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Summary 
In practice, there inevitably exists the offset or disturbances 
induced by actuator failures. This is an ignored problem in 
integrity fault-tolerant control theory. In order to satisfy the 
robustness of system, the closed-loop model of uncertain 
networked control system with time-varying delay and actuator 
failures is established aiming at a class of controlled objective 
with uncertain parameters. The attenuation performance index of 
system for fault is defined. Combing with fault-tolerant control 
and guaranteed cost control, a fault-tolerant guaranteed cost 
controller is designed adopting Lyapunov stability analysis 
method. Simulation results indicate the controller can not only 
guarantee the asymptotic stability, but also ensure the robustness 
and anti-disturbance performance. 
Key words: 
Networked control systems, Fault-tolerant, Guaranteed cost, 
Ttime-varying delay, Uncertain 

1. Introduction 

Networked control system (NCS) is a hot research area. At 
present,many workes have been done about system 
modeling,stability analysis,guaranteed cost controller 
design and so on. Researches on robust guaranteed cost 
controller ensure the stability and robustness of networked 
control system. This meets the practical needs and has the 
important meaning. 

Guaranteed cost control is to design a controller which 
not only makes uncertain closed-loop system stable, but 
also limits the bound of certain performance index. In 
Ref[1], guaranteed cost control of discrete networked 
control system is studied aiming at time-varying delay. 
Guaranteed cost control of networked control system is 
given based on discrete jump system aiming at random 
delay[2]. Yue[3] proposes guaranteed cost control  based 
on model given in Ref[4] aiming at quadratic 
performances. In Ref[5], H∞ guaranteed cost control of 
networked control system adopting proportion-integral 
output feedback controller aiming at quadratic cost 
function. For networked control systems with time-varying 
delay less than one sample period and data-packet dropout, 
a compensator is introduced to compensate the effect of 
data dropout[6]. And NCS is modeled as a discrete 
switched system with parametrical uncertainties. Based on 
this model,a cooperative design approach of controller and 
the compensator are given in terms of a group of linear 

matrix inequality. Guaranteed cost control of networked 
control system with uncertain time delay adopting output 
feedback controller is studied in Ref[7]. 

In existing achievements,guaranteed cost control of 
networked control system with faults is not taken into 
account. Otherwise, most of cotrol methods are given 
based on discrete networked control system with constant 
network-induced time delay. However, the robustness of 
continuous networked control system with uncertainty and 
time-varying delay is seldom considered. 

In the paper, guaranteed cost controller of uncertain 
networked control system with time-varying delay and 
actuator failures is designed. Firstly, networked control 
system with time-varying delay and actuator failures is 
modeled. Secondly, the stability of closed-loop fault 
system is analyzed considering zero disturbance caused by 
actuator faults. When disturbance caused by actuator faults 
is not zero, performance index reflecting disturbance 
degradation is defined. And guaranteed cost controller is 
designed in terms of Lyapunov stability analysis method. 
At last, the validity of proposed method  is validated by 
two examples. 

2. Modeling of The Closed-loop Fault Systems 

Consider the continuous-time linear plant described by 
state-space equations of the form 
 

( ) ( ) ( )
( ) ( )
t t t
t t

= +⎧
⎨ =⎩

&x A x B u
y C x              (1) 

 

where ( ) ntx R∈  is the state and ( ) mt ∈u R is the control 

input. ( ) pt ∈y R is the output of plant.
n n×∈A R is the state 

matrix and 
n m×∈B R is the input matrix. 

p n×∈C R  is the 
output matrix. And A, B, C are constants matrices. 

In this paper, it is assumed that:  
(1)Continuous plant without network and state 

feedback are stability or meet certain needs of control.  
(2)Controller is time-varying and continuous.   
(3)Noise of system is not taken into account. And no 

error exist in communication. 
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(4)Suppose ( )scd t  is time delays caused by network 

from sensor to controller. ( )scd t  denotes time delays 
caused by network from controller to actuator. Above time 

delays are regarded as ( ) ( ) ( )sc cad t d t d t= + . 
Under above assumption, system model considering 

time-varying network-induced delay is obtained: 
 

( ) ( ) ( ( ))t t t d t= + −x A x B u&        (2) 
 

where ( ) ( ) ( )sc cad t d t d t= +  is time-varying delay satisfied 
0 ( )d t τ≤ ≤ . Here,τ  is upper limit of time-varying delay. 
Consider actuator failure, fault model of networked control 
system is formed: 
 

( ) ( ) ( ( )) ( ) ( )at t t d t t= + − + −x Ax BLu B I L f&    (3) 
 

where { }1 2, , , mdiag l l lL L= is actuator failure matrix 
satisfied 0L≠  and L ψ∈ . Here,ψ indicates an aggregate 
containing all possible actuator failure matrixes.  
 

