
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

249

Manuscript received May 5, 2009

Manuscript revised May 20, 2009

Parallel Query Processing in a Cluster using MPI and File

System Caching

N. Ch. S. N. Iyengar , Monis Huda, Pranav Juneja, Saurabh Jain, V Vijayasherly,
School of Computing Sciences, VIT University

Vellore 632014, Tamil Nadu, India

Summary
Data intensive applications that rely heavily on huge databases

waste a lot of time in searching and retrieval especially if there is

a single server retrieving data from the database. This paper

proposes a Beowulf cluster for fast query processing by

distributing the database horizontally over nodes through a load

balancing act. A mathematical model is proposed to optimally

partition data among the nodes. Communication between nodes

is to be achieved through MPI(Message Passing Interface).

A file system cache has been created to further decrease the

query processing time. Caching is performed with the help of

Apache Lucene API. Results would be retrieved depending upon

a cache hit or miss. The size of the cache would be monitored

and if it exceeds a threshold value deletion operation would be

performed by applying the LRU(least recently used) algorithm.

Through experimental results we have found that caching

reduces the query processing time substantially. We can further

improve the result by performing query optimization by indexing

the attributes in complex queries.

This approach has reduced the query processing time manifold as

compared to a single overloaded server. With networks growing

in speed and highly available secondary storage it is expected to

perform even better in future.

Key words:
Fast Query Processing, MPI, Load Balancing, File System

Cache

1. Introduction

Due to high performance and cost effectiveness, cluster

of workstations have gained popularity in recent years. A

cluster can be built either from asymmetric or symmetric

processors, but generally it is built from Symmetric Multi-

Processors (SMP). SMPs with more than one node are also

emerging. We are using Beowulf cluster in our approach

which comes under compute cluster category and is a

multi-computer architecture used for parallel computations.

In order to provide efficient inter-node communication

using MPI, the cluster should have a high performance and

scalable architecture. In our implementation we have used

MPI to provide effective communication between nodes.

 The main motivation behind parallel processing

application is that we need to solve bigger problems with

resource requirements beyond current limits. The term

bigger refers to applications that are performance critical,

complex in nature and computation-intensive. Parallel

computing is the way because it performs work in lesser

time, solve large problem easily, saves cost and provides

concurrency [9]. Data intensive applications that require

huge databases waste a lot of time in scanning and

searching. The optimal way to run these applications is to

use the computational power of more than one system by

distributing the workload among the nodes in a cluster.

Thus by using extensive computational power of many

nodes simultaneously the work can be performed in a very

quick and efficient way. Traditional serial computation has

many serious limitations like memory size and speed,

limited instruction level parallelism, power usage, heat

problem etc. With the wide availability of parallel

computing platforms like HPC centres, local linux clusters,

multiple CPU’s and GPU’s(graphics processing unit) the

above mentioned limitations can be overcome.

Our objective is to optimize query processing time by

providing parallelization with the use of Java MPI over

distributed database systems to store data rather than

overloading a single DB Server machine. In case of a

single DB server machine if the database to be processed is

huge, it suffers from various limitations like memory size

and speed. Our aim is to share the work of the single server

machine by partitioning the load among the nodes in the

cluster so that parallelization can be achieved. Query

processing time is further reduced by adding an important

functionality of caching, in which a file system cache

would be maintained so that in order to make the process

fast, the result would be first retrieved from the cache if

present instead from the database and if it is not present it

would be written in cache for future references [7]. To

provide efficient searching Jakarta Lucene search engine

version 2.4 is used [3], [4]. We have further reduced query

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

250

processing time by creating index of attributes in complex

queries.

The rest of the paper is organized as the following: In

Section 2, we introduce some background knowledge,

including advanced system architectures, MPI inter-node

communication, Lucene search engine and file system

caching. We illustrate our design and its methodology in

Section 3. Performance evaluation, comparison and

analysis are presented in Section 4. And finally, in Section

5 we conclude and point out future work directions.

2. Background

MPI is a message-passing application programmer

interface used to program parallel computers with the help

of a set of library routines which are used for distributed

programming [5], [6]. It is language independent and

supports both point-to-point and collective communication.

Its goals are high performance, scalability, portability, and

it is a dominant model used in high-performance

computing today. Most MPI implementations are callable

from any language capable of interfacing with routine

libraries like Fortran, C, C++ or Java. The advantages of

MPI over older message passing libraries are portability

and speed. There are two standard versions that are

currently in use version 1.2 (also known as MPI-1) which

has a static runtime environment and MPI-2.1 which

includes new features such as parallel I/O, dynamic

process management and remote memory operations.

