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Summary 

Finding frequent itemsets in databases is crucial in data 

mining for purpose of extracting association rules. Many 

algorithms were developed to find those frequent itemsets. 

This paper presents a summarization and a comparative 

study of the available FP-growth algorithm variations 

produced for mining frequent itemsets showing their 

capabilities and efficiency in terms of time and memory 

consumption. 
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1. INTRODUCTION 

An association rule is defined as the relation between 

the itemsets, since its introduction in 1993 [1] the process of 

finding the association rules has received a great deal of 

attention. Today the extracting of association rules is still 

one of the main popular pattern discovery techniques in 

knowledge discovery and data mining (KDD). 

The process of extracting the association rules can be 

viewed as two-phases: the first phase is to mine all frequent 

patterns; each of these patterns will happen at least as 

frequently as preset minimum support count (min_sup). The 

second phase is to produce strong association rules from the 

frequent patterns; these rules must assure minimum support 

and minimum confidence. The performance of discovering 

association rules is largely determined by the first phase, [8]. 

A lot of algorithms were proposed to optimize the 

performance of the FP-growth algorithm. In this paper we 

mainly restrict ourselves to study the performance of the FP-

growth’s Variations in term of running time and the memory 

usage. 

 

2. RELATED WORKS  

In fact, a broad variety of efficient algorithms for 

mining frequent itemsets have been developed. Agrawal et 

al in [1], introduced Apriori algorithm to find the frequent 

itemsets from market basket dataset. The Apriori algorithm 

adopts candidates’ generations-and-testing methodology to 

produce the frequent itemsets. In the case of the long 

itemsets the Apriori approach suffer from the lack of the 

scalability, due to the exponential increasing of the 

algorithm’s complexity.    

FP-growth  approach  for  mining  frequent  itemsets 

without  candidate  generation was  proposed  by  Han in 

[2] .  Its scalable frequent patterns mining method has been 

proposed as an alternative to the Apriori-based approach. 

The pattern growth approach adopts the divide-and-conquer 

methodology to produce the frequent itemsets. 

This algorithm creates a compact tree-structure, FP-Tree, 

representing frequent patterns, which moderates the multi-

scan problem and improves the candidate itemset generation.  

This algorithm is faster than others in the literature, this 

reported by the authors of this algorithm.  

Several algorithms implicate the methodology of the FP-

growth algorithm. In [3] Pei used the same approach for 

Mining closed frequent itemsets and max-patterns. Likewise, 

Pei suggested to Mining sequential patterns in [4]. 

 Further Improvements of FP-growth Mining Methods were 

introduced.  [5],[6],[7],  adapted  the  similar  approach of 

Han et al [2] for mining the frequent itemsets from the 

transactional database. The authors reported that these 

algorithms are more efficient than FP-growth. 
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3. FP-GROWTH ALGORITHM REVISIT  

FP-growth algorithm is an efficient method of mining 

all frequent itemsets without candidate’s generation. The 

algorithm mine the frequent itemsets by using a divide-and-

conquer strategy as follows: FP-growth first compresses the 

database representing frequent itemset into a frequent-

pattern tree, or FP-tree, which retains the itemset association 

information as well. 

The next step is to divide a compressed database into set of 

conditional databases (a special kind of projected database), 

each associated with one frequent item. Finally, mine each 

such database separately. 

Particularly, the construction of FP-tree and the mining of 

FP-tree are the main steps in FP-growth algorithm. 

For the explanation of the algorithm, we will use the 

following example. To find the frequent itemsets from 

transactional database DB (see Table 1).First, a scan of the 

database DB derivers a set of frequent 1-itemsets (L) which 

also include their support count. The set L is sorted in the 

order of descending support count, this ordering is important 

since each path of FP-tree will follow it. 

Let the minimum support count be 3,then the set 

L={(f,4),(c,4),(a,3),(b,3),(m,3),(p,3)}. 

Table 1: The transactional database DB 

 TID Items 

T1 f,a,c,d,g,i,m,p 

T2 a,b,c,f,l,m,o 

T3 b,f,h,j,o 

T4 b,c,k,s,p 

T5 a,f,c,e,I,p,m,n 

Second, an FP-tree is constructed as follows: The root of the 

tree, labeled Null, is created. The database DB is scanned 

for the second time. The items in each transaction are 

processed in L order, and a branch is created for each 

transaction. 

