
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

23

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

Simulator for Risk Assessment of Software Project based on

Performance Measurement

P. K. Suri
1
, Bharat Bhushan

2
, Ashish Jolly

3

1Department of Computer Science & Applications, Kurukshetra University, Kurukshetra (Haryana), India.

2Department of Computer Science & Applications, Guru Nanak Khalsa College, Yamuna Nagar (Haryana), India.

3Department of Computer Science & Applications, Shri Atmanand Jain Institute of Management & Technology,

Ambala City (Haryana), India.

Abstract
Any software project under development is having inherent risk.

Most of the software's fails due to over budget, delay in the

delivery of the software's, poor performance and so on. [1]

Performance is a nonfunctional software attribute that plays a

crucial role in wide application domains spreading from safety-

critical systems to e-commerce applications. Software risk can be

quantified as a combination of the probability that a software

system may fail and the severity of the damages caused by the

failure. [2]

An attempt has been made to design a simulator for analyzing the

performance measurement of Software Risk Assessment using

Markov process. The proposed simulator (during the process of

software development) gives the incremental risk for every phase

and also the total cumulative risk as the software progress from

one release to another release.

Keywords:
Risk Assessment, Markov Process, Transition Probabilities,

Simulation

1. Introduction

A risk is a potential problem, which is characterized by the

likelihood that an event, hazard, threat, or situation will

occur and its undesirable consequence [IEEE 2001]. There

are many risks involved in creating high quality software

on time and within budget. However, in order for it to be

worthwhile to take these risks, they must be compensated

for by a perceived reward. The greater the risk, the greater

the reward must be to make it worthwhile to take the

chance. In software development, the possibility of

reward is high, but so is the potential for disaster. The need

for software risk management is illustrated in Gilb‘s risk

principle. ―If you don‘t actively attack the risks, they will

actively attack you". [3]

Boehm [4] defines risk management as an emerging

discipline whose objectives are to identify, address, and

eliminate software risk items before they become either

threats to successful operation or major sources of rework.

Fig. Software Risk Management Steps

Software development projects are characterized by

technical complexity, market and financial uncertainties

and competent manpower availability. Therefore,

successful project accomplishment depends on addressing

those issues throughout the project phases. Effective risk

management ensures the success of projects. There are

several studies on managing risks in software development

projects. Most of the studies identify and prioritize risks

through empirical research in order to suggest mitigating

measures. Although they are important to clients for future

projects, these studies fail to provide any framework for

risk management from software developers‘ perspective.

[5]

From the early design phase through the implementation

performance assessment of software has been subject to a

great variety of approaches in the past. Performance

modeling artifacts have to be created and results have to be

evaluated. Performance properties often are crucial aspects

of a software development project. In many cases only a

few parts of the implementation do have to meet critical

performance requirements. [6]

In the past decade, several authors have pointed out the

potential of simulation as an analysis and decision support

tool for software managers. They present a five step

simulation-based method to risk assessment, ProSim/RA,

which combines software process simulation with

stochastic simulation. [7]

Simulation of dynamic complex systems-specifically,

those comprised of large numbers of components with

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

24

stochastic behaviors-for the purpose of probabilistic risk

assessment faces challenges in every aspect of the problem.

Scenario generation confronts many impediments, one

being the problem of handling the large number of

scenarios without compromising completeness. [8]

Software risk assessment takes into consideration many

aspects of the software product. One of these aspects, with

critical influence on risk, is software reliability. For this

reason, estimating software reliability measures is very

important in the process of software risk assessment. In

order to characterize as realistically as possible the

evolution of software in time, the software reliability

models should take into account the structure of the

software. For such models, due to their complexity,

mathematical tractability becomes difficult to obtain and

simulation is a more flexible alternative. [9]

The software to be released based on the performance

measurement may be considered to be in a number of

states of deterioration. The performance measurement

work of the software is inspected after a regular interval of

time say weekly and is classified as being in one of the

states. Each state is considered as functionally independent.