Another difference is in the shared memory which is

supported by MPI-2 only. While MPI-1 is used to

exchange messages of one datatype MPI-2 provides

additional functions of one way communications and

language bindings. This message passing model which is

based on data exchange between processes in the MPMD

model provides the programmer with the advantage of high

flexibility in the explicit parallel programming.

.

Figure1 : Beowulf Cluster

Figure 1 illustrates a typical Beowulf cluster built from

SMPs. Threaded MPI execution on SMP clusters can be

done in two ways, Intra Machine Communication through

shared memory [2] and Inter Machine Communication

through network. We are using inter node communication

in our approach. It is a common belief that inter node

communication is dominated by network delay, so the

advantage of executing MPI nodes as threads diminishes

but recent findings as described in [1] have shown that

using threads can significantly reduce the buffering and

orchestration overhead for inter machine communications.

In our file system caching we are using Lucene. It is an

open source API supported by Apache Software

Foundation originally created in java by Doug Cutting. It is

suitable for any application which requires indexing and

searching operations. In our approach master node is using

these functionalities to create and maintain file system

cache.

We are using database indexing also to reduce query

processing time. A database index is a data structure that

improves the speed of operations on a database table.

Popular data structures used for indexing are balanced

trees, B+ trees and hash tables. Indexing more than

necessary can result in an application slower than usual so

it has to be used in a proper manner to enhance

performance.

3. Design and methodology

In this section, we provide a detailed illustration of our

proposed design. Our design goal is to develop distributed

system architecture for fast query processing. In the

following subsections, we start with our proposed work,

followed by overall design architecture and its

implementation.

A. Proposed Work

 The system architecture that is generally used has a

Database (DB) Server solely responsible for the entire

database. The client system interacts with the server

through the user interface and requests the data records.

The DB server which stores and manages the entire

database retrieves the records, sends it back to the client

and present it through the user interface. In this case the

database is centralized and the entire overhead of the

database is on the DB server. Therefore, the DB Server

should have adequate resources to comply with the

requirements of the clients and database of different sizes.
 In our proposed system we are emphasizing the use

of distributed database instead of a centralized one. Our

aim is to reduce the query processing time significantly so

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

251

that result can be displayed in real time. Database is

distributed by performing a load balancing act by the

master node in the cluster. Master node partitions the

database horizontally and distributes it equally to all the

nodes present. Communication between nodes is to be

achieved through MPI(Message Passing Interface)

middleware which is a language-independent

communication protocol used to program parallel

computers. MpiJava is an object-oriented Java interface to

the standard Message Passing Interface which we are going

to use. User would enter the query at the master node and

master node would send query to each of the nodes in the

cluster. Slave nodes would execute query and send the

result back to the master node where all the result would be

assimilated and displayed. Further reduction in query

processing time is to be achieved using file system cache.

We are going to use apache lucene API to perform caching.

Lucene creates index for the cache and performs searching

operations. When query is entered by the user at the master

node it would first search the result in the file system cache.

If it is a hit the result would be retrieved from the cache

and if it is a miss the result would be appended in form of a

file in cache for future references. The size of the cache

would be monitored and if it exceeds some threshold value

deletion operation would be performed by applying an

algorithm(we are using LRU). We have further reduced

query processing time by creating indices of attributes in

case of complex queries.

B. Overall Architecture

 In the conventional system as shown in figure 2 there is

only a single DB server retrieving data from the database.

Figure 3 demonstrates our proposed architecture which

comprises of a Beowulf cluster with the master node

connected to the outside network and the slave nodes

connected to the master. There is distributed database

architecture with the master node distributing the load to

all the nodes present. In the master node we have created a

file system cache to enable faster retrieval of data.

Figure 2: Existing system

Figure 3: Proposed System

The master node would retrieve the data from the cache if

present and if not, the result would be appended in cache

for future references. The size of the cache would be

monitored and only recently queried data would be present.

The searching in file system cache is performed using

Lucene search engine.

C. Mathematical Model for Load Balancing

 In a heterogeneous cluster many factors have to be taken

into account [8] to decide how much task is to be allotted

to each node. These factors include processor speed, disk

storage, input/output and network latency. While in case of

homogeneous cluster we have to only take network latency

into account. Distribution of database has to be done

according to the execution time taken by a particular node,

less the execution time more the data given to that node.

We can present load sharing in a mathematical model as

follows:

 Let D be the database size and S be a set of

heterogeneous machines; S = {N1,N2,…,Nn}, where N

denotes a machine and n be the number of nodes.

