
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

266

Manuscript received May 5, 2009

Manuscript revised May 20, 2009

A Comparative Study of FP-growth Variations

Aiman Moyaid Said
A
, Dr. P D D. Dominic

B
, Dr. Azween B Abdullah

C

Department of Computer and Information Sciences

Universiti Teknologi PETRONAS

Summary

Finding frequent itemsets in databases is crucial in data

mining for purpose of extracting association rules. Many

algorithms were developed to find those frequent itemsets.

This paper presents a summarization and a comparative

study of the available FP-growth algorithm variations

produced for mining frequent itemsets showing their

capabilities and efficiency in terms of time and memory

consumption.

Keywords: Data mining, frequent itemsets, FP-growth.

1. INTRODUCTION

An association rule is defined as the relation between

the itemsets, since its introduction in 1993 [1] the process of

finding the association rules has received a great deal of

attention. Today the extracting of association rules is still

one of the main popular pattern discovery techniques in

knowledge discovery and data mining (KDD).

The process of extracting the association rules can be

viewed as two-phases: the first phase is to mine all frequent

patterns; each of these patterns will happen at least as

frequently as preset minimum support count (min_sup). The

second phase is to produce strong association rules from the

frequent patterns; these rules must assure minimum support

and minimum confidence. The performance of discovering

association rules is largely determined by the first phase, [8].

A lot of algorithms were proposed to optimize the

performance of the FP-growth algorithm. In this paper we

mainly restrict ourselves to study the performance of the FP-

growth’s Variations in term of running time and the memory

usage.

2. RELATED WORKS

In fact, a broad variety of efficient algorithms for

mining frequent itemsets have been developed. Agrawal et

al in [1], introduced Apriori algorithm to find the frequent

itemsets from market basket dataset. The Apriori algorithm

adopts candidates’ generations-and-testing methodology to

produce the frequent itemsets. In the case of the long

itemsets the Apriori approach suffer from the lack of the

scalability, due to the exponential increasing of the

algorithm’s complexity.

FP-growth approach for mining frequent itemsets

without candidate generation was proposed by Han in

[2] . Its scalable frequent patterns mining method has been

proposed as an alternative to the Apriori-based approach.

The pattern growth approach adopts the divide-and-conquer

methodology to produce the frequent itemsets.

This algorithm creates a compact tree-structure, FP-Tree,

representing frequent patterns, which moderates the multi-

scan problem and improves the candidate itemset generation.

This algorithm is faster than others in the literature, this

reported by the authors of this algorithm.

Several algorithms implicate the methodology of the FP-

growth algorithm. In [3] Pei used the same approach for

Mining closed frequent itemsets and max-patterns. Likewise,

Pei suggested to Mining sequential patterns in [4].

 Further Improvements of FP-growth Mining Methods were

introduced. [5],[6],[7], adapted the similar approach of

Han et al [2] for mining the frequent itemsets from the

transactional database. The authors reported that these

algorithms are more efficient than FP-growth.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

267

3. FP-GROWTH ALGORITHM REVISIT

FP-growth algorithm is an efficient method of mining

all frequent itemsets without candidate’s generation. The

algorithm mine the frequent itemsets by using a divide-and-

conquer strategy as follows: FP-growth first compresses the

database representing frequent itemset into a frequent-

pattern tree, or FP-tree, which retains the itemset association

information as well.

The next step is to divide a compressed database into set of

conditional databases (a special kind of projected database),

each associated with one frequent item. Finally, mine each

such database separately.

Particularly, the construction of FP-tree and the mining of

FP-tree are the main steps in FP-growth algorithm.

For the explanation of the algorithm, we will use the

following example. To find the frequent itemsets from

transactional database DB (see Table 1).First, a scan of the

database DB derivers a set of frequent 1-itemsets (L) which

also include their support count. The set L is sorted in the

order of descending support count, this ordering is important

since each path of FP-tree will follow it.

Let the minimum support count be 3,then the set

L={(f,4),(c,4),(a,3),(b,3),(m,3),(p,3)}.

