
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

43

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

Adaptive Nested Neural Network (ANNN) Based on Human

Gene Regulatory Network (GRN) for Gene Knowledge Discovery

Engine

Zainal A. Hasibuan1 Romi Fadhilah Rahmat2 Muhammad Fermi Pasha2 Rahmat Budiarto2

1Faculty of Computer Sciences, University of Indonesia, Jakarta, Indonesia
2School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia

Summary
For a long time neural networks have been a popular approach

for intelligent machines development and knowledge discovery.

However, problems still exists in neural networks, such as fixed

architecture and excessive training time. One of the solutions to

unravel this problem is by using neuro-genetic approach. A

neuro-genetic approach is inspired by a theory in neuroscience

which state that the evolution of human brain structure is

significantly affected by its genome structure. Hence, the

structure and performance of a neural network should be based

on a gene created for it. Therefore, to overcome these existing

neural network problems and with the help of new theory of

neuroscience this paper we attempt to propose a neuro-genetic

approach by using simple Gene Regulatory Network (GRN) as a

more biologically plausible model of neural network.

Firstly, we proposed GRTE, a Gene Regulatory Training Engine

to control, evaluate, mutate and train genes. Secondly, ANNN, a

distributed and Adaptive Nested Neural Network that will be

constructed based on the genes from GRTE. This paper focuses

on ANNN for Uncorrelated Data. We conducted experiments to

evaluate and validate by using the Proben1’s Gene Benchmark

Datasets. The results of the experiments validate the objective of

this work.

Key words:
Neuro-Genetics, Neural Network, Gene Regulatory Network,

1. Introduction

Behind all success stories of neural network, there are

still some major drawbacks which causes neural network

being unable to continuously learn and act like the actual

human brain. Though many people believe that this issue is

due to the limitation of the current computer processing

power, the recent discoveries in neuroscience field has

raises some doubts. One of the recent theories in

neuroscience state that interaction among genes,

biochemical, and neural activity will affects the complexity

and construction of neurons in human brain (Marcus,

2004). This theory has become obvious when [1] build

NeuroGene applications to simulate process of neural

development which involves gene regulation.

Gene regulation in human is controlled by Gene

Regulatory Network (GRN). GRN (see Figure 1) can be

represented as complex connections among gene that lead

to mutation and interactions between genes [2]. GRN also

holds the evolution, adaptation and interaction phase of

DNA, RNA, mRNA, and protein in cell level [3].

Several attempts have been made to propose adaptive and

evolvable frameworks. Among these adaptive frameworks

are Evolving Connectionist System (ECOS) [4], MAB-Net

as dynamic brain model [5], NeuroEvolution of

Augmenting Topologies (NEAT)[6], and also Evolvable-

Neural-Based Fuzzy Inference System (EFIS) [7]. All

these adaptive and evolvable neural network models are

generally able to solve fixed architecture problem and the

catastrophic forgetting problem. But the training time and

the limitation of processing power resources made it

difficult to deal with vast amount of data and in the same

time evolve its complex structure.

This paper proposes a Distributed and Adaptive

Nested Neural Network (ANNN) as well as a Simple Gene

Regulatory Network (GRN) as a Controller and Learning

Engine. This research shall lead into modeling and

implementing simple Gene Regulatory Training Engine

with adaptive structure, less training time, and optimum

CPU usage, for the purposes of interaction, mutation and

training of the gene. Furthermore, with the intention of

verification, we conduct experiment on gene knowledge

discovery using Proben1’s Gene Benchmark Datasets.

The rest of the paper is organized as follows. Section 2

discusses various works that have been done by many

researchers. Section 3 discusses the proposed GRTE and

ANNN architecture. Section 4 presents the experimental

analysis and results of our proposed method. Finally, in

Section 5, we conclude the paper.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

44

2. Related Works

Many works have been done to overcome conventional

Artificial Neural Networks. We category the works into

two: Gene Regulatory Network and Adaptive Nested

Neural Network.

2.1 Gene Regulatory Network

Figure 1 Biological Gene Regulatory Networks Model

[8].

