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Summary 
A novel feed forward multiplicative neural network architecture 

with optimum number of nodes is used for adaptive channel 

equalization in this paper.The replacement of summation at each 

node by multiplication results in more powerful mapping because 

of its capability of processing higher-order information from 

training data. Performance comparison with Chebyshev neural 

network show that the proposed equalizer provides satisfactory 

results in terms of mean square error convergence curves and bit 

error rate performance at various levels of signal to noise ratios. 
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1. Introduction 

As higher-level modulation becomes more desirable to 

cope with the need for high-speed data transmission, 

nonlinear distortion becomes a major factor, which limits 

the data carrying capacity of digital communication sytems. 

Thermal noise, impulse noise, cross talk and the nature of 

the channel itself distort the transmitted data in amplitude 

and phase due to which temporal spreading and consequent 

overlap of individual pulses occurs. The presence of inter 

symbol interference (ISI) in the system introduces errors in 

the decision device at the receiver output. Therefore, in the 

design of the transmitting and receiving filters, the 

objective is to minimize the effects of ISI, and thereby 

deliver the digital data to its destination with the smallest 

error possible. Equalizers modelled as adaptive digital 

filters which shape the receiver’s transfer function are 

ubiquitous in todays signal processing applications to 

combat ISI in dispersive channels. Adaptive filters achieve 

desired spectral characteristics of a signal by altering the 

filter coefficients and thereby the filter response according 

to a recursive optimization algorithm. Adaptive 

coefficients are required since some parameters of the 

desired processing operation (for instance, the properties 

of some noise signal) are not known in advance [1]. 

When significant noise is added to the transmitted signal 

linear boundaries are not optimal. The received signal at 

each sample instant may be considered as a nonlinear 

function of the past values of the transmitted symbols. 

Further, since the nonlinear distortion varies with time and 

from place to place, effectively the overall channel 

response becomes a nonlinear dynamic mapping and the 

problem is tackled using classification techniques. As 

shown in a wide range of engineering applications, neural 

network (NN) has been successfully used for modeling 

complex nonlinear systems and forecasting signal with 

relatively simple architecture [2]-[4]. A wide range of 

neural architectures are available for modeling the 

nonlinear phenomenon of channel equalization. Feed 

forward networks like multilayer perceptron (MLP) which 

contain an input layer, an output layer and one or more 

hidden layers possess nonlinear processing capabilities and 

universal approximation characteristic and have been 

successfully implemented as channel equalizers [5]-[7]. 

The back propagation which is a supervised learning 

algorithm is used as a training algorithm [8]. These neuron 

models process the neural inputs using the summing 

operation.  

 

Recently, higher-order networks have drawn great 

attention from researchers due to their superior 

performance in nonlinear input-output mapping, function 

approximation, and memory storage capacity. Some 

examples are Product unit neural network (PUNN), Sigma-

Pi network (SPN), Pi-Sigma network (PSN) etc. They 

allow neural networks to learn multiplicative interactions 

of arbitrary degree. Multiplication plays an important role 

in neural modeling of biological behavior and in 

computing and learning with artificial neural networks. 

The multiplicative neuron contains units which multiply 

their inputs instead of summing them and thus allow inputs 

to interact nonlinearly. Multiplicative node functions allow 

direct computing of polynomials inputs and approximate 

higher order functions with fewer nodes. Thus they may 

present better approximation capability and faster learning 

times than the classical MLP because of their capability of 

processing higher-order information from training data [9]-

[11]. The remaining of the paper is organized as follows: 

section 2 describes the basic adaptive channel equalizer 
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scheme. In section 3 learning rule for multiplicative neuron 

is derived, section 4 overviews the Chebyshev functional 

link artificial neural network (CFLANN), section 5 

provides the simulation and results and section 6 concludes 

the paper. 

2. Adaptive Channel Equalization  

The block diagram of adaptive equalization in figure 1 is 

described as follows. The external time dependant inputs 

consist of the sum of the desired signal d(k), the channel 

nonlinearity NL and the interfering noise v(k). The 

adaptive filter has a finite impulse response(FIR) structure. 

The impulse response is equal to the filter coefficients.The 

coefficients for a filter of order p are defined as 

 
T

kkkk
pwwww )](),.....,1(),0([           (1) 

 

Fig. 1 Block diagram of an adaptive channel equalizer 

 

A predefined delayed version of the original signal forms 

the training sequence to provide reference points for the 

adaptation process. The criterion for optimization is a cost 

function or the error signal which is the difference between 

the desired and the estimated signal given by 

)()()( kykdke         (2) 

The desired signal is estimated by convolving the input 

signal with the impulse response expressed as 

)()( kxkd w
T

k
             (3) 

where, 
Tpkxkxkxkx )](),.....,1(),([)(  is the 

input signal vector. The filter coefficients are updated at 

every time instant as 

www kkk


1
            (4) 

wk
 is a correction factor for the filter coefficients. 

