
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

273

Manuscript received May 5, 2009

Manuscript revised May 20, 2009

 Nonlinear Stationary Channel Equalization of QAM

Signals using Multiplicative Neuron Model

Kavita Burse

†
 , R. N. Yadav

†
and S. C. Shrivastava

†

Maulana Azad National Institute of Technology, Bhopal, India.

Summary
A novel feed forward multiplicative neural network architecture

with optimum number of nodes is used for adaptive channel

equalization in this paper.The replacement of summation at each

node by multiplication results in more powerful mapping because

of its capability of processing higher-order information from

training data. Performance comparison with Chebyshev neural

network show that the proposed equalizer provides satisfactory

results in terms of mean square error convergence curves and bit

error rate performance at various levels of signal to noise ratios.

Key words:
Channel equalization, 4-QAM signal, multiplicative neuron, feed

forward neural network.

1. Introduction

As higher-level modulation becomes more desirable to

cope with the need for high-speed data transmission,

nonlinear distortion becomes a major factor, which limits

the data carrying capacity of digital communication sytems.

Thermal noise, impulse noise, cross talk and the nature of

the channel itself distort the transmitted data in amplitude

and phase due to which temporal spreading and consequent

overlap of individual pulses occurs. The presence of inter

symbol interference (ISI) in the system introduces errors in

the decision device at the receiver output. Therefore, in the

design of the transmitting and receiving filters, the

objective is to minimize the effects of ISI, and thereby

deliver the digital data to its destination with the smallest

error possible. Equalizers modelled as adaptive digital

filters which shape the receiver’s transfer function are

ubiquitous in todays signal processing applications to

combat ISI in dispersive channels. Adaptive filters achieve

desired spectral characteristics of a signal by altering the

filter coefficients and thereby the filter response according

to a recursive optimization algorithm. Adaptive

coefficients are required since some parameters of the

desired processing operation (for instance, the properties

of some noise signal) are not known in advance [1].

When significant noise is added to the transmitted signal

linear boundaries are not optimal. The received signal at

each sample instant may be considered as a nonlinear

function of the past values of the transmitted symbols.

Further, since the nonlinear distortion varies with time and

from place to place, effectively the overall channel

response becomes a nonlinear dynamic mapping and the

problem is tackled using classification techniques. As

shown in a wide range of engineering applications, neural

network (NN) has been successfully used for modeling

complex nonlinear systems and forecasting signal with

relatively simple architecture [2]-[4]. A wide range of

neural architectures are available for modeling the

nonlinear phenomenon of channel equalization. Feed

forward networks like multilayer perceptron (MLP) which

contain an input layer, an output layer and one or more

hidden layers possess nonlinear processing capabilities and

universal approximation characteristic and have been

successfully implemented as channel equalizers [5]-[7].

The back propagation which is a supervised learning

algorithm is used as a training algorithm [8]. These neuron

models process the neural inputs using the summing

operation.

Recently, higher-order networks have drawn great

attention from researchers due to their superior

performance in nonlinear input-output mapping, function

approximation, and memory storage capacity. Some

examples are Product unit neural network (PUNN), Sigma-

Pi network (SPN), Pi-Sigma network (PSN) etc. They

allow neural networks to learn multiplicative interactions

of arbitrary degree. Multiplication plays an important role

in neural modeling of biological behavior and in

computing and learning with artificial neural networks.

The multiplicative neuron contains units which multiply

their inputs instead of summing them and thus allow inputs

to interact nonlinearly. Multiplicative node functions allow

direct computing of polynomials inputs and approximate

higher order functions with fewer nodes. Thus they may

present better approximation capability and faster learning

times than the classical MLP because of their capability of

processing higher-order information from training data [9]-

[11]. The remaining of the paper is organized as follows:

section 2 describes the basic adaptive channel equalizer

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

274

scheme. In section 3 learning rule for multiplicative neuron

is derived, section 4 overviews the Chebyshev functional

link artificial neural network (CFLANN), section 5

provides the simulation and results and section 6 concludes

the paper.