Modeling gene regulatory network from biological

perspective to computational perspective has been

developed since 1999 by researchers from INRIA Rhône-

Alpes’s bioinformatics group [2]. Several models have

been produced to represent GRN with many different

developments method. Akutsu presented simplest and

imprecise GRN modeling using Kauffman Boolean

network with Boolean vectors for genes state [9]. An

extensive representation was made by [10] using Bayesian

and regression networks with the transitional probabilities.

It is continued by [11] which uses artificial neural

networks of a Hopfield type to become the core principle

for GRN computational model development.

Another development applies evolving connectionist

network or neural network which represents genes as

neurons, and interactions between genes as path weight

connections [12] and [4]. Along with that, GRN modeling

has been applied in the area of adaptive fuzzy

connectionist systems by [13], clustering analysis [14],

genes data analytical modeling [15], gene expression

correlation analysis [16] and gene evolution based on

fitness function in the evolutionary computing area [17].

2.2 Adaptive Nested Neural Network

The area of brain-like computing research has been an

active area of research for the past decades. It starts with

the first wave of human brain’s neurons connections

modeling known as neural network or connectionist system

(see Figure 2) introduced by McCulloch and Pitts in 1943.

The wave continued with the learning theory introduced by

[18] known as the Hebbian learning, the introduction of

genetic algorithm by [19] and still progressing with more

and more complex model such as self organizing maps

[20], recurrent neural network [21], spiking neural network

[22] and many more.

Figure 2 Artificial Neural Network [30]

Most attempts in developing intelligent machines

involved neural network as a media to learn. To date the

issue, neural network has been used to solve numerous

complex real world problems across different fields of

study such as pattern recognition (which include speech

and image recognition) [23] and [24], robotics [25], visual

monitoring [26], prediction problem [27], applied physics

[28], etc.

Essentially, the main problem lies in the fact that

neural networks have little similarity with the actual

processes in the brain other than both being constructed of

many interconnected units. To address this issue, a more

biologically plausible model that reflects the actual human

intelligence is needed. Ipso facto, we need to first

understand how intelligence is developed in our brain from

neuroscience perspective.

With the dynamic or adaptive architecture of neural

network, it is possible to create different neural network

architecture. One of the types is modular neural networks

or often called nested neural networks. According to the

literature means, we can conclude that nested neural

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

45

network is a neural networks composed by several

embedded neural networks.

Many problems occur due to the intensity and

quantity of data input in neural network. Massive input

data that flows to input layer in a neural network, will

create long training time and sometimes create training’s

malfunction. Nested neural networks are concerned with

this kind of problem and it can be a solution by using

partition of data input distributed for several neural

networks in Nested Neural Networks architecture (see

Figure 3).

Figure 3 describes how neural network partitions

input data. We can conclude that Nested Neural Networks

is separating data into different neural networks. After

training phase in A and B, the output of those two neural

networks will be functionally changed as inputs to Neural

Network C. (there is a chance to change the output as a

bias). Then Neural Network C will perform its training

after completing those previous neural networks.

Figure 3 Nested Neural Networks

Several researches has been exposed to use Nested

Neural Networks, for example in image compression

(Kumar, 1998), and in Hierarchical Cluster Model that has

been described as a parallel neo-cortex neural network’s in

brain model [29].

3. ANNN Architecture

Our proposed architecture comprises of two main

methods/components as follows.

 Distributed and Nested Adaptive Neural Network

using ANNN

 Gene Regulatory with Gene Regulatory Training

Engine (GRTE)

Figure 4 Proposed Neuro-Genetic Approach Architecture

The construction of ANNN depends on the output from

GRTE, and the output from ANNN will be evaluated in

GRTE (see Figure 4). This two ways connection shows the

connection between ANNN and GRTE..

3.1 Uncorrelated Data ANNN

Uncorrelated data ANNN means the ANNN is not suitable

for n-bits parity problem. This ANNN model is modeled to

receive different inputs from every different agent. It is

also suitable in order to solve problem in the network, such

us network traffic problems, network forensic and

supervised data with huge data samples. The diagram of

ANNN model for Uncorrelated Data is shown in Figure 5.

Figure 6 shows the algorithm to perform Uncorrelated

Data ANNN based on Figure 5.