For example, the scan of the first transaction, 

“T1:f,a,c,d,g,I,m,p” which contains five items (f,c,a,m,p in 

L order).Only those items that are in the list of frequent 

itemsets L ,leads to constructions of the first branch of the 

tree with tree nodes {<f,1>,<c,1>,<a,1>,<m,1>,<p,1>} 

where <f,1> is linked as a child of the root. <c,1> is linked 

to <f,1>,<a,1> is linked to <c,1> ,<m,1> is linked to <a,1>, 

and <p,1> is linked to <m,1>. 

The second transaction, because it shares items f, c and a, it 

shares the common prefix {f,c,a} with the previous branch 

and extends to the new branch {<f,2>,<c,2> , <a,2>,<m,1>, 

<p,1>} .increasing the count of the common prefix by 1.The 

new intermediate version of FP-tree, after adding two 

transactions from the database ,is given in Fig. 1.for the 

remaining transactions can be inserted in the same way (see 

Fig. 2). 

 

Fig.1 FP-tree for two transactions 

 

Fig. 2 Final FP-tree 
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To ease tree traversal, header table is built so that each item 

points to its occurrences in the tree via chain of node-link.  

Using the compact tree structure (or FP-tree), the FP-growth 

algorithm mines all the frequent itemsets. The FP-tree is 

mined as follows. Begin from each frequent-1 pattern (as an 

initial suffix pattern), construct its conditional pattern base 

(a “subdatabase” which consists of the set of prefix paths in 

the FP-tree co-occurring with suffix pattern), then build its 

(conditional) FP-tree, and do mining recursively on such a 

tree. The patterns growth is achieved by the concatenation 

of the suffix pattern with the frequent patterns generated 

from a conditional FP-tree. 

In our example, according to L ,the complete set of frequent 

itemsets can be divided into subsets (6 for our example) 

without overlapping, first, frequent itemsets having items p 

(as an initial suffix pattern) ,which is the last item in L, 

rather than the first item. The reason for starting at the end 

of the list will become clear as we explain the FP-tree 

mining process. Second, the itemsets having item m but not 

p; third, the itemsets that have item b without both m and p; 

we continue this process to the end. Therefore, the last set 

will be the large itemsets only with f.   

The item p occurs in two branches of the FP-tree of 

Fig.2.The occurrences of p can easily found by starting from 

the header table of p and following p’s node-links. The 

paths formed by these branches are 

{<f,4>,<c,3>,<a,3>,<m,2>,<p,2>}and{<c,1>,<b,1>,<p,1} 

where samples with a frequent item p are 

{<f,2>,<c,2>,<a,2>,<m,2>,<p,2>}and{<c,1>,<b,1>,<p,1>}, 
which form its conditional pattern base ,these samples are 

the transactions that contain the branch of the tree with the 

existing of item p. Its conditional FP-tree contains only {<c, 

3>} ,the other items are not included because its support 

count is less than 3.The generated frequent itemset that 

satisfy the minimum support count is {<c,3>,<p,3>},all the 

other itemsets are below the minimum support count.     

The next subsets of frequent itemsets are those with m item 

and without p. The FP-tree recognizes the paths 

{<f,4>,<c,3>,<a,3>,<m,2>}and 

{<f,4>,<c,3>,<a,3>,<b,1> ,<m,1>},or the related 

accumulated samples {<f,2>,<c,2> ,<a,2>,<m,2>} and 

{<f,1>,<c,1>,<a,1>,<b,1>,<m,1>} . Analyzing the samples 

we find the frequent itemset {<f,3>,<c,3>,<a,3>,<m,3>}. 

Similar to subset 3 to 6 the same process is done in our 

example, additional frequent itemsets can be mined.These 

are itemsets {f,c,a} and {f,c},but they are already subset of 

frequent itemsets {f,c,a,m}.Therefore ,the final set of 

frequent itemsets is {{c,p},{f,c,a,m}}. 

