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Summary 
A new transformation matrix (TM) algorithm for reducing the 
computational complexity of multiuser receivers for DS-CDMA 
wireless system is presented. Next generation multiuser wireless 
receivers will need to use low computational complexity 

algorithm in order to perform both fast signal detection and error 
estimation. Several multiuser signal detection algorithms have 
proposed for next generation wireless receivers, which are 
designed to give good performance in terms of signal to noise 
ratio (SNR) and bit error rate (BER), are discarded for a direct 
implementation as they have high computational complexity. In 
this paper, we propose a new low-complexity TM algorithm that 
can be used to perform fast signal detection for multiuser 

wireless receives. This reduction in computational complexity 
would likely to give us a considerable improvement in the 
performance of multiuser wireless receivers such as high 
computing power and low error rate. In addition, we also present 
a formal mathematical proof for computational complexities that 
verifies the low-complexity of the proposed algorithm 

Key words:  
Computational complexity, DS-CDMA systems, Multiuser 

communications, Wireless receivers 

1. Introduction 

Code division multiple access (CDMA) has been widely 

used and accepted for wireless access in terrestrial and 

satellite applications. CDMA cellular systems use state of 

the art digital communication techniques and build on 

some of the most sophisticated aspects of modern 
statistical communication theory. CDMA technique has 

significant advantages over the analog and conventional 

time-division-multiple access (TDMA) system. CDMA is 

a multiple access (MA) technique that uses spread 

spectrum modulation where each user has its own unique 

chip sequence. This technique enables multiple users to 

access a common channel simultaneously.  

Multiuser direct-sequence code division multiple access 

(DS-CDMA) has received wide attention in the field of 

wireless communications [4, 8]. In CDMA communication 

systems, several users are active on the same fringe of the 

spectrum at the same time. Therefore, the received signal 

results from the sum of all the contributions from the 

active users [2]. Conventional spread spectrum 

mechanisms applied in DS-CDMA are severely limited in 

performance by MAI [3, 4], leading to both system 

capacity limitations and strict power control requirements. 

The traditional way to deal with such a situation would be 
to process the received signal through parallel devices.  

Verdu’s [1] proposed and analyzed the optimum 

multiuser detector and the maximum likelihood sequence 

detector, which, unfortunately, is too complex for practical 

implementation, since its complexity grows exponentially 

as the function of the number of users. Although the 

performance of multiuser detector is optimum, it is not a 

very practical system because the number of required 

computations increases as 2k, where k is the number of 

users to be detected. Multiuser detectors suffer from their 

relatively higher computational complexity that prevents 

CDMA systems to adapt this technology for signal 
detection. However, if we could lower the complexity of 

multiuser detectors, most of the CDMA systems would 

likely to get advantage of this technique in terms of 

increased system capacity and a better data rate.   

In this paper, we employ a new approach of TM 

technique that observes the coordinates of the constellation 

diagram to determine the location of the transformation 

points (TPs). Since most of the decisions are correct, we 

can reduce the number of required computations by using 

transformation matrixes only on those coordinates which 

are most likely to lead to an incorrect decision. By doing 
this, we can greatly reduce the unnecessary processing 

involves in making decisions about the correct region or 

the coordinate. Our mathematical results show that the 

proposed approach successfully reduces the computational 

complexity of the optimal ML receiver. 

The rest of this paper is organized as follows. Section 2 

describes the state of the art research that has already been 

done in this area. Section 3 presents both the original ML 
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algorithm and the proposed TM algorithm along with a 

comprehensive discussion of their computational 

complexities. The numerical and simulation results are 

presented in Section 4. Finally, we conclude the paper in 

Section 5.  

 

2. Related Work 
 

Multiuser receivers can be categorized in the following 

two forms: optimal maximum likelihood sequence 

estimation (MLSE) receivers and suboptimal linear and 

nonlinear receivers. Suboptimal multiuser detection 

algorithms can be further classified into linear and 
interference cancellation type algorithms. The figurative 

representation of the research work that has been done so 

far in this area is shown in Fig. 1. Optimal multiuser 

wireless receiver consists of a matched filter followed by a 

maximum likelihood sequence detector implemented via a 

dynamic programming algorithm. In order to mitigate the 

problem of MAI, Verdu [6] proposed and analyzed the 

optimum multiuser detector for asynchronous Gaussian 

multiple access channels. The optimum detector searches 

all the possible demodulated bits in order to find the 

decision region that maximizes the correlation metric 
given by [1]. The practical application of this mechanism 

is limited by the complexity of the receiver [7]. This 

optimum detector outperforms the conventional detector, 

but unfortunately its complexity grows exponentially in 

the order of O (2)K , where K is the number of active users.  

