coupling of a

parameter to be the same as the effect of a global variable,

which is a major deviation from the Myers classification

scheme.

5. The Fenton and Melton metric is an example of an

inter-modular coupling metric, which calculates the

coupling between each pair of components in the system.

The Dhama metric is an example of an intrinsic coupling

metric, which calculates the coupling value of each

component individually.

Classifications of Coupling Measures

Existing coupling measures can be broadly classified into

the following two groups:

1. Procedural programming coupling measures: these

measure the coupling of software components that are

implemented in procedural programming languages;

examples include metrics proposed by Lohse and Zweben

[18], Huches and Basili [19], Fenton and Melton [16],

Offut, Harold and Kotle [20], and Dhama [17]. This class

of metrics

is heavily influenced by the Myers classification of

coupling levels.

2. Object-oriented coupling measures: these measure the

coupling of software components that are implemented in

object-oriented programming languages; examples

include metrics proposed by Henry and Li [21], Tegarden

and Sheetz [22], J-Y Chen and J-F La [23], Lorenz and

Kidd [24], and Chidamber and Kemerer [26].

All the above stated metrics focus on the measuring the

coupling of the objects but not the independence .

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

245

Independence is an important quality of a reusable module.

The more independent the module is , more it is usable

and is not dependent on the other modules.

Proposed Metrics for the evaluation of the

independence of the Functionalities in a module

for reusability

This metric evaluates the reusability of the component by

checking its independence. A component with more

independence can be treated as more reusable.

 We can have the different types of combinations with

components treated as independent

Null Hypothesis

Hypothesis is as follows

 Ho; Ri ~ Independent

 H1; Ri not~ independent

Ho, reads that the components are independent and can be

reused. Failure to reject hypothesis means that no

evidence of non – Independence has been detected on the

basis of this test. This does not imply that further testing

of the components for independence is unnecessary.

Level of significance α must be stated. The level α is the

probability of rejecting the null hypothesis given that null

hypothesis is true or

 α = P (reject Ho/ Ho true)

α can be set to 0.01 to 0.5

This metric is based on the poker test for independence,

which is based on the frequency which certain digits are

repeated in a series of numbers.

 The following example shows an unusual amount of

repetition

0.255, 0.577, 0.331. 0.414, 0.828, 0.909, 0.303, 0.001, …

In each case, a pair of like digits appears that was

generated. In three-digit numbers there are only three

possibilities as follows

1) The individual numbers can all be different

2) The individual numbers can all be the same

3) There can be one pair of like digits

The probability of drawing one ball from the bag of balls

is applicable as the base of this metric or the expected

value of the independent metric. The probability

associated with each o these possibilities is given by the

following

P (three different digits) = P (second different from the

first) X P (Third different form the first and second)

 = (0.9) (0.8) = 0.72

P (three like digits) = P (second different from first) X p

(Third different from the first) = (0.1) (0.1) = 0.01

P (exactly one pair) = 3C2 (0.1)(0.90) = 0.27

Lets explain this by an example : a sequence of three digit

numbers has been generated and an analysis indicates that

680 have different digits , 289 contain exactly one pair of

like digits and 31 contain three like digits . Based on the

poker test , are these numbers independent ? let α =0.05.

Chi-square Test

The chi-square test is a very important and useful test for

determining how well certain observed data fir the

theoretically expected data. The testing is performed by

first dividing the observed data into ‗k‘ non-overlapping

classes (in our case it will be the various occurrence

pattern); ‗k‘ must be 3 or more. Then count the Oi, the

number of times the observed data falls in each class i, for

i = 1, 2, 3, …,k . Next , we determine the expected

number of occurrences Ei in each class i . Then to

measure how far the observed frequency deviates from the

expected we compute the chi-square test defined by

 K

Chi
2
 = ∑(Oi-Ei)

 2
/Ei

i=1

Now read the chi –square tables and find the values in the

table corresponding the different probabilities.

eg. Read the values of chi-square for degree of freedom

v=9

.995 .99 .95 090 .75 .50 .25

1.73 2.09 3.33 4.17 5..90 8..34 11.4

.10 .05 .01 .005

14.7 16.9 21.7 23.6

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

246

This means that there is a 99.5% probability of chi-square

exceeding 1.73; a 99% probability of chi-square

exceeding 2.09 ,….., and .5 % probability of chi-square

exceeding 23.6. Thus the probability of chi – square (for

v = 9) falling below 1.73 and above 23.6% is only 1%.