 Ni(Ci,Si,Li) represents a machine having computational

power Ci, disk storage Si and estimated network

bandwidth Li; Li={αij, i ≠ j}, where αij is the average

latency between nodes Ni and Nj.

 Let Ei be the execution time taken by the node Ni. This

can be written as:

 Ei = Ci + Ii, where

 Ci = estimated computational time

 Ii = estimated I/O time

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

252

The partitioning of the database can be carried out in three

steps:

1) Estimating the number of nodes in which the database

has to be partitioned: To optimize the performance of the

cluster all the nodes need not to be used. The number of

nodes that should be used for better performance can be

estimated by using the following formula:

Tm = max[C*(D/m) + Ii*αii*(D/m*αij)]

where 1 ≤ i ≤ m , 1 ≤ m ≤ n,

 Tm denotes the execution time taken by m

nodes

 C is average computational time

 Now to find the maximum number of nodes m, we have

to find the point where derivative becomes zero. We can

denote it by nmin

nmin = { m : d/dM{max[C*(D/m) + Ii*αii* (D/m*αij)]}=0 }

where, nmin is the minimum number of nodes to be used out

of n.

2) Finding the rank of each node: The next step is to find

the rank of each node and altering nodes.txt file according

to the rank and number of nodes which are found in the

first step. In the nodes.txt file hostname of slave nodes

would be written in the order of their rank. The rank of

each node would depend on its computational power and

network latency. Rank would be calculated using this

formula:

Ri = Ci + (Ii /αii)*αij

where Ri denotes the rank of the ith node.

3) Partitioning database: The database to be distributed is

partitioned according to the rank of the node, that is, more

the value of Ri less the part of database will be given to it.

For example if there are three nodes having rank 1, 2, 3

database would be distributed in the ratio 3/6, 2/6 and 1/6

respectively.

D. Implementation

 The idea has been implemented through the following

modules:

1) Load Sharing: The aim of the module is to perform

load sharing through database distribution. The

mathematical model for load sharing has been described

above. The flow is shown in figure 4. To avoid direct

access to the slave node and individual entering of records

into the data base, the data can be directly entered via

master node. The records are retrieved from the master

node and then are partitioned depending on the number of

nodes present in the cluster. The data is now sent to the

slave nodes in the form of an object using MPI. The slave

receives the object and updates its database.

Figure 4: Load Sharing

 2) MPI (Message Passing Interface): This interface

means that programs can communicate between instances

of themselves and other programs on remote nodes to

achieve efficient parallelism and minimize the overhead

associated with process migration when the load is

inaccurately predicted.

 The Slave nodes establish TCP/IP connection with the

master node by dialing the host name. The Master node

accepts the request from all the nodes based on the entries

in the nodes.txt file. Once the connection is established, the

slave nodes are ready to accept the query from the master

node.

 3) File System Caching: We are using cache in the

form of file system cache which is different from in

memory cache. This cache is present in the secondary

storage itself in the form of directory at a specified location.

So in our case its non volatile and its persistent. The

attributes of the cache like cache size, expiry can be set

accordingly. In our implementation the recently retrieved

records are stored in the cache in form of files. The data if

present in the cache itself is taken out rather than retrieving

from the database. A cache might backend to a file system

to load and retrieve objects locally rather than across a

network. Once the size of cache exceeds certain fixed limit

the least recently used files are automatically deleted

before the creation of the new ones.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

253

Lucene gets its data from a file system directory that

contains a certain set of files that follow a certain structure.

The data is sent into the Index, after that searching is

performed on the Index to get results out. Document

objects are stored in the Index, and they are put into the

Index at some point. We select what data to enter in, and

convert them into Documents. We read in each data file (or

database entry, or whatever), instantiate a Document for it,

break down the data into chunks and store the chunks in

the Document as Field objects.

 4) Indexing Database Queries: A database index is

a data structure that can be created using one or

more columns of a database table and its main advantage is

that it improves the speed of operations on a database table,

providing the basis for both rapid random look ups and

efficient access of ordered records. Since indexes do not

consist of the details that are present in the table and

contains only the key fields according to which the table is

arranged, it occupies much lesser space than the table and

thus provides the chance of storing the index in memory of

those tables which are too large.

 Whenever the user enters a complex query, an index

containing the attribute as columns present in the query is

created. Now the next time when the user enters a query

containing similar attributes, the index is first accessed

rather than the table and thus leading to time optimization.

4. Performance Evaluation

In this section, we present the performance evaluation of

our proposed system.