3.2 GRTE

Our proposed GRTE has 5 components as follows:

 Gene Representation

 Fitness Function

 Mutation Regulatory

 Training Process

 Neuro-Gene

Neural Network A

Neural Network B

Neural Network C

Input Layer Hidden Layer Output Layer /

Input Layer
Output LayerHidden Layer

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

46

Output Neuron

Input Neuron

Hidden Neuron

Input From Environment

NODE/AGENT

NODE/AGENT NODE/AGENT

G

R

T

E

Send Output

TrainingTraining

Training

NODE/AGENT

Training

Figure 5 ANNN Model for Uncorrelated Data

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

47

Algorithm of ANNN Uncorrelated Data

 1: Calculate number of Node/Agent based on data partition.

 2: Initialize inner layers , neurons within inner neural

 networks () and weight connections ().

 3: for every Node/Agent

 4: for every neural network

 5: Construct neurons { , …, } where every

 is { } , and weight connection { , , ,…, }.

 6: end for

 7: Train neural network

 8: Calculate objective function

 9: end for

10: Send to GRTE

11: Back to Step 1 if GRTE send the new Gene

Figure .6 Algorithm for Uncorrelated Data ANNN

Pseudocode of GRTE processes

 1: process GRTE()

 2: initializeGene()

 3: while not || do

 4: trainingGene()

 5: send_Neural_Network()

 6: execute_Neural_Network()

 7: retrieve_Result()

 8: evaluate_ Fitness_Function_for_ANNN_Correlated_Data()

 9: evaluate_ Fitness_Function_for_ANNN_Uncorrelated_Data()

10: begin

11: execute_Mutation_Regulatory()

12: evaluate_ Fitness_Function_for_ANNN_Correlated_Data()

13: evaluate_ Fitness_Function_for_ANNN_Uncorrelated_Data()

14: end while

15: crete_new_individu()

16: send_and_compare_to_Population()

17: choose_best_individu()

18: end while

19: end process

Figure 7 Pseudocode for GRTE Process

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

48

3.2.1 Gene Representation

In general, GRTE uses 3 different set of Gene-like’s

variable which will interact with the environment.

 First gene is Node Behavior’s gene for the node in

the environment. The function of the node behavior

is to differentiate the model of ANNN architecture

that should be formed.

 Second gene is Inner Neural Network (INN)’s gene

variable. It contains the variable of neural network

parameters for every node in the layer. The

parameters include number all neurons, number of

input nodes, hidden nodes, output nodes, epoch

learning rate, and momentum rate.

 The last gene is Outer Neural Network (ONN)’s

gene variable. It contains parameters for

construction of outer neural network. They are

number of node, number of input, hidden and output

neurons.

3.2.2 Fitness Function

Before we describe fitness function, firstly we have to

introduce the objective function. The objective function

basically used to verify and measure the objectiveness of

such a neural network. We find that for our architecture

(multi-layer feed-forward networks) is suitable if we use

root mean squared error. The root-mean squared error

can be formulated as:

𝐸𝑝 =
1

𝑁𝑜
 (𝑑𝑜

𝑝
− 𝑦𝑜
𝑝

)2

𝑁𝑜

𝑜=1

Where represents root of the difference between the

desired output value for unit with its particular pattern

and the actual network output for every training sample,

in which is the number of output unit. Every gene has

its own objective function; it means we can get the average

objective function for all of the genes by equation:

The above quation can be calculated after one

training of GRTE. When this happen, we can say, there

will be a different data sample to be trained in each

partition data. For example, data sample in neural network

for input layer can be bigger than data in the hidden or

output layer. Therefore, after GRTE sends the gene to the

environment, the ANNN will produce the final output .

Final output is used to measure the error with the

expected output , hence we can get the fitness of the

output , denote by:

From the three equations above we can identify how to

get fitness function in one generation of GRTE for

Correlated Data ANNN. The fitness function is:

In one generation of process in the uncorrelated data

ANNN, there will be final output of uncorrelated data

ANNN of every agent/node

. Since the data is

uncorrelated, the Fitness Function can be calculated

as the average of all objective function. We can denote it

by the following equation:

3.2.3 Mutation Regulatory

Basic requirement to give adaptive ability is to

mutate several entities that we listed in Table 1.