Table 1: The transactional database DB

 TID Items

T1 f,a,c,d,g,i,m,p

T2 a,b,c,f,l,m,o

T3 b,f,h,j,o

T4 b,c,k,s,p

T5 a,f,c,e,I,p,m,n

Second, an FP-tree is constructed as follows: The root of the

tree, labeled Null, is created. The database DB is scanned

for the second time. The items in each transaction are

processed in L order, and a branch is created for each

transaction.

For example, the scan of the first transaction,

“T1:f,a,c,d,g,I,m,p” which contains five items (f,c,a,m,p in

L order).Only those items that are in the list of frequent

itemsets L ,leads to constructions of the first branch of the

tree with tree nodes {<f,1>,<c,1>,<a,1>,<m,1>,<p,1>}

where <f,1> is linked as a child of the root. <c,1> is linked

to <f,1>,<a,1> is linked to <c,1> ,<m,1> is linked to <a,1>,

and <p,1> is linked to <m,1>.

The second transaction, because it shares items f, c and a, it

shares the common prefix {f,c,a} with the previous branch

and extends to the new branch {<f,2>,<c,2> , <a,2>,<m,1>,

<p,1>} .increasing the count of the common prefix by 1.The

new intermediate version of FP-tree, after adding two

transactions from the database ,is given in Fig. 1.for the

remaining transactions can be inserted in the same way (see

Fig. 2).

Fig.1 FP-tree for two transactions

Fig. 2 Final FP-tree

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

268

To ease tree traversal, header table is built so that each item

points to its occurrences in the tree via chain of node-link.

Using the compact tree structure (or FP-tree), the FP-growth

algorithm mines all the frequent itemsets. The FP-tree is

mined as follows. Begin from each frequent-1 pattern (as an

initial suffix pattern), construct its conditional pattern base

(a “subdatabase” which consists of the set of prefix paths in

the FP-tree co-occurring with suffix pattern), then build its

(conditional) FP-tree, and do mining recursively on such a

tree. The patterns growth is achieved by the concatenation

of the suffix pattern with the frequent patterns generated

from a conditional FP-tree.

In our example, according to L ,the complete set of frequent

itemsets can be divided into subsets (6 for our example)

without overlapping, first, frequent itemsets having items p

(as an initial suffix pattern) ,which is the last item in L,

rather than the first item. The reason for starting at the end

of the list will become clear as we explain the FP-tree

mining process. Second, the itemsets having item m but not

p; third, the itemsets that have item b without both m and p;

we continue this process to the end. Therefore, the last set

will be the large itemsets only with f.

The item p occurs in two branches of the FP-tree of

Fig.2.The occurrences of p can easily found by starting from

the header table of p and following p’s node-links. The

paths formed by these branches are

{<f,4>,<c,3>,<a,3>,<m,2>,<p,2>}and{<c,1>,<b,1>,<p,1}

where samples with a frequent item p are

{<f,2>,<c,2>,<a,2>,<m,2>,<p,2>}and{<c,1>,<b,1>,<p,1>},
which form its conditional pattern base ,these samples are

the transactions that contain the branch of the tree with the

existing of item p. Its conditional FP-tree contains only {<c,

3>} ,the other items are not included because its support

count is less than 3.The generated frequent itemset that

satisfy the minimum support count is {<c,3>,<p,3>},all the

other itemsets are below the minimum support count.

The next subsets of frequent itemsets are those with m item

and without p. The FP-tree recognizes the paths

{<f,4>,<c,3>,<a,3>,<m,2>}and

{<f,4>,<c,3>,<a,3>,<b,1> ,<m,1>},or the related

accumulated samples {<f,2>,<c,2> ,<a,2>,<m,2>} and

{<f,1>,<c,1>,<a,1>,<b,1>,<m,1>} . Analyzing the samples

we find the frequent itemset {<f,3>,<c,3>,<a,3>,<m,3>}.

Similar to subset 3 to 6 the same process is done in our

example, additional frequent itemsets can be mined.These

are itemsets {f,c,a} and {f,c},but they are already subset of

frequent itemsets {f,c,a,m}.Therefore ,the final set of

frequent itemsets is {{c,p},{f,c,a,m}}.