Much research has been done to reduce this receiver’s 

computational complexity. Recently, Ottosson and Agrell 

[5] proposed a new ML receiver that uses the neighbor 

descent (ND) algorithm. They implemented an iterative 

approach using the ND algorithm to locate the region 

where the actual observations belong. In order to reduce 

the computational complexity of optimum receivers, the 
iterative approach uses the ND algorithm that performs 

MAI cancellation linearly. The linearity of their iterative 

approach increases noise components at the receiving end. 

Due to the enhancement in the noise components, the SNR 

and BER of ND algorithm is more affected by the MAI.  

Several tree-search detection receivers have been 

proposed in the literature [10, 11], in order to reduce the 

computational complexity of the original ML detection 

scheme proposed by Verdu. Specifically, [10] investigated 

a tree-search detection algorithm, where a recursive, 

additive metric was developed in order to reduce the 
search complexity. Reduced tree-search algorithms, such 

as the well known M-algorithms and T-algorithms [12], 

were used by [11] in order to reduce the complexity 

incurred by the optimum multiuser detectors.  

In order to make an optimal wireless receiver that gives 

minimum mean square error (MMSE) performance, we 

need to provide some knowledge of interference such as 

phase, frequency, delays, and amplitude for all users. In 

addition, an optimal MMSE receiver requires the inversion 

of a large matrix. This computation takes relatively long 

time and makes the detection process slow and expensive 

[7, 8]. On the other hand, an adaptive MMSE receiver 
greatly reduces the entire computation process and gives 

an acceptable performance. Xie, Rushforth, Short and 

Moon [13] proposed an approximate MLSE solution 

known as the pre-survivor processing (PSP) type 

algorithm, which combined a tree search algorithm for 

data detection with the aid of the recursive least square 

(RLS) adaptive algorithm used for channel amplitude and 

phase estimation. The PSP algorithm was first proposed by 

Seshadri [14] for blind estimation in single user 

ISI-contaminated channels.   
 

3. Proposed Low-Complexity TM Algorithm 
 

We consider a synchronous DS-CDMA system as a 

linear time invariant (LTI) channel.  In a LTI channel, the 

probability of variations in the interference parameters, 

such as the timing of all users, amplitude variation, phase 

shift, and frequency shift, is extremely low. This property 
makes it possible to reduce the overall computational 

complexity at the receiving end. Our TM technique utilizes 

the complex properties of the existing inverse matrix 

algorithms to construct the transformation matrices and to 

determine the location of the TPs that may occur in any 

coordinate of the constellation diagram. The individual 

TPs can be used to determine the average computational 

complexity.  

The system may consist of K users.  User k can 

transmit a signal at any given time with the power of Wk.  

With the binary phase shift keying (BPSK) modulation 
technique, the transmitted bits belong to either +1 or -1, 

(i.e., { 1}
k

b ∈ ± ). The cross correlation can be reduced by 

neglecting the variable delay spreads, since these delays 

are relatively small as compared to the symbol 

transmission time. In order to detect signals from any user, 

the demodulated output of the low pass filter is multiplied 

by a unique signature waveform assigned by a pseudo 
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Fig.1.Multiuser optimal and suboptimal wireless receivers 
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random number generator. It should be noted that we 

extract the signal using the match filter followed by a 

Viterbi algorithm [15]. 

 

3.1 Original Optimum Multiuser Receiver 
 

The optimum multiuser receiver exists and permits to 

relax the constraints of choosing the spreading sequences 

with good correlation properties at a cost of increased 

receiver complexity. Fig. 2 shows the block diagram of an 

optimum receiver that uses a bank of matched filters and a 

maximum likelihood Viterbi decision algorithm [15] for 

signal detection. It should be noted in Fig. 2 that the 

proposed TM algorithm is implemented in conjunction 

with the Viterbi decision algorithm [15] with the feedback 
mechanism. In order to detect signal from any user, the 

demodulated output of the low pass filter is multiplied by a 

unique signature waveform assigned by a pseudo random 

number generator. 