All of GRTE’s variables have different function

and purpose in constructing ANNN. By having this

different we can do optimization of these variables by

applying Genetic Algorithm (GA). Before we proceed to

GA inside GRTE, we have to describe the Mutation

Regulatory. After we analyze the GRTE’s gene

representation, the genetic operator that can occur in this

representation is only mutation operator. It means there is

no cross-over occurs, no parent selection (in other words

every gene are a single individual that has to be mutated

with Mutation Regulatory). Mutation Regulatory consists

of algorithm and equations to control a gene to be

mutated. Since we want to mutate several entities (see

Table 1) we provide the algorithm and equations below.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

49

Table 1 Mutation Entity List

Mutation Entity

 (Inner Neural

Network)

Explanation

Input Neurons Mutation is depend on the kind

of data that want to be used

Hidden Neurons Mutation is depend on

Mutation Regulatory(see

Section 3.3.2)

Epoch Can be Random and structured

with relation with hidden

neurons mutation (see Section

3.3.2)

The Mutation Regulatory for input neurons is

related to variance of data to be used. Suppose that we

want to apply the Correlated data ANNN in n- bits parity

problem which means we have to have n inputs. Assume

that we want to have multilayer NNN; it means n has to

be 2 ≤n ≤ ∞ . However, if it is uncorrelated data ANNN

we can specify (NI ≥1).

Mutation Regulatory for hidden neurons is different from

Mutation Regulatory for input neurons. From this

sequence of algorithm below, we know that this algorithm

is the adaptive part to search the best gene by mutating

the hidden layer and its neurons inside it. The mutation

regulatory for ANNN Correlated data is described in the

following algorithm.

Pseudocode of Hidden Neurons Mutation Regulatory

 1: initialize (NH=2) and (Epoch=10)

 2: mutate_hidden_neuron (NH=NH+(2 .(Random(4)))

 3: mutate_epoch (Epoch=Epoch+(10 .(Random(4)))

 4: begin IF (|E_p-E_(p-1) |<0.1)

 5: stop_hidden_neuron_mutation;

 6: mutate_epoch (Epoch=Epoch+(100.(Random(30)))

 7: end IF

Another factor to optimize the objective/fitness value is

epoch mutation. We can combine both of hidden neurons

NH and epoch as one equation for Uncorrelated Data

ANNN; it is because of the nature of portioned data

which allow the equation possible. The equation is:

Since we have different data partitioning, the

appropriate number of output neurons for Correlated

Data ANNN depends on the data and should be .

For Uncorrelated Data ANNN, number of output neurons

is , and. For rate and momentum, it can be mutated

also. However, for simplicity we make it as a fixed number

with and for both modes

of ANNN.

3.2.4 Training Process

Training process is a process in Neural Network to

get appropriate weight connection to give a correct result.

We have two different places to conduct training process

in our system. The first place is inside the GRTE, for

Correlated Data ANNN. The second place is for

Uncorrelated Data ANNN, the training process will be

held inside the Agents.

3.2.5 Neuro-Gene

 Neuro-gene transformation is a process to create

an execution or pre-execution file. Neuro-gene has the

ability to execute, or train the neural network inside the

Agents.

3.3 Main Algorithm

The GRTE Algorithm is an adaptive algorithm with

Fitness Function or as termination criteria. GRTE

also involves in training, sending and retrieving the result

from ANNN

GRTE adopts the GA concept in its algorithm; in

fact it is a simple GA with only mutation operator inside.

The algorithm in Figure 7 explains how GRTE actually

adapting GA algorithm in line 8 till line 17. What makes it

different from common GA is our GRTE does not use

crossover and parent selection (every gene act as a single

parent), and the randomize initialization of population does

not occur in the algorithm.

Fitness Function and Mutation Regulatory has

become an important element for GRTE to do its algorithm.

The GRTE will become more adaptive and can be used to

support Correlated and Uncorrelated Data ANNNs. The

first thing to do is translating the ONN to construct the

INN. The genes produced by INN have to be trained,

before the genes send to the environment. Results from

environment will be analyzed using Fitness Function and

placed in population. Since Fitness Function does not

affect the mutation in ONN level, than mutation process

will be held in INN. The rule of mutation will be

conducted by Mutation Regulatory for controlling the

objectiveness of the gene. From this point, GRTE will

create new gene to be prepared for training and to be sent

to the environment. This iteration will be stopped after

Fitness Function reaches the termination point.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

50

4. Experiment

Proben1 is a collection of 15 datasets from 12 different

problems and domain in neural network for the purpose of

neural network learning in the term of pattern classification.