2. Adaptive Channel Equalization

The block diagram of adaptive equalization in figure 1 is

described as follows. The external time dependant inputs

consist of the sum of the desired signal d(k), the channel

nonlinearity NL and the interfering noise v(k). The

adaptive filter has a finite impulse response(FIR) structure.

The impulse response is equal to the filter coefficients.The

coefficients for a filter of order p are defined as

T

kkkk
pwwww)](),.....,1(),0([ (1)

Fig. 1 Block diagram of an adaptive channel equalizer

A predefined delayed version of the original signal forms

the training sequence to provide reference points for the

adaptation process. The criterion for optimization is a cost

function or the error signal which is the difference between

the desired and the estimated signal given by

)()()(kykdke  (2)

The desired signal is estimated by convolving the input

signal with the impulse response expressed as

)()(kxkd w
T

k
 (3)

where,
Tpkxkxkxkx)](),.....,1(),([)( is the

input signal vector. The filter coefficients are updated at

every time instant as

www kkk


1
 (4)

wk
 is a correction factor for the filter coefficients.

The optimization algorithm can be linear or nonlinear.

Figure 2 shows a feed forward multiplicative neural

network (MNN).

Fig. 2 Multiplicative neural network

The block diagram of a channel equalizer using MNN is

shown in figure 3. The transmitter sends a known training

sequence to the receiver. A sequence of 3000,

equiprobable, 4-QAM complex valued symbol set, in

which the input signal takes one of 4 different values given

by all possible combinations of { -1, 1} + j*{ -1, 1}, where

j = sqrt(-1) is generated. In the absence of the noise the

output signal occupies well-defined M states of the M-

QAM signal constellation. When the signal is passed

through the nonlinear channel, it becomes a stochastic

random process. Decision boundaries can be formed in the

observed pattern space to classify the observed vectors

between 4 classes. For equalization, the adaptive filter is

used in series with the unknown system on the test

signal)(kd by minimizing the squared difference between

the adaptive equalizer output and the delayed test signal.

The task of the equalizer is to set its coefficients in such a

way that the output)(ky is a close estimate of the desired

output)(kd . Depending on the value of the channel

output vector, the equalizer tries to estimate an output,

which is close to one of the transmitted values. The neural

equalizer separately processes the real and imaginary part

using the multiplicative, split complex, neural network

model [12]-[13]. This can be viewed as 2 real valued

activation functions for processing the in phase and

quadrature component of the 4QAM signal. The split

complex approach is generally used to avoid singular

points and critical selection of network parameters like the

weights, bias, learning rate and momentum factor.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

275

Fig. 3 Multiplicative neural network based channel equalizer

The real R and imaginary I parts of the input signal are

split as

))(),(())(),(())((2121 txtxiftxtxftxF IIRR  (5)

Where, the input)()()(111 tixtxtx IR 
and

)()()(222 tixtxtx IR  (6)

3. Learning Rule for Multiplicative Neuron

An error back propagation (BP) based learning using a

norm-squared error function is described as follows [14]-

[15]. The algorithm is first developed for single hidden

layer network which is then extended to multi layer NN

architecture. The aggregation function is considered as a

product of linear functions in different dimensions of space.

A bipolar sigmoidal activation function is used at each

node. This kind of neuron itself looks complex in the first

instance but when used to solve a complicated problem

needs less number of parameters as compared to the

existing conventional models.

Fig.4 Structure of a single multiplicative neuron

Here the operator P is a multiplicative operation as given

in equation 7. The aggregation u before applying activation

function is given by:

)(
1

bixiwi

n

i
u 


 (7)

The output at the node y is given by

e
e

u

u

ufy









1

1
)((8)

The mean square error is given by

2

1

)(
2

1
yy

p

d

N

p

p

N
E  



 (9)

where, p is the number of input patterns.

The weight update equation for the split complex back

propagation algorithm is given by

w
w

i

i d

dE


x
bxw

i

iii

u
yydy

)(
)1)(1)((

2

1


  (10)

where,  is the learning rate and d is the desired signal.