4. FP-GROWTH VARIATIONS

Several optimization techniques are added to FP-growth

algorithm. In this paper, we investigate the performance of

three algorithms, namely AFOPT Algorithm, Nonordfp

algorithm and Fpgrowth* algorithm .Our goal is not to go

into many details about the algorithms but show the basic

optimization ideas and the different of the performance in

term of running time and memory consumption. In the

following we will illustrate what are the main optimization

ideas in each algorithm.

 AFOPT ALGORITHIM

Liu et al in [5] investigated the algorithmic performance

space of the Fpgrowth algorithm. They specified the

problem of conditional databases construction (particularly

the number of the conditional databases constructed and

the mining cost of each individual conditional database) in

Fpgrowth algorithm, which have direct effect on the

performance of the algorithm. They studied the problem of

enhancing the Fpgrowth algorithm from four perspectives

to come with the best strategy for mining the frequent

itemsets. These perspectives are the item search order (in

what order the search space is explored), conditional

database representation, conditional database construction

strategy and tree traversal strategy.

For the first part of the problem, the number of the

conditional databases constructed can differ very much

using different items search orders. The dynamic ascending

order is able to minimize the number and /or the size of the

conditional database constructed in subsequent mining,

AFOPT algorithm adapt this kind of items search order

which is also used by Fpgrowth.

For the second part of the problem, the mining cost of each

individual conditional database is heavily depends on its

representation (tree-based or array-based).AFOPT

algorithm use adaptive representation ,tree-based structure

in the case of dense dataset and array –based representation

in the case of sparse dataset. In additions to the conditional

database representation the size and the conditional

database construction strategy have effect on the mining

cost of each individual conditional database, two type of

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

269

the conditional database construction strategy (physical

construction or pseudo-construction).

The dynamic ascending frequency search order can make

the subsequent conditional databases shrink rapidly. As a

result, it is useful to use the physical construction strategy

with the dynamic ascending frequency order. The traversal

cost of a tree us minimal using the top-down traversal

strategy, AFOPT algorithm uses dynamic ascending

frequency order for both the search space exploration and

prefix-tree construction, it uses the top-down traversal

strategy. as a summery AFOPT algorithm utilizes dynamic

ascending frequency for the item search space ,adaptive

representation for the conditional database format ,physical

construction for the conditional database construction, and

top-down traversal strategy for the tree traversal.

 NONORDFP

The running time and the space required for the

Fpgrowth algorithm were the motivation for Nonordfp

algorithm. Rácz in [9] dealt with the implementation issues,

data structures, memory layout, I/O, and library functions.

A compact, memory efficient representation of an FP-tree

by using Trie data structure, with memory layout that

allows faster traversal was introduced, to deal with the

running time and space requirement problem. This

compact representation of FP-tree allows faster allocation,

traversal, and optionally projection. It contains less

administrative information about the items in the database

(no labels for the items are stored in the node, no header

lists and children are required), and allows more recursive

steps to be carried out on the same data structure, with no

need to rebuild it.

 FPGROWTH* ALGORITHM

Depending on a numerous experiments were done by

Grahne et al [10], they found that 80% of the CPU time

was used for traversing FP-trees. Consequently, they

employed the array-based to reduce the traversal time of

the FP-trees. Fpgrowth* algorithm uses FP-tree data

structure in combination with the array-based and

incorporates various optimization techniques.

In the case of sparse data set the array-based technique

work very well, the array save traversal time for all items

and the next level of FP-trees can be initialized directly.

While in the case of dense data set, the FP-tree is more

compact. To deal with this problem they proposed

optimizing technique that help the algorithm to estimate if

the data set is sparse or dense, by counting the number of

the nodes in each level of the tree which done during the

construction of each FP-tree. If the data set turns to be

dense data set then no need to calculate the array for the

next level of the FP-tree. In the case of sparse data set, the

calculation of the array for the next FP-tree is required.