The optimization algorithm can be linear or nonlinear. 

Figure 2 shows a feed forward multiplicative neural 

network (MNN). 

 

Fig. 2 Multiplicative neural network 

 

The block diagram of a channel equalizer using MNN is 

shown in figure 3. The transmitter sends a known training 

sequence to the receiver. A sequence of 3000, 

equiprobable, 4-QAM complex valued symbol set, in 

which the input signal takes one of 4 different values given 

by all possible combinations of { -1, 1} + j*{ -1, 1}, where 

j = sqrt(-1) is generated. In the absence of the noise the 

output signal occupies well-defined M states of the M-

QAM signal constellation. When the signal is passed 

through the nonlinear channel, it becomes a stochastic 

random process. Decision boundaries can be formed in the 

observed pattern space to classify the observed vectors 

between 4 classes. For equalization, the adaptive filter is 

used in series with the unknown system on the test 

signal )(kd  by minimizing the squared difference between 

the adaptive equalizer output and the delayed test signal. 

The task of the equalizer is to set its coefficients in such a 

way that the output )(ky is a close estimate of the desired 

output )(kd . Depending on the value of the channel 

output vector, the equalizer tries to estimate an output, 

which is close to one of the transmitted values. The neural 

equalizer separately processes the real and imaginary part 

using the multiplicative, split complex, neural network 

model [12]-[13]. This can be viewed as 2 real valued 

activation functions for processing the in phase and 

quadrature component of the 4QAM signal. The split 

complex approach is generally used to avoid singular 

points and critical selection of network parameters like the 

weights, bias, learning rate and momentum factor. 
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Fig. 3 Multiplicative neural network based channel equalizer 

The real R and imaginary I parts of the input signal are 

split as 

))(),(())(),(())(( 2121 txtxiftxtxftxF IIRR                 (5) 

Where, the input )()()( 111 tixtxtx IR 
and  

)()()( 222 tixtxtx IR                          (6) 

3. Learning Rule for Multiplicative Neuron  

An error back propagation (BP) based learning using a 

norm-squared error function is described as follows [14]-

[15]. The algorithm is first developed for single hidden 

layer network which is then extended to multi layer NN 

architecture. The aggregation function is considered as a 

product of linear functions in different dimensions of space. 

A bipolar sigmoidal activation function is used at each 

node. This kind of neuron itself looks complex in the first 

instance but when used to solve a complicated problem 

needs less number of parameters as compared to the 

existing conventional models. 

 

Fig.4 Structure of a single multiplicative neuron 

 

Here the operator P  is a multiplicative operation as given 

in equation 7. The aggregation u before applying activation 

function is given by: 

  )(
1

bixiwi

n

i
u 


                                             (7) 

The output at the node y is given by  

e
e

u

u

ufy









1

1
)(                  (8) 

The mean square error is given by 
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                              (9) 

where, p  is the number of input patterns. 

 

The weight update equation for the split complex back 

propagation algorithm is given by 

w
w

i

i d

dE
  

x
bxw

i
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u
yydy
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2

1
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       (10) 

where,   is the learning rate and d  is the desired signal. 

The bias is updated as 

b
b

i

i d
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i

new

i
                                                   (12) 

 

bbb i

old

i

new

i
                                              (13) 

 

The weights are updated after the entire training sequence 

has been presented to the network once. This is called 

learning by epoch. The algorithm is extended to train multi 

layer multiplicative feed forward neural network as follows. 

The symbols used are: 

N o
is the number of inputs in the input layer. 

n is the number of hidden layers in the FF network. 

N n
is the number of neurons in the n

th
 hidden layer. 

K is the number of outputs in the output layer. 
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j
n

is the j
th

 neuron of the n
th

 hidden layer. 

y
n

jn
is the output of the j

th
 neuron of the n

th
 hidden layer. 

y
dk

is the desired output of the k
th

 neuron in the output 

layer. 

y
k

 is the actual output of the k
th

 neuron in the output 

layer. 

w jnjn 1
is the weight of the connection between j

th
  

neuron of the (n-1)
th

 layer and the j
th

  neuron of the n
th

 

layer. 

b jnjn 1
is the bias of the connection between j

th
  neuron of 

the (n-1)
th

 layer and the j
th

  neuron of the n
th 

layer. 