The bias is updated as

b
b

i

i d

dE


)(
)1)(1)((

2

1

bxw iii

u
yydy


  (11)

www i

old

i

new

i
 (12)

bbb i

old

i

new

i
 (13)

The weights are updated after the entire training sequence

has been presented to the network once. This is called

learning by epoch. The algorithm is extended to train multi

layer multiplicative feed forward neural network as follows.

The symbols used are:

N o
is the number of inputs in the input layer.

n is the number of hidden layers in the FF network.

N n
is the number of neurons in the n

th
 hidden layer.

K is the number of outputs in the output layer.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

276

j
n

is the j
th

 neuron of the n
th

 hidden layer.

y
n

jn
is the output of the j

th
 neuron of the n

th
 hidden layer.

y
dk

is the desired output of the k
th

 neuron in the output

layer.

y
k

 is the actual output of the k
th

 neuron in the output

layer.

w jnjn 1
is the weight of the connection between j

th

neuron of the (n-1)
th

 layer and the j
th

 neuron of the n
th

layer.

b jnjn 1
is the bias of the connection between j

th
 neuron of

the (n-1)
th

 layer and the j
th

 neuron of the n
th

layer.

The output of the j
th

 neuron in the first hidden layer is

given as














 



0

10
01001

1

1
)(

N

j
jjjjjj bxwy f (14)

for j1=1,2,….,N1 and x j0
represents j

th
 input in the input

layer and f(.) is the activation function defined by

e
e

y

y

yf









1

1
)((15)

The output of the j
th

 neuron in the second hidden layer is

given as














 



1

11
12

1

112

2

2
)

N

j
jjjjjj bywy f ; for j2=1,2,….,N2

 (9)

The output of the j
th

 neuron in the n
th

 hidden layer is given

as:














 










1

11
1

1

11
)(

Nn

jn
jnjn

n

jnjnjn

n

jn bywy f ; for jn=1,2,….,Nn

 (10)

The output of the k
th

 neuron in the output layer is given as














 





1

1

)(
Nn

jn
kjn

n

jnkjnk bywy f ; for k=1,2,….,k (16)

A simple gradient descent rule, using a mean square error

function is used for computation of weight update.

2

1 1

)(
2

1
yyE

p

k

K

k

P

p

p

dkMSE PK
 

 

 (17)

Where y
p

k

and y
p

dk

are the actual and desired values,

respectively, of the output of the k
th

 neuron for the p
th

pattern in the output layer. P is the number of training

patterns in the input space. The weights are updated as

below. Weights between output layer and the n
th

 hidden

layer are given by:

w
E

w
kjn

MSE

kjn 


 

 y
n

jnk

byw

byw

kjn

n

jnkjn

Nn

jn
kjn

n

jnkjn .

()

)(

1

















  (18)














   

 

K

k

P

p

p

k

p

k

p

k

p

dkk yyyy
PK 1 1

)1)().(
1

1)(2/1(

 (14)


)

)(

(

1

byw

byw

kjn

n

jnkjn

Nn

jn
kjn

n

jnkjn

kkjnb

















 

y

w
n

jn

kjn


 (19)

Weights between n
th

 and (n-1)
 th

hidden layer

w
E

w
jnjn

MSE

jnjn

1

1



 


 

w

y

y

y
yy

jnjn

n

jn
K

k

P

p
n

jn

p

k
p

k

p

dkPK
11 1

.).(

  




















 




w

y
w

jnjn

n

jn

kjnk

byw

byw

kjn

n

jnkjn

Nn

jn
kjn

n

jnkjn

1)

)(

..

(

1























  (20)

y

w
b n

jn

jnjn

jnjn 1

1

1

1 








 (21)

Similarly, we can write equations for weight change

between the hidden layer 1 and the input layer.