That is 990 sequences out of 1000 sequences perfectly

independent occurrences would have given

1.73 <= chi-square <= 23.6

Like wise , if we take 1 as cutoff point , we would reject

all sequences below 2.09 and above 21.7 .

The test is summarized in the table as below

Table 5: Observed and Expected values

Combinations Observed

Frequency, Oi

Expected

frequency,

Ei

(Oi-

Ei) 2

/Ei

Three different

digits

680 720 2.22

Three like digits 31 10 44.10

Exactly one pair 289 270 1.33

Total 1000 1000 47.65

The appropriate degrees of freedom are one less than the

number of intervals . Since 47.65> X2 0.05,2 = 5.99. The

independence of the numbers is rejected on the basis of

this test.

Example 2: This is based on poker game in which the

cards are drawn from the deck of cards . Suppose we have

five independent functionalities viz, a,b,c,d,e and we treat

these as a hand of poker in card game and classify

accordingly

Five of a kind (a a a a a)

Four of a kind (a a a a b)

Full House (a a a b b)

Three of a Kind (a a a b c)

Two Pairs (a a b b c)

One pair (a a b c d)

Bust (a b c d e)

The associated probabilities associated with these seven

hands are

Five of a kind (a a a a a) 0.0001

Four of a kind (a a a a b) 0.0045

Full House (a a a b b) 0.0090

Three of a Kind (a a a b c) 0.0720

Two Pairs (a a b b c) 0.1080

One pair (a a b c d) 0.5040

Bust (a b c d e) 0.3024

If we generated 5n random digits we can form n random

poker hands and then compare the observed frequencies

of these seven types of poker hands with the expected

distribution . To measure the amount of deviation between

the expected and the actual distribution we once again use

the chi-square test with degree of freedom v=6.

Now this test of independence can be applied to reusable

components of a software.

The functionalities to be included in software for

reusability are dependent or independent of each other.

For example say we have one functionality a, which is

incorporated in the software and it may be dependent or

may call for functionality b in the software.

If a is in the influence of b up to certain extent then a and

b must co-exist.

Thus if the software developed for reuse includes only the

functionality a and does not include the functionality b

will not be a good reusable package. To make a perfect

reusable software it must contain all the general

functionalities so that it may be used across all several

domains.

There are a number of metrics available for measuring

various parameters of a component or software but still

these metrics lack the capability to calculate the

independence of a component.

If we have to design software or we have to check the

software on the terms of this metric the following steps

are involved

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

247

1) Firstly, find out the sequential occurrence of a

component or functionality across several software. These

are termed as observed occurrences. (O)

2) Then compare the occurrences with then

compare these occurrence with the expected (E), based on

poker test.

3) perform the chi-square test with given degrees of

freedom and values of α.

4) Then conduct the chi-square test on the O and E

and draw inferences as per the values of the chi-square.

For example we now take the example of 10 components

and used in different software with five at a time:

The different combinations of components can be

C1 C2 C3 C8 C9 - five different kinds

C1 C1 C7 C9 C8 - a pair

C2 C2 C5 C5 C9- two pair

C6 C6 C6 C1 C8 – three of a kind

C8 C8 C8 C8 C7 – four of a kind

C1 C1 C1 C1 C1 – five of a kind

The occurrence of five of a kind is rare.

Lets take an example to explain this metric

In a software which is using 10000 components of 10-

different kinds (a, b, c, d, e, f, g, h, i, j, k).

1) The observed sequences of components in the

software are

The expected combinations for 10000 poker hands are as

below

Table: Expected values

Combination

Distribution

Expected

(Ei)

percentage

Five different

components

3024 30.24%

Pairs 5040 50.40%

Two Pairs 1080 10.80%

Three of a kind 720 7.20%

Full Houses 90 0.90%

Four of a kind 45 0.45%

Five of a kind 01 0.01%

Table: Expected and Observed values

Combination
Distribution

Observed
Distribution

Expected
(Ei)

(Oi-Ei)2/E

Five different

components

3033 3024 0.0268

Pairs 4945 5040 1.7906

Two Pairs 1098 1080 0.3

Three of a kind 667 720 3.9

Full Houses 101 90 1.3444

Four of a kind 52 45 1.8

Five of a kind 01 01 0

Total 10000 10000 9.1619

The degrees of freedom in this case is 6, which is one less

than the number of cases i.e .7 Tabulated value of Chi –

Square for v=6 is 0.675727 for probability

0.995 ,i.e.,α=0.05 and the calculated value is 9.1618.