The evaluation is carried out using Markov analysis which

looks at a sequence of states and analyses the tendency of

one state to be followed by another, after each release the

software restored to a state having ‗increased‘ operating

efficiency. Using this analysis one can generate a new

sequence of random but related states which look similar

to the original. This Markov process is stochastic in nature

which has the property that the probability of transition

from a given state to any future state depends only on the

present state and not on the manner in which it was

reached. [10]

A stochastic process whose state at time t is X(t), for t > 0,

and whose history of states is given by x(s) for times s < t

is a Markov process if

Markov process is a sequence of n experiments in which

each experiments has n possible outcomes x1, x2, ……, xn.

Each individual outcome is called a state and probability

(that a particular outcome occurs) depends only on the

probability of the outcome of the preceding experiment.

The simplest of the Markov processes is discrete and

constant over time. It is used when the sequence of

experiment is completely described in terms of its states

(possible outcomes). There is a finite set of states

numbered 0, 1, 2, 3, ….n and this process can be only in

one state at a prescribed time. The system is said to be

discrete in time if it is examined at regular intervals eg.

daily, weekly, monthly or yearly.

Transition Probability

At each step the system may change its state from the

current state to another state (or remain in the same state)

according to a probability distribution. The changes of

state are called transitions, and the probabilities associated

with various state-changes are called transition

probabilities.

The controlling factor in a Markov chain is the transition

probability, it is a conditional probability for the system to

go to a particular new state, given the current state of the

system. For many problems, such as simulated annealing,

the Markov chain obtains the much desired importance

sampling. This means that we get fairly efficient estimates

if we can determine the proper transition probabilities.[11]

Mathematically, the probability

P xn-1, xn = P{X (tn) = xn | X (tn-1) = xn-1}

is called the transition probability. This represents the

conditional probability of the system which is now in state

xn at time tn provided that it was previously in state xn-1 at

time tn-1. The symbol n is used to indicate the number of

steps or increments.

The transition probability can be arranged in a square

matrix form denoted by

n-step stationary transition probabilities

The n-step stationary transition probabilities are defined to

be

The above equation assumes there is N+ 1 possible state.

Note that if the system is currently in state r, it must be in

some state n steps from now. Thus

http://en.wikipedia.org/wiki/Stochastic_process

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 200

25

In general, the n-step stationary transition probabilities can

be calculated as follows:

where the possible states are 1, 2,…..N. That is, the

probability of going from state r to state s in n steps is the

probability of going from state r to state j in one step, times

the probability of going from state j to state s in n-1 steps,

summed over all j=0, 1, 2,……, N.

First-Passage Time and Recurrence Time

The number of transition (steps) needed to go from state r

to state s for the first time is defined to be the first-passage

time from state r to state s. It is denoted by Trs.

If the probability of the system going from state r to state s

eventually is 1, the corresponding first-passage time Trs is

a random variable; otherwise, it is infinity.

The expected value of Trs is give n by

)()(
1

ttE
t

rsrsrs
gT

If r = s, the expected first-passage time is called the

expected recurrence time for state r. The recurrence time

for state r is the reciprocal of the steady state probability of

being in state r.

2. Proposed Simulator

The proposed simulator assumed that the new version of

the software to be released in the market will be acceptable

or not. The efficiency of the newer version will be higher

then the previous versions. A lot of efforts will be made by

the software developer team to get a steady and stable

version of the software to gain maximum operating

efficiency and reliability. The software that is currently

having version 1 must be in some other version after

modifications considering on the basis of Markov process.

Under fairly general conditions if the one step stationary

transition probabilities are available one can determine n

step stationary transition probabilities until the software

reaches a steady and stable state.

Assumptions

1. The software to be modified may be considered in

one of the three modified states called version 1,2

and 3 representing the next version of the

software to be more efficient at the end of a

particular release.

2. The operating efficiency is simulated for each

state by generating random sample from Normal

probability distribution.

3. The one step stationary transition probability may

be given or determined from the past data.

4. n step stationary probabilities are calculated

successively until the system reaches steady state.

5. Expected first-passage time and recurrence times

are computed.

Terms and Notations

NUM : Number of n-step probabilities.