Each of the datasets contains realistic problems or so

called diagnosis tasks. It can be retrieved from the Neural

Bench archive7 at Carnegie Mellon University and from

UCI machine learning databases repository and the energy

predictor shootout archive (Precheltz, 1994).

Besides of its variety and real data, Proben1 also suited for

supervised learning. Therefore we design an experiment to

test our proposed Uncorrelated Data ANNN model using

appropriate data in Proben1 benchmark datasets. The

purpose is to identify performance and adaptive ability of

our model to be adapted to the situation that given from

datasets. After we analyze all the data from Proben1

dataset, gene dataset is the most suitable to be test data of

our Uncorrelated Data ANNN. Gene dataset consists of

three different dataset, Gene 1, Gene 2, and Gene3. Each

dataset have 3175 samples data, which consist of 1558

training samples, 794 validation samples, and 793 test

samples respectively. The data also have 120 input values

and 3 output values. In shake of simplicity and decreasing

training time, our experiment will be held with 1558 data

sample from training sample. This particular 1558 training

sample has to be divided, our way to conduct this data

partitioning is by using the data representation.

Data partitioning in Uncorrelated Data ANNN is slightly

different with Correlated Data ANNN. Here, data is

divided on the perspective of sample’s number and

variance of the data. Gene’s Proben1 dataset, represents

one alphabet in the gene as couple numbers of input. It

represents C as (-1, 1), A as (-1, 1), G as (1, -1), and T as

(1, 1). With these four representations we can create

number of neuro-gene corresponds with the representation.

If the first two input of every samples is (-1,-1) then it is

appointed to neuro-gene 1, if it is (-1, 1) appointed it to

neuro-gene 2, (1,-1) appointed to neuro-gene 3, and (1, 1)

appointed to neuro-gene 4. It means the number of neuro-

gene that will be created in GRTE is four. The partition

of the data is shown in Table 2.

Table 2 Sample Data Partitioning for ANNN Uncorrelated

Data

Data

Prefix

Gene 1 Gene 2 Gene 3

(1, 1) 351 350 356

(1, -1) 454 432 409

(-1, 1) 337 352 375

(-1, -1) 416 424 418

4.1 Experimental Set up

Our implementation application is divided into two

different parts; they are Server Application and

Client/Agent Application. Figure 8 shows the diagram of

Client/Agent-Server Application.

From application perspective we can divide our

methodology in Client/Agent Application and Server

Application. Inside the Agent Application, there are three

different modules. Firstly, there is data collector, which is

purposed to collect data from benchmark datasets. This

data should be partitioned. Secondly is Input Analyzer, it is

used to analyze and classify the data’s, or it can be

describes as pre-processing data module. Lastly is Agent’s

Neural Network Engine, used to run the neuro-gene engine

that has been injected to the node by using the dataset as

the input resources.

Client / Agent Application Server Application

Data

Collector

Agent’s Neural

Network Engine

Input Analyzer

Database

Gene Regulatory

Network Engine

Figure 8 Client/Agent-Server Applications

For server side there will be one module and one database.

The module is Gene Regulatory Network, which creates

the neuro-gene and as a home-base of neural network

training and Genetic Algorithm. GRTE is connected to

database to record gene activity and population.

Figure 9 explains the process-flows of Server

Implementation. The first step describes the user

interaction with the servers. User needs to give the

initialization for the neuro-gene in server, before it runs

adaptively. What will happen next is the entire nodes in the

environment will request neuro-gene file through opened

port to the GRTE server, then GRTE server will send its

particular file to the particular node with an ID to prevent

the unstructured nested neural network architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

51

Environment

Gene Regulatory

Training Engine

Server
P

ro
d

u
c
e

 N
e

u
ro

-

G
e

n
e

 F
ile

A
g
e
n
t R

e
q
u
e
st

N
e
u
ro

-G
e
n
e

S
e
n
d
 N

e
u
ro

-G
e
n
e

1

3 2

Figure 9 Process-flow of Server Implementation

Figure 10 gives an example of process flow in the

environment. First step should be the process of activating

the agents. After the agents activated, agent will request

neuro-genes to the server, then server gives the neuro-gene.