4. FP-GROWTH VARIATIONS 

Several optimization techniques are added to FP-growth 

algorithm. In this paper, we investigate the performance of 

three algorithms, namely AFOPT Algorithm, Nonordfp 

algorithm and Fpgrowth* algorithm .Our goal is not to go 

into many details about the algorithms but show the basic 

optimization ideas and the different of the performance in 

term of running time and memory consumption. In the 

following we will illustrate what are the main optimization 

ideas in each algorithm. 

 AFOPT ALGORITHIM 

Liu et al in [5] investigated the algorithmic performance 

space of the Fpgrowth algorithm. They specified the 

problem of conditional databases construction (particularly 

the number of the conditional databases constructed and 

the mining cost of each individual conditional database) in 

Fpgrowth algorithm, which have direct effect on the 

performance of the algorithm. They studied the problem of 

enhancing the Fpgrowth algorithm from four perspectives 

to come with the best strategy for mining the frequent 

itemsets. These perspectives are the item search order (in 

what order the search space is explored), conditional 

database representation, conditional database construction 

strategy and tree traversal strategy. 

For the first part of the problem, the number of the 

conditional databases constructed can differ very much 

using different items search orders. The dynamic ascending 

order is able to minimize the number and /or the size of the 

conditional database constructed in subsequent mining, 

AFOPT algorithm adapt this kind of items search order 

which is also used by Fpgrowth. 

For the second part of the problem, the mining cost of each 

individual conditional database is heavily depends on its 

representation (tree-based or array-based).AFOPT 

algorithm use adaptive representation ,tree-based structure 

in the case of dense dataset and array –based representation 

in the case of sparse dataset. In additions to the conditional 

database representation the size and the conditional 

database construction strategy have effect on the mining 

cost of each individual conditional database, two type of 
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the conditional database construction strategy (physical 

construction or pseudo-construction). 

The dynamic ascending frequency search order can make 

the subsequent conditional databases shrink rapidly. As a 

result, it is useful to use the physical construction strategy 

with the dynamic ascending frequency order. The traversal 

cost of a tree us minimal using the top-down traversal 

strategy, AFOPT algorithm uses dynamic ascending 

frequency order for both the search space exploration and 

prefix-tree construction, it uses the top-down traversal 

strategy. as a summery AFOPT algorithm utilizes dynamic 

ascending frequency for the item search space ,adaptive 

representation for the conditional database format ,physical 

construction for the conditional database construction, and 

top-down traversal strategy for the tree traversal.     

 

 NONORDFP 

The running time and the space required for the 

Fpgrowth algorithm were the motivation for Nonordfp 

algorithm. Rácz in [9] dealt with the implementation issues, 

data structures, memory layout, I/O, and library functions. 

A compact, memory efficient representation of an FP-tree 

by using Trie data structure, with memory layout that 

allows faster traversal was introduced, to deal with the 

running time and space requirement problem. This 

compact representation of FP-tree allows faster allocation, 

traversal, and optionally projection. It contains less 

administrative information about the items in the database 

(no labels for the items are stored in the node, no header 

lists and children are required), and allows more recursive 

steps to be carried out on the same data structure, with no 

need to rebuild it.   

 

 FPGROWTH* ALGORITHM 

Depending on a numerous experiments were done by 

Grahne et al [10], they found that 80% of the CPU time 

was used for traversing FP-trees. Consequently, they 

employed the array-based to reduce the traversal time of 

the FP-trees. Fpgrowth* algorithm uses FP-tree data 

structure in combination with the array-based and 

incorporates various optimization techniques. 

In the case of sparse data set the array-based technique 

work very well, the array save traversal time for all items 

and the next level of FP-trees can be initialized directly. 

While in the case of dense data set, the FP-tree is more 

compact. To deal with this problem they proposed 

optimizing technique that help the algorithm to estimate if 

the data set is sparse or dense, by counting the number of 

the nodes in each level of the tree which done during the 

construction of each FP-tree. If the data set turns to be 

dense data set then no need to calculate the array for the 

next level of the FP-tree. In the case of sparse data set, the 

calculation of the array for the next FP-tree is required.    