Experimental Setup: We created a Beowulf cluster

comprising 15 nodes. Each node is equipped with Intel

Pentium4 processor running at 1.66GHz. Slave nodes

consist of 1024kb L2 cache while the master node is

having 2048kb size. The nodes are connected by high

speed LAN. The MPI version used is 1.2.5 and the Lucene

version on the master node is 2.4. Oracle 10g is used as

database server. The operating system on the cluster is

Windows XP.

 We compared the performance of our cluster to the

single server design. Query retrieval time is measured in

unit of milliseconds (ms). First we compared the query

retrieval time of a single node and 15 nodes fetching the

same number of tuples. It was assessed that when the

number of records were less, the performance of single

node was better than 15 nodes fetching results

simultaneously. But as the number of tuples increased the

time taken by the distributed system decreased

substantially as shown in figure 5. We found out that query

processing is highly dynamic in nature and depends upon

the size of the database and on the number of nodes

present in the cluster.

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

0 1500 3000 4500 6000 7500 9000

Number of Tuples

T
im

e
 i
n

 m
s

1 Node 15 Nodes

Figure 5: Difference in latencies between single node and cluster

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 1500 3000 4500 6000 7500

Number of Tuples

T
im

e
 i
n

 m
s

 Query Processing time when tuples retrieve from slave

nodes (Cache MISS)

Query Processing time when tuples retrieve from file

system Cache (Cache HIT)

Figure 6: Difference in latencies between file system cache and cluster

We also compared the performance and query

retrieval time when records are fetched from slave nodes

and local file system cache as shown in figure 6. Here we

found drastic reduction in time. The time taken to retrieve

results from slave nodes is expected to be proportional to

the number of tuples, but the time was found out to be

nearly constant when retrieved from local file system cache

because of fast searching performed by lucene.

 We further analyzed the performance based on the

number of nodes in the cluster keeping the number of

tuples constant as demonstrated in figure 7. It was found

that when the number of nodes was less, the performance

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Column_(database)
http://en.wikipedia.org/wiki/Table_(database)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

254

was low, but when it was increased to 25 or above there

was a significant enhancement in the cluster performance.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 3 6 9 12 15

Number of Computer Nodes

T
im

e
 i
n

 m
s

Figure 7: Difference in latencies with increasing nodes in cluster

5. Conclusion and future work

 In this paper, we have designed and implemented a high

performance and scalable inter node communication within

a cluster for fast query processing in a distributed database

environment using MPI in java. Master-node file caching

has been demonstrated as a powerful tool to reduce the

data transfer between master node and the slaves. A

mathematical model for load sharing is proposed to

distribute the data optimally to all the nodes present and

since it is performed by the master node it also prevents

direct access to slave nodes which is very crucial in respect

of security. Our experimental results show that our

proposed design and work have substantially reduced

query processing time.

 For future works, we will perform both vertical and

horizontal partitioning of the database. Also, we intend to

encrypt the data before transferring it over the network to

provide secured transmission.

Acknowledgment

We would like to thank Dr. M. Khalid, Director, School

of Computing Sciences and management of the VIT

University, India for providing facilities to test our design

in labs.

References
[1] Hong Tang and Tao Yang, Dept of Computer Science,

University of California, ”Optimizing Threaded MPI

Execution on SMP Clusters”, 2001

[2] Lei Chai ,Albert Hartono ,Dhabaleswar K. Panda, “Designing

High Performance and Scalable MPI Intra-node

Communication Support for Clusters”, 2006 I EEE.

[3] Lucene in Action, Second Edition" by Erik Hatcher, Otis

Gospodnetić, and Michael McCandless.

[4] Building Search Applications: Lucene, LingPipe, and Gate"

by Manu Konchady; Mustru Publishing; June 2008.

[5] Parallel Programming with MPI by Peter Pacheco

[6] Using MPI: portable parallel programming with the message

passing interface by William Gropp, Ewing Lusk, Anthony

Skjellum

[7] Wei-keng Liao, Avery Ching, Kenin Coloma, Arifa Nisar,

and Alok Choudhary , “Using MPI File Caching to Improve

Parallel Write Performance for Large-Scale Scientific

Applications” 2007 ACM.

[8] Sanan Srakaew, Nikitas A. Alexandridis, Punpiti Piamsa-nga,

George Blankenship, “Content-based Multimedia Data

Retrieval on Heterogeneous System Environment,” in

International Conference on Intelligent Systems (ICIS-99) ,

Denver, Colorado, June 24-26, 1999.

[9] Philip Hatcher And Mathew Reno, “Cluster computing With

Java” 2005 IEEE