-th actuator is normal
-th actuator is failure

1,
1, 2, ,

0i

i
i

l i mL
⎧

= =⎨
⎩   (4) 

 
It is obvious that system is normal when L I= . 

If L I≠ , there exists actuator faults and ( )a tf  is the  
disturbance or offset caused by actuator faults. 

Consindering uncertainty of system, ( )tAΔ and ( )tBΔ  
are unknown limited coefficient matrixes. That is, 

2( ) ( )Tt tA A AΔ Δ ≤ ，
2( ) ( )Tt tB B BΔ Δ ≤ . Here, n n×∈A R  and 

n n×∈B R  are known constant matrixes. If state feedback 
controller is adopted shown as ( ) ( )t t=u Kx , above model 
of system shown in formula(3) is transformed as follows. 

 
( ) ( ( )) ( ) ( ( )) ( ( )) ( ) ( )at t t t t d t t= +Δ + +Δ − + −&x A A x B B LKx B I L f  (5) 

 
Beasd on above-mentioned model, researches are 

done aiming at different disturbance: 
(1) ( ) 0a tf ≡  means that when actuator faults happen, 

output of controller is zero. The goal of the control system 
is to obtain sufficiency conditions ensuring the asymptotic 
stability of closed-loop fault system and determine 
proportion constant matrix of controller adopting 
Lyapunov stability analysis method.  

(2) If ( ) 0a tf ≠ , the offset of faults is regarded as 
unknown disturbance of system. In order to decrease the 
influence caused by disturbance, degradation performance 

shall satisfy ( ) ( )at ty fρ< . Here,0 1ρ< < . Corresponding 

performance index is defined as 
2

0
( ) ( ) ( ) ( )T T

a aJ t t t t dtρ
∞
⎡ ⎤= −⎣ ⎦∫ y y f f

. The goal of the control 
system is to determine proportion constant matrix of 
controller which ensures the asymptotic stability of system 
whether actuator fault happens and make 0J < . 

3 Design of Fault-tolerant Guaranteed Cost 
Controller 

3.1 Stability analysis of closed-loop fault systems 

Theorem 1: Considering the system shown in formula(5), 
for given positive constane κ and τ, if there exist positive 
definite symmetric matrix X, symmetry matrix Y and 
positive scalars α, β, ζ, η, δ1, δ2, the following  linear 
matrix inequality is satisfied: 
 

1 1 1 2

1 2 2 2

2
1 2

0

. . 1 0 , 0

T

s t α β δ α δ

⎡ ⎤
= <⎢ ⎥
⎣ ⎦
+ + − > − >

M M
M

M M

I A

   (6) 

 
Then the system is exponentially asymptotically stable. 
From a group of feasible solution (X,Y), controller with 

1−=K YX  is obtained, where 

  
2 2

11
T T T T ζ η= + + + + +M XA AX Y L B BLY A B     

  

12

max            ( )

T

T T T T T T T T

τκλ τκλ τ τ

τ τ τ τσ

⎡= ⎣
⎤⎦

M X Y BL B XA X

Y L B Y L B B Y B Y  

  

{
}

2
22 1 2

2

, , ( ) , ( ) ,

                                    , , , ,

diag ζ η τκ λ δ τ α δ

τδ τβ τβ τβ τβ

= − − − − − −

− − − − −

M I I I I A I

I I I I I  
Proof: Based on Newton-Leibniz theorem, 
 

{ }
0

1 ( )
( ) [ ( )] ( ) ( ) ( ))ad t

Q t t x t t dθ θ θ θ
−

= +Δ + + + − +∫ A A B I L f
   (7) 

         [ ( )] ( ( ) )t t d tθ θ θ+ +Δ + − + +B B LKx                        
 
The closed-loop model of fault system is rewritten: 
 

1

( ) [( ( )) ( ( )) ] ( )
( ) ( ) ( ( )) ( )a

t t t t
t t Q t

= + Δ + + Δ
+ − − + Δ

&x A A B B LK x
B I L f B B LK    (8) 

 

Construct a Lyapunov functiona as 1 2( , ) ( , ) ( , )V t V t V t= +x x x . 

    1 ( , ) ( ) ( )TV t t t=x x P x  
    2 21 22 23( , ) ( , ) ( , ) ( , )V t V t V t V t= + +x x x x  
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0

0

( )

0

1 ( )[ ( )] [ ( )] ( )

1 ( ) [ ( ( )) ]

 [ ( ( ))] ( )

( )( ) ( ) ( )

t T T

t

t T T T

t d t

t T T T
a at

d d

d t

d t d d

d d

τ θ

τ θ θ

τ θ

ϑ ϑ ϑ ϑ ϑ θ
α

ϑ ϑ θ
β

ϑ θ ϑ ϑ θ

ϑ ϑ ϑ θ

− +

− − + +

− +

= +Δ +Δ

+ +Δ + +

× +Δ + +

+ − −

∫ ∫

∫ ∫

∫ ∫

x A A A A x

x K BL B L

B B LKx

f I L B B I L f  
Along with random trajectory of system, the 

derivative of ( , )V tx  is 1 2( , ) ( , ) ( , )V t V t V t= +x x x& & &
. 