NS : Number of modified states of the

software

PI (X0=I) : Probability of being in state I

P1 (I, J) : One step stationary transition

probability

PN (I, J) : n steps stationary transition

probability

PN (NS, J) : steady-state transition

probability

MT (I, J) : probabilities of being in state J

after I steps.

Algorithm: Risk_Markov_Sim

To compute n-step probabilities using Markov analysis

Step 1: Start

Step 2.(a) [Input number of states for software

modification]

Read NS.

(b) [Read and Compute the probabilities for each modified

state using Box-Muller transformation].

(c) [Read one step stationary transition

probabilities]

For I=1 to NS do

For J = 1 to NS do

Read P1 (I, J)

Step3. [Calculate n step stationary transition probabilities

for n = 1, 2, 3, ….. using the relation]

Step4. [Compute steady state transition

probability using the relation]

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

26

Step 5. [Compute probabilities of being in state j after I

steps]

Step 6. [Compute the first-passage time and recurrence

time using the relation]

)()(
1

ttE
t

rsrsrs
gT

Step 7. [Write Results]

Step 8. [Stop]

3. Case Study:

A company is interested in determining to release the new

version of the software or remain with the existing version

to get the maximum revenue for a particular period of time.

The company tries to modify the software keeping in view

the three states of the software viz. performance level 1, 2

and 3 depending upon the features incorporated in the new

version using Markov process. It is determined when the

software will be stable i.e. in its steady state and will be

acceptable in the market, the company will earn maximum

profit. Different cases are discussed as below taking into

consideration the operating efficiency and the number of

states. Their corresponding intermediate transition

probabilities and steady state transition probabilities are

computed. Also expected first-passage time and recurrence

time are computed for transition from one state to another

state which is depicted below as Case 1, Case 2 and Case 3.

Case 1

Input: Read the value of Number of states (NS) and

compute operating efficiency say 0.17, 0.23 and 0.60.

Table 1 act as input for one step stationary transition

probabilities for software modification.

To State

From State 0 1 2

0 0.0 0.25 0.75

1 0.0 0.50 0.50

2 0.0 0.20 0.80

Table 1

Output:

1. Intermediate State Transition Probabilities

To State

From State 0 1 2

0 .0000 .0000 .0000

1 .1275 .2225 .6500

2 .1105 .2578 .6317

3 .1074 .2521 .6405

4 .1089 .2514 .6397

5 .1087 .2519 .6394

6 .1087 .2518 .6395

7 .1087 .2518 .6395

8 .1087 .2518 .6395

Table 2

2. Steady State Transition Probabilities

State Steady State Stationary

Transition Probabilities

0 0.1087

1 0.2518

2 0.6395

Table 3

3. Expected First-Passage Time and Recurrence Time

To State

From State 0 1 2

0 9.1985 2.8571 1.6250

1 8.8235 3.9714 1.6250

2 7.5735 3.7143 1.5638

Table 4

Case 2

Input: Read the value of Number of states (NS) and

compute operating efficiency say 0.17, 0.23 and 0.60.

Table 5 act as input for one step stationary transition

probabilities for next version of software.

To State

From State 0 1 2

0 0.0 0.75 0.25

1 0.0 0.25 0.75

2 0.0 0.15 0.85

Table 5

Output:

1. Intermediate State Transition Probabilities

From State 0 1 2

0 .0000 .0000 .0000

1 .0425 .1700 .7875

2 .1339 .2173 .6489

3 .1103 .2153 .6744

4 .1146 .2150 .6704

5 .1140 .2151 .6709

6 .1141 .2151 .6709

7 .1140 .2151 .6709

Table 6

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 200

27

2. Steady State Transition Probabilities

State Steady State Stationary

Transition Probabilities

0 0.1140

1 0.2151

2 0.6709

Table 7

3. Expected First-Passage Time and Recurrence Time\

To State

From State 0 1 2

0 8.7681 4.2202 1.2941

1 8.6505 4.6495 1.1765

2 7.4741 4.2936 1.4906

Table 8

Case 3

Input: Read the value of Number of states (NS) and

compute operating efficiency say 0.17, 0.23 and 0.60.