5. COMPARISON OF THE ALGORITHMS

 To verify the efficiency of the FP-growth variation

algorithms a lot of experiments were conducted. All the

experiments are conducted on Core 2 Duo 2.00 GHZ CPU,

2.00 GB memory and hard disk 160 GB. The operating

system is ubuntu 8.10.We test the AFOPT algorithm,

Nonordfp Algorithm, Fpgrowth* algorithm [11] and the

original Fpgrowth algorithm [12].To evaluate the behavior

of the four algorithms different datasets and different

support threshold were used, in the following subsections

the type of the data sets ,the running time and the memory

consumption are illustrates:

 5.1 Datasets

The data is challenging due to the number of

characteristics which are the number of the records, and the

sparseness of the data (each records contains only small

portion of items).

In our experiments we chose different dataset with different

prosperities, to prove the efficiency of the algorithms, Table

2 shows the datasets and the characteristics.

Table 2: The Datasets

5.2 Running Time: The running time is real time, system

time and user time. Figs 3, Fig 4, Fig 5, and Fig 6 depict the

time needed in seconds for each one of the algorithms.

Data set #Items Avg.

Length

#Trans Type Size

T10I4D100k 1000 10 100,000 Sparse 3.93

MB

T40I10D100K 1000 40 100,000 Sparse 14.8

MB

Mushroom 119 23 8,124 Dense 557

KB

Connect4 150 43 67557 Dense 8.89

MB

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

270

Fig 3 Execution time at various support levels on T10I4D100k

Fig 4 Execution time at various support levels on T40I10D100K

Fig 5 Execution time at various support levels on Mushroom

Fig 6 Execution time at various support levels on Connect4

It is clear that with the T10I4D100k data set Fpgrowth*

algorithm outperforms all the other algorithms. On

T40I10D100K data set there is obvious performance

competition among both Fpgrowth* algorithm and AFOPT

algorithm. The running times for the AFOPT algorithm,

Nonordfp algorithm, and Fpgrowth* algorithm are near in

the case of mushroom data set. For the connect4 data set, we

should mention that some algorithms had problem,

segmentation fault, with some values of support due to the

huge number of the frequent itemsets satisfy those

thresholds values and some took long time to find the

frequent itemsets.

 5.3 Memory Consumption: In this section, we calculate

the total number of memory consumption for each

algorithm .All the experiments are done on the same sets of

data. As shown in Fig 7,Fig 8,Fig 9,and Fig 10 the support

values and the amount of memory for each one. We observe

that, Nonordfp algorithm remains stable over the whole

range of support values on T10I4D100k.The stability in

memory consumption is also observe for Fpgrowth*

algorithm and AFOPT algorithm for the high values of

support.

Fig 7 Memory usage on T10I4D100k

Fig 8 Memory usage on T40I10D100K

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

271

Fig 9 Memory usage on Mushroom

Fig 10 Memory usage on Connect4

AFOPT algorithm keeps its stable consumption of the

memory on T40I10D100K. It further confirmed the fact that

AFOPT algorithm is stable with sparse data sets. In Fig 9

the competition between the three algorithms is clear, the

memory usage is competitive.On Connect4 data set,

Fpgrowth* shows stability in the case of the high support

thresholds while Nonordfp algorithm remain stable for the

low values of support.

6. CONCLUSION

In this paper, we dealt with FP-growth’s Variation

algorithms. We restricted ourselves to the “Classic” frequent

itemsets problem, which is the mining of all frequent

itemsets that exist in market basket-like data with respect to

support thresholds. The execution time and the memory

usage were recorded to see which algorithm is the best. For

the time consumption AFOPT algorithm took advantage for

most of the data set even though it suffers from

segmentation fault in the low support values on connect4

data set. However, for the memory consumption Nonordfp

algorithm remains stable for almost all the type of the data

set except for the high support values on Connect4.

Unfortunately, there is no algorithm work for the all

situations. The main restricted for the successful of the

algorithm is statistical prosperities of the data set.