When receiver wants to detect the signal from user-1, it 

first demodulates the received signal to obtain the 

base-band signal. The base-band signal multiplies with 

user-1’s unique signature waveform, ( )1
C t .The resulting 

signal,
1( )r t , is applied to the input of the matched filter. 

The matched filter integrates the resulting signal 
1{ ( )}r t  

over each symbol period T, and the output is read into the 

decoder at the end of each integration cycle.  The outputs 

of the matched filter and the Verdu’s algorithm can be 

represented by ( )ky m and ( )kb m , respectively where m is 

the sampling interval. We also assume that the first timing 

offset τ1 is almost zero and τ2 < T.  The same procedure 

applies to other users. The outputs of the matched filter for 

the first two users at the m
th sampling interval can be 

expressed as follows: 

( ) ( ) ( ){ }
( )

( ){ }
1

1 1 1

1 m T

m T

y m r t C t dt

T

+

= ∫   (1) 

       

( ) ( ) ( ){ }
( )

( ){ }
2 1

2 2 2 2
2

1 m T

m T

y m r t C t dt

T

τ

+ +

+

= −∫     (2) 

 

The received signal ( )1r t  and ( )2r t can be 

expressed as follows: 

 

( ) ( ) ( ) ( ){ }
0.5

1 1 11

M

b
i M

r t E b i C t iTC
=−

∑= −    (3) 

 

( ) ( ) ( ) ( ){ }
0.5

2 2 2 2
2

M

C b
i M

r t E b i C t iT τ
=−

= − −∑  (4) 

 

where
1C

E and 
2C

E represent the original bit energy of the 

received signals with respect to their unique signature 

waveforms.  

The received signals ( )1r t  and ( )2r t  can be treated 

as a single signal ( )r t that will be distinguished by the 

receiver with respect to its unique signature waveform. 

Based on the above analysis, we can combine equation (3) 
and (4). 

 

( ) ( ) ( ) ( ){ }
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      (5) 

Substitute (5) as an individual equation into (1), we have 
 

( )
( ) ( ) ( ){ }{ }
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1 1
1
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m T M
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C t dt

+

=−

 
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(6) 

 

Substitute (5) as an individual equation into (2), we have 
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 (7) 

 
After performing integration over the given interval, we 

get the following results with the noise components as 

well as the cross correlation of signature waveforms. 

 

 ( ) ( ) ( ) ( ) ( )
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   
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 (9) 

 

where coefficients b1(m) and b2(m) represent MAI, 

1/ 0/ 1ρ− +  are cross-correlations of signature waveforms, 

and  n1(m) and n2(m) represent the minimum noise 

components. Since the channel is LTI, the probability of 

unwanted noise is minimum.  

These symbols can now be decoded using a maximum 

likelihood Viterbi decision algorithm [15]. Viterbi 

algorithm can be used to detect these signals in much the 

same way as convolution codes. This algorithm makes 

decision over a finite window of sampling instants rather 
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than waiting for all the data to be received [4]. The above 
derivation can be extended from two users to K number of 

users. The number of operations performed in the Viterbi 

algorithm is proportional to the number of decision states, 

and the number of decision states is exponential with 

respect to the total number of users. The asymptotic 

computational complexity of this algorithm can be 

approximated as: O(2)K. 
 

3.2 Proposed Transformation Matrix (TM) Algorithm 

 

According to original Verdu’s algorithm, the outputs of 

the matched filter ( )1y m , and ( )2y m  can be 
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Fig.2 Implementation of proposed transformation matrix (TM) algorithm with the optimum multiuser receiver 
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considered as a single output ( )y m .In order to minimize 

the noise components and to maximize the received 

demodulated bits, we can transform the output of the 

matched filter, and this transformation can be expressed as 

follows: ( ) by m η= Τ + where Τ  represents the 

transformation matrix, { 1}b
k

∈ ±  and η  represents the 

noise components. In addition, if vectors are regarded as 

points in K-dimensional space, then the vectors constitute 

the constellation diagram that has K total points. This 

constellation diagram can be mathematically expressed as: 

{ } { } 1, 1b where bℵ = Τ ∈ − + . We use this equation as 

a fundamental equation of the proposed algorithm. 