From here every agent should start the neural-network

activity inside the node and the architecture will be built

automatically inside the environment based on given

neuro-genes. Every agent will record the information of

their activities to be used later in the GRTE as the

parameter for performance measurements.

Main Node

Run ANNN in

Agent A

Run ANNN in

Agent B

Run ANNN in

Agent C

A
c
ti
v
a

te
 A

g
e

n
t

R
e

q
u

e
s
t
N

e
u

ro

G
e

n
e

S
e

n
d

 F
e

e
d

 B
a

c
k

S
e

n
d

 N
e

u
ro

 F
ile

1

6

5

4

3
2

7

Figure 10 Process-flow of Environment Agent

Implementation

4.2 Result Analysis
The first results come from Objective Function of

every gene dataset. We attempt to test our ANNN model

with 3 different gene dataset. Every dataset had been

partitioned into 4 (see Table 2). is expected to be lower

in every generation, to prove that our neural network

evolves properly. .

After eight generations it becomes .

It shows that our neural network in our proposed approach

reaches its objective and works properly. Objective

Function also shows the accuracy of our neural network.

The accuracy measured by percentage of correctness based

on average of all objective values in gene dataset. We

obtain the accuracy as shown in Table 3.

Table 3 Accuracy of ANNN Uncorrelated Data

Gene 1 Gene 2 Gene 3

98.3% 98% 98.15%

The result described here is a Fitness Function

results from our GRTE method. We follow the standard

procedure of fitness testing. Figure 11 shows that the

Fitness Function of Gene 1, Gene 2 and Gene 3 converge

at the same best result in generation 6 (

reaches). It shows that our GRTE works properly

for this kind of data.

Figure 11 Fitness Function for the three genes.

4.3 Statistical Analysis of the Experiment

After the one-full run of the GRTE, we try to experiment

with 5 runs starts from generation 5 till generations 8. It

means, in our GRTE we have 3 dataset, with each data

contains 4 partitions; each partition runs 5 times from

generation 5 till generation 8. In other word, our GRTE

produce 3*4*5*3 = 180 neuro-genes training.

The results are shown in Table 4 and Table 5. The mean of

Objective Function for each gene in Figure 12 shows that

after 6 generation, the result is convergent.

5. Conclusion

The experiment shows the ability of our methods to

adapt the node-only mode based on ruled partitioning data.

We have shown that our GRTE could evolve successfully

using Proben1’s Gene Benchmark Datasets. The Fitness

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

52

Function also reaches its best using the equation and

algorithm of our Mutation Regulatory of GRTE.

In terms of adaptive ability, the mutation regulatory

obtained a good result. What we pointed out here is that

our mutation regulatory method still can be better, if we

involve another mutation entity, such as rate, momentum

and hidden neurons of outer neural network mutation.

Since our training process is held in the Agents, the

performance of our approach significantly improved. The

result from fitness function also reaches the best level, and

because of that, we can conclude our experiment’s

objective achieves a good result.

Acknowledgments

The authors would like to thank the Universiti Sains

Malaysia (USM) for the research grant.

References

[1] Storjohann, R., Marcus, G., NeuroGene: Integrated

Simulation of Gene Relation, Neural Activity and

Neurodevelopment. Proc. Of International Joint of

Conference on Neural Networks, Montreal,Canada, 2005.

[2] De Jong, H., Modeling and simulation of genetic regulatory

systems: a literature review, Journal of Computational

Biology, vol.9, No.1, 67-102, 2002

[3] Pevzner, P., A., Computational Molecular Biology: An

Algorithmic Approach, MIT Press, 2000.

[4] Kasabov, N., Evolving Connectionist System: Methods and

Applications in Bioinformatics, Brain Study and Intelligent

Machines, Springer-Verlag, London, 2003.

[5] Ohtani, S., Ishido, M. and Shimohara, K., “Multi-Agent

Based Neural Network as a Dynamical Brain Model”,

Proceedings of the Fifth International Symposium on

Artificial Life and Robotics (AROB5'00), Oita, Japan, 2000.

[6] Stanley, K. O. and Miikkulainen, R., Evolving Neural

Networks Through Augmenting Topologies, Evolutionary

Computation, 10(2), pp. 99–127, 2002.