The output of the j
th

 neuron in the first hidden layer is 

given as 














 



0

10
01001

1

1
)(

N

j
jjjjjj bxwy f                  (14) 

for  j1=1,2,….,N1 and x j0
represents j

th
 input in the input 

layer and f(.) is the activation function defined by  

e
e

y

y
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








1

1
)(       (15) 

The output of the j
th

 neuron in the second hidden layer is 

given as 





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    (9) 

The output of the j
th

 neuron in the n
th

 hidden layer is given 

as: 


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The output of the k
th

 neuron in the output layer is given as 



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
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A simple gradient descent rule, using a mean square error 

function is used for computation of weight update. 
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Where y
p

k

and y
p

dk

are the actual and desired values, 

respectively, of the output of the k
th

 neuron for the p
th 

pattern in the output layer. P is the number of training 

patterns in the input space. The weights are updated as 

below. Weights between output layer and the n
th

 hidden 

layer are given by: 

w
E

w
kjn

MSE

kjn 


   

            y
n

jnk

byw

byw

kjn

n

jnkjn

Nn

jn
kjn

n

jnkjn .

( )

)(

1

















     (18) 














   

 

K

k

P

p

p

k

p

k

p

k

p

dkk yyyy
PK 1 1

)1)().(
1

1)(2/1(    

   (14)                                                                                         


)

)(

(

1

byw

byw

kjn

n

jnkjn

Nn

jn
kjn

n

jnkjn

kkjnb

















 

 

y

w
n

jn

kjn


                          (19) 

Weights between n
th

 and (n-1)
 th  

hidden layer 
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Similarly, we can write equations for weight change 

between the hidden layer 1 and the input layer. 

The weights and biases are updated as 

www i

old

i

new

i
                          (22) 

bbb i
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                                             (23) 

4. Chebyshev Neural Network Architecture 

In (CFLANN) polynomials are chosen to be the expanding 

nonlinear functions which map the input signal vector  
T

nxxxx ].....,[ 21 by N linearly independent functions 

T

N
xxx )]().....(),([

2
1   . The linear 

combination of these function values can be presented in a 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009 

 

 

277 

 

matrix form, that is, WS   where
T

mssss ].....,[ 21 , 

and W  is the Nm  dimensional weighting matrix. The 

matrix S  is fed into a bank of identical nonlinear functions 

to generate the equalized output 
T

m
yyyY ]....[

21
 where, )(s jjy  , mj ,....2,1 . 

CFLANN does not need hidden layers in its circuit 

structure. Being similar to MLP, the CFLANN also uses 

BP algorithm to train the neural networks [16]-[17]. The 

input signals to a CFLANN network are nonlinearly 

mapped into the output signal space, so the equalizer has 

also the ability to resolve the equalization problems for 

nonlinear channels. 

 

5. Simulations and Results  

To study the BER performances the equalizer structure 

was trained with 3000 iterations and tested over 10000 

samples. A nonminimum phase stationary channel with the 

following transfer function is used: 

CH1: 0.1  

CH2: z
1

894.0447.0


  

The nonlinearity introduced is 

NL0: )()( kakb   

NL1: )(1.0)(2.0)()( 32 kakakakb   

The data set has been pre-processed by normalizing them 

between 0.1 and 1. In all simulations, the results reported 

are the average of several runs in each case. The 

convergence characteristics of the MSE during the training 

mode for CH2 at 8 dB SNR are plotted in figure 5.  

 
 

(a) 

 

 
 

(b) 

 

Fig.  5. Convergence curves of MSE for CH = 2 at SNR = 8 dB: (a) NL = 

0, (b) NL = 1 

 

The multiplicative neural network (MNN) equalizer has 

faster speed of convergence and smaller steady state MSE 

than CFLANN in either linear or nonlinear environment. In 

case of the CFLANN neural equalizer the input is 

expanded to 25 nodes and the number of output nodes is 2, 

in reduced decision feedback CFLANN the number of 

input nodes is 17 and the number of output node is 2 where 

as in case of MNN equalizer the structure is of the type 

266  . The BER performance for various SNR is plotted 

in figure 6. 

 

 
    (a) 
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             (b) 

Fig. 6. BER vs. SNR, for CH = 2, (a) NL = 0, (b) NL = 1 

4. Conclusion 

 

A high order feed forward neural network equalizer with 

multiplicative neuron is proposed in this paper. Use of 

multiplication allows direct computing of polynomial 

inputs and approximation with fewer nodes. Performance 

comparison in terms of convergence rates and BER 

performance suggest the better classification capability of 

the proposed MNN equalizer over CFLANN. 
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