According to the detection rule, the constellation diagram 

can be partitioned into 2K   lines (where the total possible 

lines in the constellation diagram can be represented as ſ ) 

that can only intersect each other at the following points: 

ℵ  = {Tb} b ∈{-1, 1}
K ¥ ſ 

Fig. 3 shows the constellation diagram that consists of 

three different vectors (lines) with the original vector ‘Χ’ 

that represents the collective complexity of the receiver. Q, 
R, and S represent vectors or TPs within the coverage area 

of a cellular network as shown in Fig. 3. In addition, Q¬, 

R¬, and S¬ represent the computational complexity of each 

individual TP. In order to compute the collective 

computational complexity of the optimum wireless 

receiver, it is essential to determine the complexity of each 

individual TP. The computational complexity of each 

individual TP represents by X¬ of the TP which is equal to 

the collective complexity of Q¬, R¬, and S¬. A TM defines 

how to map points from one coordinate space into another. 

A transformation does not change the original vector, 

instead it alters the components. In order to derive the 
value of the original vector X, we need to perform the 

following derivations. We consider the original vector with 

respect to each transmitted symbol or bit. The following 

system can be derived from the above equations: 

 

 

i i j i k i
X Q

X Q
X R ij j j k j X R

X SX S
i k jk k k

¬ ¬ ¬ ¬        ¬ ¬ ¬ ¬    =     ¬   ¬ ¬ ¬  
 

 (10) 

 

Equation (10) represents the following: QRS with the 

unit vectors ,  ,  and i j k ; 

, ,  a n d  X Q X R X S¬ ¬ ¬  with the inverse of the 

unit vectors  and , ,i j k¬ ¬ ¬
. The second matrix on the 

right hand side of (10) represents b, where as the first 

matrix on the right hand side of (10) represents the actual 

TM. Therefore, the TM from the global reference points 

(which could be Q, R, or S) to a particular local reference 

point can now be derived from (10): 

 

/
  

X Q X Q
X R T X R

L G
X S

X S

¬ 
  

¬    =
  ¬  

 

 (11) 

 

Equation (11) can also be written as: 
 

/   
i i j i k i

T ij j j k jL G

ik jk k k

¬ ¬ ¬ 
 
 ¬ ¬ ¬=  
 ¬ ¬ ¬ 
 

 (12) 

 

In equation (12), the dot products of the unit vectors of 

the two reference points are in fact the same as the unit 

vectors of the inverse TM of (11). We need to compute the 

locations of the actual TPs described in equations (11) and 

(12). Let the unit vectors for the local reference point be: 

( ) , ( ) , ( )
1 1 1 2 1 3

( ) , ( ) , ( )  
2 1 2 2 2 3

( ) , ( ) , ( )
3 1 3 2 3 3

i t i t j t k

j t i t j t k

k t i t j t k

¬  
=   

¬  
=   

¬  
=   

 (13) 

Since, ( )i i j k i¬ ¬+ + = , where ( ) 1i j k+ + = . The 

same is true for the rest of the unit vectors (i.e., i i¬ ¬=  ).  

Therefore, (13) can be rewritten as:  

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, ,

, ,

, ,

i t t t

j t t t

k t t t

¬  
=   

¬  
=   

¬  
=   

  (14) 

 

By substituting the values of  and , ,i j k¬ ¬ ¬
from (14) 

into (12), we obtain 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 12 13 11 12 13 11 12 13

   
/ 21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

11 12 13

 
/ 21 22 23

31 32 33

i t i t j t k j t i t j t k k t i t j t k

T i t i t j t k j t i t j t k k t i t j t k
L G

i t i t j t k j t i t j t k k t i t j t k

t t t

T t t t
L G

t t t

 + + + + + +
 
 

= + + + + + + 
 
 + + + + + + 
 

 

=




�

  







(15) 

 

Substituting TL/G from (15) into (11), yields 

 

1 1 1 2 1 3

  
2 1 2 2 2 3

3 1 3 2 3 3

t t tX Q
X Q

X R t t t X R
X S

X S t t t

¬   
    

¬      =
   ¬     

   

 (16) 
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Equation (16) corresponds to the following standard 

equation used for computing the computational complexity 

at the receiving end: { } { }b 1, 1b  k
∈ − +ℵ = Τ  If the target 

of one transformation ( ):U Q R→  is the same as the 

source of other transformation ( ):T R S→ , then we can 

combine two or more transformations and form the 

following composition: ( ) ( )( ): ,  TU Q S TU Q T U Q→ = .  