The weights and biases are updated as

www i

old

i

new

i
 (22)

bbb i

old

i

new

i
 (23)

4. Chebyshev Neural Network Architecture

In (CFLANN) polynomials are chosen to be the expanding

nonlinear functions which map the input signal vector
T

nxxxx].....,[21 by N linearly independent functions

T

N
xxx)]().....(),([

2
1   . The linear

combination of these function values can be presented in a

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

277

matrix form, that is, WS  where
T

mssss].....,[21 ,

and W is the Nm dimensional weighting matrix. The

matrix S is fed into a bank of identical nonlinear functions

to generate the equalized output
T

m
yyyY]....[

21
 where,)(s jjy  , mj ,....2,1 .

CFLANN does not need hidden layers in its circuit

structure. Being similar to MLP, the CFLANN also uses

BP algorithm to train the neural networks [16]-[17]. The

input signals to a CFLANN network are nonlinearly

mapped into the output signal space, so the equalizer has

also the ability to resolve the equalization problems for

nonlinear channels.

5. Simulations and Results

To study the BER performances the equalizer structure

was trained with 3000 iterations and tested over 10000

samples. A nonminimum phase stationary channel with the

following transfer function is used:

CH1: 0.1

CH2: z
1

894.0447.0




The nonlinearity introduced is

NL0:)()(kakb 

NL1:)(1.0)(2.0)()(32 kakakakb 

The data set has been pre-processed by normalizing them

between 0.1 and 1. In all simulations, the results reported

are the average of several runs in each case. The

convergence characteristics of the MSE during the training

mode for CH2 at 8 dB SNR are plotted in figure 5.

(a)

(b)

Fig. 5. Convergence curves of MSE for CH = 2 at SNR = 8 dB: (a) NL =

0, (b) NL = 1

The multiplicative neural network (MNN) equalizer has

faster speed of convergence and smaller steady state MSE

than CFLANN in either linear or nonlinear environment. In

case of the CFLANN neural equalizer the input is

expanded to 25 nodes and the number of output nodes is 2,

in reduced decision feedback CFLANN the number of

input nodes is 17 and the number of output node is 2 where

as in case of MNN equalizer the structure is of the type

266  . The BER performance for various SNR is plotted

in figure 6.

 (a)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

278

 (b)

Fig. 6. BER vs. SNR, for CH = 2, (a) NL = 0, (b) NL = 1

4. Conclusion

A high order feed forward neural network equalizer with

multiplicative neuron is proposed in this paper. Use of

multiplication allows direct computing of polynomial

inputs and approximation with fewer nodes. Performance

comparison in terms of convergence rates and BER

performance suggest the better classification capability of

the proposed MNN equalizer over CFLANN.

References

[1] S. Haykin, Adaptive Filter Theory, Pearson Education, 2005,

pp. 22-25.

[2] D.C. Park, M. A. El-Sharkawi, and R. J. Marks II,

“Adaptively trained neural network,” IEEE Trans. Neural

Networks, vol. 2, pp. 334–345, May 1991.

[3] Pham DT, Liu X, Neural networks for identification,

prediction and control, London: Springer, 1995.

[4] S. Bang, S. H. Sheu, and J. Bing, “Neural network for

detection of signals in communication,” IEEE Trans.

Circuits Syst. I, vol. 43(8), pp. 644-655, Aug. 1996.

[5] S. Chen, G. Gibson, C. Cown, and P. Grant, “Adaptive

equalization of finite nonlinear channels using multilayer

perceptrons,” Signal Processing, vol. 20, pp. 107-119, June

1990.

[6] G. Gibson, S. Siu, and C. Cowan, “Multilayer perceptron

structures applied to adaptive equalizers for data

communications,” in Proc. ICASSP, May 1989, Glasgow,

U.K., pp. 1183-1186

[7] T. Kim, T. Adali,” Fully complex multi-layer perceptron

network for nonlinear signal processing,” J. VLSI Signal

Process., vol. 32, No. 1, pp. 29-43, 2002.