Table 9 act as input for one step stationary transition

probabilities for next version of software.

To State

From State 0 1 2

0 0.0 0.50 0.50

1 0.0 0.75 0.25

2 0.0 0.05 0.95

Table 9

Output:

1. Intermediate State Transition Probabilities

From State 0 1 2

0 .0000 .0000 .0000

1 .0850 .1400 .7750

2 .1318 .2490 .6193

3 .1053 .2537 .6410

4 .1090 .2391 .6519

5 .1108 .2436 .6455

6 .1097 .2438 .6465

7 .1099 .2432 .6469

8 .1100 .2434 .6466

9 .1099 .2434 .6467

10 .1099 .2434 .6467

11 .1099 .2434 .6467

12 .1099 .2434 .6467

Table 10

2. Steady State Transition Probabilities

State Steady State Stationary

Transition Probabilities

0 0.1099

1 0.2434

2 0.6467

Table 11

3. Expected First-Passage Time and Recurrence Time

To State

From State 0 1 2

0 9.0960 1.8182 1.7895

1 8.3591 4.1091 1.0526

2 7.3065 3.2727 1.5463

Table 12

4. Discussion and Conclusion

The present simulator computes the n-step probabilities

successively until the system reaches its steady-state.

Given the initial probability of being in state i for i = 0,1,

…., N, our simulator prints out the probability of being in

state i for i = 0,1,2, ….., N after n = 1,2, …. steps.

If steady-state probabilities exist, the expected first-

passage and recurrence times can be computed. When each

state can be reached from every state of the system, the

expected first-passage time from any given state to any

state can be expressed as a random sample from a specific

probability distribution function. In steady-state, the

probability of being in any given state is a constant,

regardless of the starting state at step 0.

The Graph 1 depicts the relationship between number of

states and the intermediate transition probabilities (for

Case 1). It is found that the software reaches its steady

state probability in eight steps (n=8).

Intermediate Transition Probabilities for Various

States

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

States

T
ra

n
s
it

io
n

 P
ro

b
a
b

il
it

y

Transition

Probability for

State 0

Transition

Probability for

State 1

Transition

Probability for

State 2

Graph 1

The Graph 2 depicts the relationship between number of

states and the intermediate transition probabilities (for

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

28

Case 2). It is found that the software reaches its steady

state probability in seven steps (n=7).

Intermediate Transition Probabil i ties for

Various States

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9
States

T
ra

n
s
it

io
n

 P
ro

b
a
b

il
it

y

Transition

Probability

for State 0

Transition

Probability

for State 1

Transition

Probability

for State 2

Graph 2

The Graph 3 depicts the relationship between number of

states and the intermediate transition probabilities (for

Case 2). It is found that the software reaches its steady

state probability in twelve steps (n=12).

Intermediate Transition Probabil i ties for

Various States

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11

States

T
ra

n
s
it

io
n

 P
ro

b
a
b

il
it

y

Transition

Probability

for State 0

Transition

Probability

for State 1

Transition

Probability

for State 2

 Graph 3

This simulator will be an asset in deciding the release

policies of various versions of the software during the

process of SDLC (System Development Life Cycle).

References:
[1] Gupta, D. Sadiq, M. ―Software Risk Assessment and

Estimation Model‖, Aug. 29 2008-Sept. 2 2008, page(s):

963-967 IEEE International Conference on Computer

Science and Information Technology, 2008. ICCSIT '08.

[2] [2] Cortellessa, V.; Goseva-Popstojanova, K.; Kalaivani

Appukkutty; Guedem, A.R.; Hassan, A.; Elnaggar, R.;

Abdelmoez, W.; Ammar, H.H., ―Model-Based Performance

Risk Analysis‖, Software Engineering, IEEE Transactions,

Volume 31, Issue 1, Jan. 2005 Page(s): 3 – 20.

[3] [3] Linda Westfall, The Westfall Team, PMB 383, 3000

Custer Road, Suite 270 Plano, TX 75075 ―Software Risk

Management‖.

[4] Barry W. Boehm., ―Software Risk Management‖, IEEE

Computer Society Press, 1989.