This composition can be used to derive the collective 

computational complexity at the receiving end using (16). 

Since the channel is assumed to be LTI, the TPs may occur 

in any coordinate of the constellation diagram. The 

positive and negative coordinates of the constellation 

diagram do not make any difference for a LTI propagation 

channel. In addition, the TPs should lie within the 

specified range of the system. Since we assumed that the 

transmitted signals are modulated using BPSK which can 

at most use 1 bit out of 2 bits (that is, { 1}b
k

∈ ± ), 

consider the following set of TPs to approximate the 

number of demodulated received bits that need to search 

out by decision algorithm:  

 

( ) ( )

( ) ( )

1 1 1 1 1 1

1  1  1 1 0 1 1  1  1 1 1 1

1 1 1 1 1 1

  1 1 1 1 1 1

1  -1  1 1   1 1 1  -1  1 1 1 1

1 1    1 1 1 1

K

K

 −        ℵ = + −        −    

 − − − − −        + − − + − − −        − − − − −    

 

 
Using (16), a simple matrix addition of the received 

demodulated bits can be used to approximate the number 

of most correlated TPs. The set of TPs correspond the 

actual location with in the TM as shown in (16). The entire 

procedure for computing the number of demodulated bits 

that need to search out by the decision algorithm can be 

used to approximate the number of most correlated signals 
for any given set of TPs. This is because, we need to check 

weather or not the TPs are closest to either (+1, +1) or (-1, 

-1). The decision regions or the coordinates where the TPs 

lie for (+1, +1) and (-1, -1) are simply the corresponding 

transformation matrixes that store the patterns of their 

occurrences. If the TPs do not exist in the region 

(coordinate) of either (+1, +1) or (-1, -1), then it just a 

matter of checking weather the TPs are closest to (+1, -1) 

or to (-1, +1). In other words, the second matrix on the 

right hand side of (16) requires a comprehensive search of 

at most 5K demodulated bits that indirectly correspond to 

one or more users. The minimum search performed by the 
decision algorithm is conducted if the TPs exist within the 

incorrect region. Since the minimum search saves 

computation by one degree, the decision algorithm has to 

search at least 4k demodulated bits. The average number of 

computations required by a system on any given set 

always exists between the maximum and the minimum 

number of computations performed in each operational 

cycle [9]. This implies that the total number of 

demodulated bits that need to search out by the decision 

algorithm can not exceed by5K -4K. In other words, the 

total numbers of most correlated pairs are upper-bounded 
by5K -4K.  

Since most of the decisions are correct, we can reduce 

the number of computations by using the transformation 

matrixes only on those coordinates that are most likely 

lead to an incorrect decision. In other words, TM does not 

process those coordinates which are most likely lead to a 

correct decision. By doing this, we greatly reduce the 
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Fig. 3 A constellation diagram consisting of three different vectors 
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unnecessary processing that requires to make a decision 

about the correct region or the coordinate. Thus, the 

number of received demodulated bits that need to search 

out can be approximated as: 5K -4K. The total number of 

pair in the upper-bound describes the computational 

complexity at the receiving end.  
The computational complexity of any multiuser receiver 

can be quantified by its time complexity per bit [9]. The 

collective computational complexity of the proposed 

algorithm is achieved after performing the TM sum using 

the complex properties of the existing inverse matrix 

algorithms. In other words, the computational complexity 

can be computed by determining the number of operations 

required by the receiver to detect and demodulate the 

transmitted information divided by the total number of 

demodulated bits. Therefore, both quantities T and b from 

our fundamental equation can be computed together and 

the generation for all the values of demodulated received 
bits b can be done through the sum of the actual T that 

approximately takes O (5/4)K operations with an 

asymptotic constant. We determine the collective 

complexity of optimum multiuser receiver by performing 

the TM sum.  