 Thus the component combinations are independent and

the software can be designed to have different

components with independent functionalities.

Discussion and Conclusion
In the above example the no of components were 10 and

the possible combinations were taken as 5. We can have

any number of combinations and components. All we

have to calculate the expected values by probability rules

and then the observed values form the system. The chi-

square test will then be done to calculate the independence.

Thus we have seen that the components can be used

across various software with dependency and non

dependency on other components. The test of

independence evaluates how much independent the

component is . The more independent the component , the

more reusable it is.

References

[1] Briand et al. A Unified Framework for coupling

Measurement. IEEE Transactions on Software Engineering.

vol. 25, no. 1, Jan-Feb 1998 1999.

[2] Etzkorn, Letha, Bansiya, Jagdish, Davis, Carl. Design and

Code Complexity Metrics for Object-Oriented Classes.

Quality Metric for Object-Oriented Design. Journal of

Object-Oriented Programming. April 1999.

[3] Fenton, Norman E., Pfleeger, Shari L. Software Metrics: A

Rigorous & Practical Approach. 2 nd ed. PWS, 1997.

[4] Gillibrand, David, Liu, Kecheng. Quality Metric for Object-

Oriented Design. Journal of Object-Oriented programming.

Jan 1998.

[5] Lim W., Effects of Reuse on Quality, Productivity, and

Economics. In: IEEE Software, Vol. 11, No. 05, September,

1994, pp. 23-30.

[6] Henry E. and Faller B., Large-Scale Industrial Reuse to

Reduce Cost and Cycle Time. In: IEEE Software, Vol. 12,

No. 05, September, 1995, pp. 47-53.

[7] Basili, V. R.; Briand, L. C.; Melo, W. L. How Reuse

Influences Productivity in Object-Oriented Systems. In:

Communications of the ACM, Vol. 39, No. 10, October,

1996, pp. 104-116

[8] Devanbu, P. T.; Karstu, S.; Melo, W. L.; Thomas, W.

Analytical and Empirical Evaluation of Software Reuse

Metrics. In: Proceedings of the 18th International

Conference on Software Engineering (ICSE), Berlin,

Germany, pp. 189-199, 1996.

[9] Frakes, W. & Succi, G. An Industrial Study of Reuse,

Quality, and Productivity. In: Journal of Systems and

Software, Vol. 57, No. 02, June, 2001, pp. 99-106.

[10] P. Joshi and R.K. Joshi, ―Microscopic Coupling Metrics for

Refactoring‖, Proceedings of the Conference on Software

Maintenance and Reengineering CSMR 2006, 22-24 March

2006, pp.145–152.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

248

[11] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer,

―Managerial Use of Metrics for Object-Oriented Software:

An exploratory analysis‖. IEEE Transactions on Software

Engineering, 24(1998), pp. 629–639.

[12] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue,

―Prediction of Fault-Proneness at Early Phase in Object-

Oriented Development‖, Second IEEE International

Symposium on Object-Oriented Real-Time Distributed

Computing, May 1999, pp. 253–258.

[13] Mie Mie Thet Thwin and Tong-Seng Quah, ―Application of

Neural Networks for Software Quality Prediction Using

Object-Oriented Metrics‖, Journal of Systems and

Software, 76(2)(2005), pp. 147–156.

[14] G. Myers, Composite/Structured Design. Van Nostrand

Reinhold, 1978.

[15] N. E. Fenton and S. L. Pfleeger, Software Metrics: A

Rigorous & Practical Approach. 2nd edn. Reading, 1997.

[16] Norman Fenton and Austin Melton, ―Deriving Structurally

Based Software Measures‖, J. System Software, (12) 1990,

pp. 177–187.

[17] H. Dhama, ―Quantitative Models of Cohesion and

Coupling in Software‖, Journal of System and Software,

9(1)(1995), pp. 65–74.

[18] J. B. Lohse and S. H. Zweben, ―Experimental Evaluation

of Software Design Principles: An Investigation into the

Effect of Module Coupling on System Modifiability‖,

Journal of System and Software, 4(1)(1984), pp. 301–308.

[19] D. H. Hutches and V. R. Basili, ―System Structure

Analysis: Clustering with Data Bindings‖, IEEE

Transactions on Software Engineering, 11(8)(1985), pp.

749–757.