[5] Prasanta Kumar Dey, Jason Kinch, Stephen O. Ogunlana,

Journal: Industrial Management & Data Systems, Year:

2007, Volume: 107, Issue: 2, Page: 284 – 303, Emerald

Group Publishing Limited.

[6] Michael Barth Institut for Informatik, Ludwig-Maximilian-

University Munchen, Oettingenstr 67 ―Integration of

Simulation Based Performance Assessment in a Software

Development Process‖

[7] ProSim/RA — Software Process Simulation in Support of

Risk Assessment, Book: Value-Based Software engineering,

Publisher: Springer Berlin Heidelberg, Pages: 263-286

[8] Nejad, H.S.; Dongfeng Zhu; Mosleh, A., ―Hierarchical

planning and multi-level scheduling for simulation-based

probabilistic risk assessment‖, Simulation Conference, 2007

Winter Volume, Issue, 9-12 Dec. 2007 Page(s): 1189 –

1197.

[9] Risk assessment using software reliability simulation,

Florentina Suter (University of Bucharest), Workshop on

Mathematical Methodologies for Operational Risk, April

16-17-18, 2007, EURANDOM, Eindhoven, The

Netherlands

[10] Gillette Billy E... ‖Operations Research‖, Tata Mc Graw

Hill Publishing Company Limited, 2004.

[11] P. K. Suri and Bharat Bhushan, ―Simulator for Software

Maintainability‖, IJCSNS, Vol 7 No. 11, November 2007.

http://www.emeraldinsight.com/0263-5577.htm
http://www.emeraldinsight.com/0263-5577/107
http://www.emeraldinsight.com/0263-5577/107/2

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 200

29

Dr. P.K. Suri received his Ph.D degree

from Faculty of Engineering,

Kurukshetra University, Kurukshetra,

India and master‘s degree from Indian

Institute of Technology, Roorkee

(formerly known as Roorkee University),

India. He is working as Professor in the

Department of Computer Science &

Applications, Kurukshetra University,

Kurukshetra - 136119 (Haryana), India

since Oct. 1993. He has earlier worked as Reader, Computer Sc.

& Applications, at Bhopal University, Bhopal from 1985-90. He

has supervised ten Ph.D.‘s in Computer Science and eleven

students are working under his supervision. He has more than 100

publications in International / National Journals and Conferences.

He is recipient of 'THE GEORGE OOMAN MEMORIAL

PRIZE' for the year 1991-92 and a RESEARCH AWARD –―The

Certificate of Merit – 2000‖ for the paper entitled ESMD – An

Expert System for Medical Diagnosis from INSTITUTION OF

ENGINEERS, INDIA. His teaching and research activities

include Simulation and Modeling, SQA, Software Reliability,

Software testing & Software Engineering processes , Temporal

Databases, Ad hoc Networks, Grid Computing , and

Biomechanics.

Dr. Bharat Bhushan received his Ph.D

degree from Department of Computer

Science & Applications, Kurukshetra

University, Kurukshetra, M.Sc (Physics)

from Punjab University Chandigarh and

M.Sc (Comp. Sc.), MCA degrees from

Guru Jambeshwar University, Hissar in

2001 respectively. Presently working as

Head, Department of Computer Science

and Applications, Guru Nanak Khalsa

College, Yamuna Nagar (affiliated to

Kurukshetra University, Kurukshetra- Haryana, India) and senior

most teacher of computer science in Haryana since 1984. He is a

member of Board of Studies of Computer Science, Kurukshetra

University. His research interest includes Software Engineering,

Digital electronics and Simulation Experiments.

Ashish Jolly received his MCA

degree from University of Madras,

Chennai in the year 1999. Currently

he is pursuing Ph.D in Computer

Science from Department of

Computer Science & Applicatiions,

Kurukshetra University, Kurukshetra,

India. He is working as a Asstt

Professor and Head in the

Department of Computer Science & Applications, Shri

Atmanand Jain Institute of Management & Technology

(affiliated to Kurukshetra University, Kurukshetra),

Ambala City, Haryana, India. His research area includes

Simulation, Software Engineering and Software Project

Management.