After selecting the BPSK modulated bits ( { 1}
k

b ∈ ± ) 

and the TPs that may occur in any coordinate of the 

constellation diagram, the collective asymptotic 

computational complexity of the optimal ML receiver can 

be approximated after performing the TM sum. The 

resultant approximation has no concern with the decision 

algorithm, since the approximate result can only be used to 
analyze the number of operations performed by the 

receiver. The computational complexity of the proposed 

algorithm for multiuser detection is not polynomial in the 

number of users, instead the number of operations required 

to maximize the demodulation of the transmitted bits and 

to choose an optimal value of b is O (5/4)K, and therefore 

the time complexity per bit is O (5/4)K. Even though, the 

computational complexity of the proposed algorithm is not 

polynomial in terms of the total number of users, but it still 

gives significantly reduced computational complexity.  

 

3.2 Proofs for Computational Complexity 

 

This section provides the formal mathematical proof of 

the above discussion that proves the efficiency of the 

proposed algorithm with given input sizes. We provide a 

mathematical proof for both the upper bound and the lower 

bound of the proposed algorithm over the ND and the ML 

algorithms. 

 Proof (1): ( )f x  is upper bound of ( )1
g x  and ( )2

g x  

For the sake of this proof, we consider each algorithm 

represents by the growth of a function as follows: Let 

( ) ( )5
4

K

f x =  for the proposed algorithm, 

( ) ( )1 2
K

g x = for the ML algorithm, and 

( ) ( )2
3

2

K

g x =  for the ND algorithm. Equation (17) 

shows that the proposed algorithm ( )f x  is in the lower 

bound of both ( )1g x  and ( )2g x . Therefore, the values 

of the function ( )f x , with different input sizes, always 

exist as a lower limit of both ( )1g x  and ( )2g x . In 

order to prove this hypothesis mathematically, we need to 

consider the following equations: 

 

( ) ( )( ) ( ) ( )( )1 2 and f x g x f x g x= =Ο ΟΟ ΟΟ ΟΟ Ο  (17)

 ( ) ( ) ( )( )

( ) ( ) ( )( )

1 1

2 2

5 ,
4

5
4

K

K

f x c g x

f x c g x

= <

= <
  

      

 

Solving for ( )g x , we get the following two equations: 

 

( ) ( ) ( )1
5 2.0

4

K
K

f x c= <
 (18) 

( ) ( ) ( )2
5 3

4 2

K K

f x c= <  (19) 

 

Solving for ( )1g x , we can write an argument using 

(18), such as: ( )f x  is said to be ( )( )1 1c g x×ΟΟΟΟ , if 

and only if there exists a constant 1c  and the threshold 

o
n  

such that: 

( ) ( )1f x c g x<  whenever 
o

x n> . 

( ) ( )( )1f x c g x= ×ΟΟΟΟ  

Thus this is proved using (18). It should be noted that the 

n0 is the threshold value at which both functions 

approximately approaches each other. Solving for ( )2g x , 

we can write a similar argument using (19), such as:  

 

( )f x  is said to be ( )( )2 2c g x×ΟΟΟΟ ,   

If and only if there exists a constant 2c  and the threshold 

o
n  such that: 
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( ) ( )2f x c g x<  Whenever
o

x n> .  

( ) ( )( )2f x c g x= ×ΟΟΟΟ   

Thus this is proved using (19). 

Proof (2): ( )f x  is lower bound of ( )1
g x  and ( )2

g x  

In order to analyze the lower bound, we provide a proof 

in the reverse order to define a lower bound for the 

function ( )f x . Equation (20) demonstrates that both 

functions ( )1g x  and ( )2g x
 
is the upper bounds for 

the function ( )f x . The corresponding values of ( )1g x  

and ( )2g x  with different input sizes always lie as a 

maximum upper limit of ( )f x , and hence both functions
 

( )1g x  and ( )2g x  always yield a greater complexity. 

In order to prove this hypothesis mathematically, we need 

to consider the following equations: 

 

( ) ( )( )1g x f x= Ω  and ( ) ( )( )2g x f x= Ω  (20) 

 

( ) ( ) ( )( )

( ) ( ) ( )( )

1 1

2 1

2.0

3
2

K

K

g x c f x

g x c f x

= >

= >
 

  

Solving for ( )f x , we get the following two equations: 

( ) ( ) ( )1 12.0 5 4
K K

g x c= >   (21) 

( ) ( ) ( )2 23 2 5 4
K K

g x c= >   (22) 

Solving for ( )1g x , we can make the following argument 

using (21), such as  

    

 ( )1g x  is said to be ( )( )1c f xΩ ×  

If and only if there exists a constant 1c  and the threshold 

o
n such that: 

( ) ( )1 1g x c f x>  whenever
o

x n> .  