[8] Q. Zhang, “Adaptive equalization using the back

propagation algorithm,” IEEE Trans. Circuits Syst., vol. 37,

pp. 848–849, June 1990.

[9] C.L. Giles and T. Maxwell,” Learning, invariance, and

generalization in high-order neural networks,” Applied

Optics, vol. 26, no. 23, pp. 4972-4978, 1987.

[10] E.M. Iyoda, K. Hirota, and F. J. Von Zuben,” Sigma-Pi

cascade extended hybrid neural networks,” Journal of

Advanced Computational Intelligence, vol.6, no. 3, pp. 126-

134, 2002.

[11] M Schmitt,” On the complexity of computing and learning

with multiplicative neurons,” Neural Comput. vol. 14, no.2,

pp. 241-301, Feb. 2002.

[12] A. Kantsila, M. Lehtokangas, J. Saarinen,” Complex

RPROP-algorithm for neural network equalization of GSM

data bursts”, Neurocomputing, vol. 61, pp. 339- 360, 2004.

[13] Kavita Burse, R.N. Yadav and S.C. Shrivastava,” Complex

Channel Equalization using Polynomial Neuron Model,” in

Proc. IEEE 3rd Int. Symposium on Information Technology,

Kuala Lumpur, Malaysia, Aug. 26-29, 2008, pp. 771-775.

[14] R.N. Yadav, P.K. Kalra and J. John,” Time series

prediction with single multiplicative neuron model,”

Applied soft computing, vol 7, pp 1157-1163, 2007.

[15] Kavita Burse, R.N. Yadav, S.C. Shrivastava, Vishnu Pratap

Singh Kirar,” A compact pi network for reducing bit error

rate in dispersive FIR channel noise model,” to appear in

Proc. of WCSET:2009,World Congress on Science,

Engineering and Technology, Feb. 25-27, Penang, Malaysia.

[16] Jagdish Chandra Patra, Wei Beng Poh, Narendra S.

Chaudhari and Amitabha Das “Nonlinear Channel

Equalization with QAM Signal Using Chebyshev Artificial

Neural Network,” Proceedings of International Joint

Conference on Neural Networks, Montreal, Canada, July 31

- August 4, 2005,pp.3214-3219.

[17] Wan-De Weng, Che-Shih Yang , Rui-Chang Lin “A channel

equalizer using reduced decision feedback Chebyshev

functional link artificial neural networks,” Information

Sciences, vol.177, no. 13, pp. 2642-2654, 2007.

Kavita Burse received her Bachelor

of Engineering (Electronics and

Communication) from Shri Govind

Ram Seksaria Institute of Science and

Technology, Indore, India in 1992 and

M.Tech (Digital Communication) from

Maulana Azad National Institute of

Technology, Bhopal, India. Currently

she is pursuing Ph.D. degree from the same Institute. She is

faculty with the Department of Electronics and Communication

at Truba Institute of Engineering and Technology, Bhopal,

India. She is associate member CSI and life member ISTE.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

279

R. N. Yadav received his Bachelor

of Engineering degree from Motilal

Nehru Regional Engineering College

Allahabad, India, M.Tech degree

from Maulana Azad College of

Technology, Bhopal, India and P.hD.

degree from Indian Institute of

Technology, Kanpur, India in 1993,

1997 and 2005 respectively.

Currently he is Assistant Professor in the Department of

Electronics and Communication Engineering, Maulana Azad

National Institute of Technology, Bhopal, India. He is a life

member of IETE and IE(I). He has authored and reviewed

more than twenty papers in international Journals and

conferences of repute.

S.C. Shrivastava received his Bachelor

and Master degree in Engineering from

Government Engineering College,

Jabalpur, India in 1968 and 1970

respectively and P.hD. degree in 1994

from Barkatullah University, Bhopal,

India. He is a life member of IETE, IE(I)

and ISTEE. Currently he is Professor

and Head, Department of Computer

Science and Engineering, Maulana Azad

National Institute of Technology, Bhopal, India. He has

authored several papers in national and international Journals

and conferences.