[7] Pasha, M. F., Budiarto, R., Syukur, M. and Yamada, M.,

“EFIS: Evolvable-Neural-Based Fuzzy Inference System

and Its Application for Adaptive Network Anomaly

Detection” In D.S.Yeung et al. (Eds.) Advances in Machine

Learning and Cybernetics - ICMLC2005, Lecturer Notes in

Artificial Intelligence (LNAI), vol. 3930, Springer-Verlag,

pp. 662-671, 2006.

[8] DEO Genomics: GTL Systems Biology for Energy and

Environment. (2006) U.S. Department of Energy Genome

Programs, Retrieved from:

http://genomics.energy.gov/gallery/. 05/12/07.

[9] Akutsu, T., Miyano, S., and Kuhara, S., “Identification of

genetic networks from a small number of gene expression

patterns under the boolean network model,” Pacific

Symposium on Biocomputing, vol. 4, pp.17-28, 1999.

[10] Kato, M., Tsunoda, T., Takagi, T., Inferring genetic

networks from DNA microarray data by multiple regression

analysis, Genome Informatics, 11, 118-128, 2000.

[11] Marnellos, G., and Mjolsness, E., D., Modeling Neural

Development, MIT Press, Cambridge, MA, pp. 27-28, 2003.

[12] Vohradsky, J., Neural network model of gene expression,

The FASEB Journal, vol. 15, March, pp.846-854, 2001.

[13] Sehgal, M., Gondal, I., Dooley, L., AFEGRN: Adaptive

Fuzzy Evolutionary Gene Regulatory Network

Reconstruction Framework, IEEE International Conference

on Fuzzy Systems, Canada, 2006.

[14] D'Haeseleer, P., Liang, S., and Somogyi, R., “Genetic

network inference: from co-expression clustering to reverse

engineering”, Bioinformatics, vol. 16, no. 8, pp.707-726,

2000.

[15] Kohn, W., K., and Dimitrov, D., S., Mathematical Models

of Cell Cycles, Computer Modeling and Simulation of

Complex Biological Systems, 1999.

[16] Lindlof, A., and Olsson, B., Could Correlation-based

Methods be used to Derive Genetic Association Networks?,

Proceedings of the 6thJoint Conference on Information

Sciences, March 8-12, pp.1237-1242, 2002.

[17] Mimura, and Iba, H., “Inference of a Gene Regulatory

Network by Means of Interactive Evolutionary

Computing,” Proceedings of the 6th Joint Conference on

Information Sciences, March 8-12, pp.1243-1248,2002.

[18] Hebb, D., The Organization of Behavior, John Wiley and

Sons, New York, 1949.

[19] Goldberg, D. E., Genetic algorithms in search, optimization,

and machine learning, Addison-Wesley, Reading, 1989.

[20] Kohonen, T., Self Organizing Maps, Springer, Berlin,

Heidelberg, 1995.

[21] Mandic, D. and Chambers J., Recurrent Neural Networks

for Prediction: Learning Algorithms, Architectures and

Stability, Wiley, 2001.

[22] Christodoulou C., Bugmann, G., and Clarkson, T. G., “A

spiking neuron model: applications and learning”, Neural

Networks, vol. 15, pp. 891–908, 2002.

[23] Ghobakhlou, A., Watts, M. and Kasabov, N., “Adaptive

speech recognition with evolving connectionist systems”

Information Sciences, vol. 156, 2003, pp. 71-83.

[24] Gou, S. and Jiao, L., “Image Recognition Using Synergetic

Neural Network” Advances in Neural Network - ISNN2005,

Lecturer Notes in Computer Sciences (LNAI), vol. 3497,

Springer-Verlag, pp. 286-291, 2005.

[25] Sun W. and Wang, Y. N., “A Robust Robotic Tracking

Controller Based on Neural Network”, International Journal

of Robotics and Automation, 20(3), 2005.

[26] Yongtae D., “Tracking People in Video Camera Images

Using Neural Networks” Advances in Intelligent

Computing, Lecturer Notes in Computer Sciences (LNAI),

vol. 3644, Springer-Verlag, pp. 301-309, 2005.

[27] Liu, F., Findlay, R. D. and Song, Q., “A Neural Network

Based Electrical Loss Prediction of Bare Overhead ACSR

Conductors” Proceeding of the First International

Conference on Innovative Computing, Information and

Control - Volume II (ICICIC'06), IEEE Press, pp. 392-395,

2006.