5. COMPARISON OF THE ALGORITHMS 

     To verify the efficiency of the FP-growth variation 

algorithms a lot of experiments were conducted. All the 

experiments are conducted on Core 2 Duo 2.00 GHZ CPU, 

2.00 GB memory and hard disk 160 GB. The operating 

system is ubuntu 8.10.We test the AFOPT algorithm, 

Nonordfp Algorithm, Fpgrowth* algorithm [11] and the 

original Fpgrowth algorithm [12].To evaluate the behavior 

of the four algorithms different datasets and different 

support threshold were used, in the following subsections 

the type of the data sets ,the running time and the memory 

consumption are illustrates:   

 5.1 Datasets 

The data is challenging due to the number of 

characteristics which are the number of the records, and the 

sparseness of the data (each records contains only small 

portion of items). 

In our experiments we chose different dataset with different 

prosperities, to prove the efficiency of the algorithms, Table 

2 shows the datasets and the characteristics. 

Table 2: The Datasets 

 

5.2 Running Time: The running time is real time, system 

time and user time. Figs 3, Fig 4, Fig 5, and Fig 6 depict the 

time needed in seconds for each one of the algorithms.    

Data set #Items Avg. 

Length 

#Trans Type Size 

T10I4D100k 1000 10 100,000 Sparse 3.93 

MB 

T40I10D100K 1000 40 100,000 Sparse 14.8 

MB 

Mushroom 119 23 8,124 Dense 557 

KB 

Connect4 150 43 67557 Dense 8.89 

MB 
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Fig 3 Execution time at various support levels on T10I4D100k 

 

Fig 4 Execution time at various support levels on T40I10D100K 

 

Fig 5 Execution time at various support levels on Mushroom 

 

Fig 6 Execution time at various support levels on Connect4 

It is clear that with the T10I4D100k data set Fpgrowth* 

algorithm outperforms all the other algorithms. On 

T40I10D100K data set there is obvious performance 

competition among both Fpgrowth* algorithm and AFOPT 

algorithm. The running times for the AFOPT algorithm, 

Nonordfp algorithm, and Fpgrowth* algorithm are near in 

the case of mushroom data set. For the connect4 data set, we 

should mention that some algorithms had problem, 

segmentation fault, with some values of support due to the 

huge number of the frequent itemsets satisfy those 

thresholds values and some took long time to find the 

frequent itemsets. 

 5.3 Memory Consumption: In this section, we calculate 

the total number of memory consumption for each 

algorithm .All the experiments are done on the same sets of 

data. As shown in Fig 7,Fig 8,Fig 9,and Fig 10 the support 

values and the amount of memory for each one. We observe 

that, Nonordfp algorithm remains stable over the whole 

range of support values on T10I4D100k.The stability in 

memory consumption is also observe for Fpgrowth* 

algorithm and AFOPT algorithm for the high values of 

support. 

 

Fig 7 Memory usage on T10I4D100k 

 

Fig 8 Memory usage on T40I10D100K 
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Fig 9 Memory usage on Mushroom 

 

Fig 10 Memory usage on Connect4 

AFOPT algorithm keeps its stable consumption of the 

memory on T40I10D100K. It further confirmed the fact that 

AFOPT algorithm is stable with sparse data sets. In Fig 9 

the competition between the three algorithms is clear, the 

memory usage is competitive.On Connect4 data set, 

Fpgrowth* shows stability in the case of the high support 

thresholds while Nonordfp algorithm remain stable for the 

low values of support. 

6. CONCLUSION 

In this paper, we dealt with FP-growth’s Variation 

algorithms. We restricted ourselves to the “Classic” frequent 

itemsets problem, which is the mining of all frequent 

itemsets that exist in market basket-like data with respect to 

support thresholds. The execution time and the memory 

usage were recorded to see which algorithm is the best. For 

the time consumption AFOPT algorithm took advantage for 

most of the data set even though it suffers from 

segmentation fault in the low support values on connect4 

data set. However, for the memory consumption Nonordfp 

algorithm remains stable for almost all the type of the data 

set except for the high support values on Connect4. 

Unfortunately, there is no algorithm work for the all 

situations. The main restricted for the successful of the 

algorithm is statistical prosperities of the data set.  
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