( ) ( )( )1 1g x c f x= Ω ×   

Thus this is proved using (21). Solving for ( )2g x , we can 

claim a similar argument using (22), such as 

( )2g x  is said to be ( )( )2c f xΩ × ,  

If and only if there exists a constant 2c and the threshold 

o
n  such that: 

( ) ( )2 2g x c f x>  

( ) ( )( )2 2g x c f x= Ω ×  

 

Thus this is proved using (22). As we have proved here 

(referring (17) and (20)) that: 

 

( ) ( )( ) ( ) ( )( ) and f x c g x g x c f x= × = Ω ×ΟΟΟΟ  

 

4. Performance Analysis and Experimental 

Verifications 
 

The order of growth of a function is an important 

criterion for proving the complexity and efficiency of an 

algorithm. It gives simple characterization of the 

algorithm’s efficiency and also allows us to compare the 

relative performance of algorithms with given input sizes. 

In this section, we present a comparative analysis of the 

asymptotic computational complexity of the proposed 

algorithm over the ML and the ND algorithms. The original 

asymptotic computational complexity of the ML optimal 

receiver is (2) k [1]. Another research paper [5] has reduced 

the complexity from (2) k to (3/2) k. This paper [5], also 

known as ND algorithm, has reduced the computational 

complexity after considering a synchronous DS-CDMA 

system.  

According to our numerical results, we successfully 

reduced the computational complexity at an acceptable 

BER after considering the DS-CDMA synchronous LTI 

system. The numerical results show the asymptotic 

computational complexities with respect to the number of 

users as shown in Fig. 4 and 5 for 10 and 100 users, 
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Fig. 4. The asymptotic computational complexities versus small number of 

users 
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respectively. As the number of users increases in the 

system, the computational complexity differences among 

the three approaches will be obvious. 

Fig. 4 shows the computational complexities for a 

network that consists of 10 users. As we can see that the 

proposed algorithm for a small network of 10 users requires 

fewer computations as compare to the ML and the ND 

algorithms. In addition, the proposed algorithm greatly 

reduces the unnecessary computations involve in signal 

detection by storing the pattern of occurrence of the 

demodulated bits in the TM and uses it only on those 

coordinates or decision regions which are most likely lead 

to an incorrect decision. The computational complexity for 

a network that consists of 100 users is shown in Fig. 5. It 

should be noted that the computational complexity curve 

for the proposed algorithm is growing in a linear order 

rather than in an exponential order. The computational 

linearity of the proposed algorithm comes by employing the 

TM technique that avoids considering all the decision 

variables and thus provides much better performance over 

the ND and the ML algorithms. In other words, this can be 

considered as an extension of the former results that 

demonstrates the consistency in the linear growth for the 

required computations of the proposed algorithm. As we 

increase the number of users in the system, more 

transformation matrixes will be used to determine that 

which coordinate(s) or decision region(s) within the 

constellation diagram is most likely to produce errors. 

 

5. Conclusion 
 

In this paper, a novel approach for reducing the 

computational complexity of multiuser receivers was 

proposed that utilizes the TM technique to improve the 

performance of multiuser receiver. In addition to the 

low-complexity algorithm, we provided a complete 

implementation of the proposed algorithm with the support 

of a well driven mathematical model. In order to prove the 

low-complexity and the correctness of the proposed 

algorithm, we provided the formal mathematical proofs for 

both the upper and the lower bounds of the proposed 
complexity. The mathematical proofs for both bounds 

demonstrated that the computational complexity of the TM 

algorithm with any input size always be less than the ML 

and the ND algorithms. The reduction in computational 

complexity increases the computing power of a multiuser 

receiver. Consequently, the increase in computing power 

would likely to result fast signal detection and error 

estimation which do not come at the expense of 

performance. For the future work, it will be interesting to 

implement the proposed approach for asynchronous 

systems with non-linear time variant properties of the 

channel. 
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