[28] Syukur, M., Pasha, M. F., and Budiarto, R., “A Neural

Network-Based Application to Identify Cubic Structures in

Multi Component Crystalline Materials using X-Ray

Diffraction Data” International Journal of Computer

http://genomics.energy.gov/gallery/

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

53

Science and Network Security (IJCSNS), 7(2), pp. 49-54,

2007.

[29] Yap, K., H., Guan., L., Liu., W., A Recursive Soft-Decision

Approach to Blind Image Deconvolution, IEEE

Transactions on Signal Processing, Vol. 51, Issue 2, pp.

515 – 526, Feb. 2003.

[30] Gan, J., Problem Solving using Neural Network: A Tutorial,

Retrieved From

www.sx.ac.uk/ccfea/NewsEvents/seminarsetc/seminars/arc

hive/past/John%20Gan.pdf , 2003

Zainal Hasibuan received the

BSc. from Bogor Institute of

Agriculture, Indonesia in year

1986, MSc., and PhD in

Information Sciences from

Indiana University in year 1989

and 1995, respectively., He is

currently as a researcher and

Academic Staff at Faculty of

Computer Science, University of Indonesia (UI), Jakarta,

Indonesia, His research interests include Information Storage and

Retrieval System, E-Learning Systems as well as Grid Systems.

Romi Fadhilah Rahmat received his BSc. and MSc in

Computer Sciences from Universiti Sains Malaysia (USM). He is

currently a PhD Candidate at the School of Computer Sciences,

USM. His research interests include brain modeling and quantum

computing.

Muhammad Fermi Pasha received his BSc. and MSc in

Computer Sciences from Universiti Sains Malaysia (USM). He is

currently a PhD Candidate at the School of Computer Sciences,

USM. His research interests include brain modeling, evolving

systems and network monitoring.

Rahmat Budiarto received B.Sc.

degree from Bandung Institute of

Technology in 1986, M.Eng, and

Dr.Eng in Computer Science from

Nagoya Institute of Technology in

1995 and 1998 respectively.

Currently, he is an associate

professor at School of Computer

Sciences as well as the deputy

director of National Advanced IPv6

(NAv6) Center, USM. His research interest includes IPv6,

Network Security, Intelligent Systems. He was chairman of

APAN Security Working Group.

http://www.sx.ac.uk/ccfea/NewsEvents/seminarsetc/seminars/archive/past/John%20Gan.pdf
http://www.sx.ac.uk/ccfea/NewsEvents/seminarsetc/seminars/archive/past/John%20Gan.pdf

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

54

 Table 4 GRTE’s Training Set Result in 5 Runs from Generation 5 until Generation 8

 Training Set (Generation 5)

Mean St. Deviation Best Worst

Gene 1 0.053235333 0.009017695 0.038196 0.060059
Gene 2 0.052108359 0.006574782 0.046294 0.059739
Gene 3 0.056123527 0.004567437 0.50759 0.061481

 Training Set (Generation 6)

Mean St. Deviation Best Worst

Gene 1 0.022513079 0.00386124 0.018911 0.028879
Gene 2 0.023149648 0.00142499 0.0217787 0.025314
Gene 3 0.019774753 0.00250884 0.0170197 0.023295

 Training Set (Generation 7)

Mean St. Deviation Best Worst

Gene 1 0.01746741 0.0006743 0.016411 0.0181105
Gene 2 0.02003276 0.00024025 0.0196672 0.0202456
Gene 3 0.01906406 0.00016075 0.01884906 0.01920871

 Training Set (Generation 8)

Mean St. Deviation Best Worst

Gene 1 0.017349112 0.000891341 0.0159336 0.01806952
Gene 2 0.020024485 0.000229594 0.019689435 0.02026467
Gene 3 0.017658277 0.001729001 0.015649829 0.018966511

Figure 12 Mean of the Objective Functions for each gene

Table 5 GRTE’s Validation Set Result in Generation 8

 Validation Set

Mean St. Deviation Best Worst

Gene 1 0.00758 0.000332 0.00814 0.00708

Gene 2 0.00720 0.000214 0.00693 0.00739

Gene 3 0.00676 0.000332 0.00709 0.00633