[20] A. J. Offut, M.J. Harrold, and P. Kotle, ―A Software Metric

System for Module Coupling‖, Journal of System and

Software, 20(3)(1993), pp. 295–308. Jarallah S. Alghamdi

April 2008 The Arabian Journal for Science and

Engineering, Volume 33, Number 1B 129

[21] W. Li and S. Henry, ―Object-Oriented Metrics that Predict

Maintainability‖, Journal of Systems and Software, 23(2)

(1993), pp. 111–122.

[22] D.P. Tegarden, S.D. Sheetz, and D.E. Monarchi, ―The

Effectiveness of Traditional Software Metrics for Object-

Oriented Systems‖, ed., in Proceedings of the Twenty-Fifth

Hawaii International Conference on System Sciences, ed.

J.F. Nunamaker, Jr. and R.H. Sprague, (1992), pp. 359–368.

[23] J. Chen, and J. Lu, ―A New Metric for Object-Oriented,

Design‖, Information and Software Technology, 5(4)(1992),

pp. 232–239.

[24] Brian Henderson-Sellers, Object-Oriented Metrics:

Measures of Complexity. New York: Prentice Hall PTR,

1996.

[25] H. Dharama, ‗Quantitative Models of Cohesion and

Coupling in Software‘, Journal of Systems and Software,

29:4, April 1995.]

[26] Shyam R. Chidamber, and Chsis F. Kemerer, ―A Metrics

Suite For Object Oriented Design,‖ IEEE Transactions On

Software Engineering, 20(6)(1994), pp. 476– 493.

[27] Ganesn Dharmalingam, Knodel Jens, Identifying Domain-

Specific Reusable Components from Existing OO Systems

to Support Product line Migration; Fraunhofer Institute for

Experimental Software Engineering

[28] Lanza Michele, Marinescu Radu ; Object – Oriented

Metrics in Practice , Springer.

[29] T.J. McCabe . A measure of complexity. IEEE Transactions

on Software Engineering ,2(4) : 308 -320, December 1976.

[30] Mark Lorenz and Jeff Kidd. Object- Oriented Software

Metrics : A practical guide . Prentice-Hall,1994.

[31] Jarallah S. Alghamdi , Measuring Software Coupling,

Information & Computer Science Department King Fahd

University of Petroleum & Minerals Dhahran, 31261, Saudi

Arabia.

P.K. Suri received his Ph.D.degree from

Faculty Of Engineering Kurukshetra

University, Kurukshetra, India and

Master‘s degree from Indian Institute of

Technology, Roorkee (formerly known as

Roorkee University), India. He is working

as Professor in the Department of

Computer Science & Applications,

Kurukshetra University, Kurukshetra -

136119 (Haryana), India since Oct. 1993. He has earlier worked

as Reader, Computer Sc. & Applications, at Bhopal University,

Bhopal from 1985-90. He has supervised five Ph.D.‘s in

Computer Science and thirteen students are working under his

supervision. He has more than 100 publications in International /

National Journals and Conferences. He is recipient of ‗‘THE

GEORGE OOMAN MEMORIAL PRIZE‘ for the year 1991-

92 and a RESEARCH AWAWD – ―The Certificate of Merit-

2000‖ for the paper entitles ESMD- An Expert System for

Medical Diagnosis from the Institution of Engineers, India. His

Teaching and Research include Simulation and Modeling, SQA,

Software Reliability , Software Testing & Software Engineering

Process, Temporal Databases, Ad Hoc Networks, Grid

Computing , and Biomechanics.

Neeraj Garg received his B.E. Degree

and Masters in Computer Science and

Applications (MCA) Panajb University ,

Chandigarh and Kurukshetra University,

Kurukshetra in the year 1992 and 2001

respectively. Currently he is pursuing

Ph.D. in Computer Science from the

Department of Computer Science &

Applications , Kurukshetra University ,

Kurukshetra , India. He had served as Head of the Department of

MCA department at Maharaja Agresen Institute of Management

and Technology , Jagadhri, Haryana, India and Department of IT

Engg. M. M University, Mullana , India. Currently he is

Associate Professor in the Department if IT Engg. M. M.

University Mullana, India . He had also worked with various

organizations including C-DOT where he had carried out

research work in SS#7 Protocol of Telephone Networks. He is

co- editor of MAIMT- Journal of IT and Management. His

research areas include Simulation and Modeling, Software

engineering , System Programming and Networks.