REFERENCES

[1] Agrawal , R. , Imieliński , T. , & Swami , A.”Mining

association rules between sets of items in large databases”.In

proceedings of the 1993 ACM SIGMOD International

Conference on Management of Data, pages 207-216,

Washington, DC, 1993.

[2] Han, J. , Pei, J. , & Yin, Y. “Mining frequent patterns without

candidate generation”. In Proc. ACM-SIGMOD Int. Conf.

Management of Data (SIGMOD ’96), Page 205-216, 2000.

[3] J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for

Mining Frequent Closed Itemsets", DMKD'00, 2000.

[4] J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu.

PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-

Projected Pattern Growth. ICDE'01, 2001.

[5] Liu,G. , Lu ,H. , Yu ,J. X., Wang, W., & Xiao, X.. ”AFOPT:An

Efficient Implementation of Pattern Growth Approach”, In

Proc. IEEE ICDM'03 Workshop FIMI'03, 2003.

[6] Grahne, G. , & Zhu, J. ”Fast Algorithm for frequent Itemset

Mining Using FP-Trees”,IEEE Transactions on Knowledge

and Data Engineer,Vol.17,NO.10, 2005 .

[7] Gao, J. “Realization of new Association Rule Mining

Algorithm” Int. Conf. on Computational Intelligence and

Security ,IEEE, 2007.

[8] Han, J. , & Kamber, M. ”Data Mining :concepts and

techniques” , second edition, The Morgan Kaufmann Series in

Data Management Systems, 2006.

 [9] Balázes Rácz,” nonordfp: An FP-Growth Variation without

Rebuilding the FP-Tree”, 2nd Int'l Workshop on Frequent

Itemset Mining Implementations FIMI2004

[10] Grahne O. and Zhu J. “Efficiently Using Prefix-trees in

Mining Frequent Itemsets”, In Proc. of the IEEE ICDM

Workshop on Frequent Itemset Mining, 2004.

[11] http://fimi.cs.helsinki.fi/

[12] http://adrem.ua.ac.be/~goethals/software/

Aiman Moyaid Said received

bachelor degree in computer

information system from Yarmouk

University, Jordan in 2007 .And

currently he is doing his master degree

in computer information sciences, at

Universiti Teknologi PETRONAS. His

research interests include Association

Rule Mining, Clustering and application

of data mining to problems in retailer industry.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

272

 Dr. P.D.D.Dominic obtained his M.Sc

degree in operations research in 1985,

MBA from Regional Engineering College,

Tiruchirappalli, India during 1991, Post

Graduate Diploma in Operations Research

in 2000 and completed his Ph.D during

2004 in the area of job shop scheduling at

Alagappa University, Karaikudi,

India. Since 1992 he has held the post of

Lecturer in the Department of Management Studies, National

Institute of Technology (Formally Regional Engineering College),

Tiruchirappalli- 620 015, India. Presently he is working as a Senior

Lecturer, in the Department of Computer and Information Science,

Universiti Teknologi PETRONAS, Malaysia. His fields of interest

are Operations Management, KM, E-business and Decisions

Support Systems. He has published technical papers in

International, National journals and conferences.

 Dr Azween Abdullah obtained his

bachelors degree in Computer Science in

1985, Master in Software Engineering in

1999 and his Ph.d in computer science in

2003. His work experiences includes

twenty years in institutions of higher

learning in both the management and

academic capacities, and fifteen years in

commercial companies as Software Developer and Engineer,

Systems Analyst and IT/MIS and educational consultancy and

training. He has spent more than a decade with leading technology

firms and universities as a process analyst, senior systems analyst,

project manager, and lecturer. He have participated in and

managed several software development projects. These have

included the development of management information systems,

software process improvement initiatives design and

implementation, and several business application projects.

His area of research specialization includes computational biology,

system survivability and security, autonomic computing and self-

healing and regenerating systems, formal specifications and

network modeling. His contributions include publishing several

journal and refereed conference papers and in the development of

programs to enhance minority involvement in bridging the ICT

digital gap. Currently he is working on two projects funded by the

Ministry of Science Technology and Innovation.