 

 1( , ) ( ) ( ) ( ) ( )T TV t t t t t= +& & &x x Px x Px                  (9) 

         1

( ){[( ( ) ( ( )) ]
  2 ( ) ( ) ( ) 2 ( ) ( ( )) ( )

T T

T T
a

t t t
t t t t Q t

= +Δ + +Δ

+ − − +Δ

x A A B B LK P
x PB I L f x P B B LK    

 
   12 ( ) ( ( )) ( )T t t Q t− + Δx P B B LK                                    

0

( )

0

( )

0

( )

2 ( ) ( ( )) ( ( )) ( )

  2 ( ) ( ( )) ( ( )) ( ( ) )

  2 ( ) ( ( )) ( ) ( )

T

d t

T

d t

T
ad t

t t t x t d

t t t x t d t d

t t t d

θ θ θ

θ θ θ θ

θ θ

−

−

−

=− +Δ +Δ + +

− +Δ +Δ + − + +

− +Δ − +

∫

∫

∫

x P B B LK A A

x P B B LK B B

x P B B LKB I L f
(10) 

 
Lemma 1[8]: For any vectors or matrices X,Y,Z and 

any positive constants 0α> , 0β> , the following 
inequalities are satisfied: 

1T T T Tα
α

+ ≤ +X Y Y X X X Y Y
 

12 T T Tβ
β

± ≤ +Z Y Z Z Y Y
 

Based on Lemma 1, fomula (10) is rewritten as: 
 

0

( )

0

( )

2 ( ) ( ( )) ( ) ( )

  ( ) ( ( )) ( ( ) ) ( )

   ( )( ) ( ) ( )

T
ad t

T T T

T T
a ad t

t t t d

t t t t

t t d

θ θ

τ

θ θ θ

−

−

− + Δ − +

≤ + Δ + Δ

+ + − − +

∫

∫

x P B B LKB I L f

x P B B LKK BL B L Px

f I L B B I L f
 (11) 

 

Now consider 2 21 22 23( , ) ( , ) ( , ) ( , )V t V t V t V t= + +x x x x& & & &
.  

 

   21( , ) ( )( ( )) ( ( )) ( )T TV t t t t tτ
α

= +Δ +Δ& x x A A A A x
             

    
01 ( )( ( )) ( ( )) ( )T Tt t t t d
τ

θ θ θ θ θ
α −

− + +Δ + +Δ + +∫ x A A A A x
 

        
( )( ( )) ( ( )) ( )T Tt t t tτ

α
≤ +Δ +Δx A A A A x

 

      
0

( )

1 ( )( ( )) ( ( )) ( )T T

d t
t t t t dθ θ θ θ θ

α −
− + +Δ + +Δ + +∫ x A A A A x

(12) 

22

0

( , ) ( ) ( ( ( ) )) ( ( ( ) ) ( )

1 ( ( ) ) ( ( ) )

               ( ( ) ) ( ( ) )

( ) ( ( ( ) )) ( ( ( ) ) ( )

1 (

T T T

T T T

T T T

T

V t t t d t t d t t

t d t t

t t d t d

t t d t t d t t

t

τ

τ θ θ
β

θ θ θ
β

θ θ θ θ
τ θ θ
β

β

−

= +Δ + + +Δ + +

− − + + +Δ +

+Δ + − + +

≤ +Δ + + +Δ + +

− −

∫

& x x K BL B L BL B L Kx

x K BL B L

BL B L Kx

x K BL B L BL B L Kx

x
0

( )
( ) ) ( ( ) )

   ( ( ) ) ( ( ) )

T T

d t
d t t

t t d t d

θ θ θ

θ θ θ θ

−
+ + +Δ +

+Δ + − + +

∫ K BL B L

BL B L Kx (13) 
 

23

0

0

( )

( , ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

T T
a a

T T
a a

T T
a a

T T
a ad t

V t t t

t t d

t t

t t d

τ

τ

θ θ θ

τ

θ θ θ

−

−

= − −

− + − − +

≤ − −

− + − − +

∫

∫

x f I L B B I L f

f I L B B I L f

f I L B B I L f

f I L B B I L f

&

   (14) 
 

With (9)-(14), the following inequalities are obtained: 
( , ) ( ){[( ( ) ( ( )) ]

      [( ( ) ( ( )) ]} ( ) 2 ( ) ( ) ( )

              ( 1) ( ) ( ( )) ( ( ) ) ( )

      ( )( ( )) ( ( )) ( ) ( )(

T T

T
a

T T T

T T T
a

V t t t t
t t t t t

t t t t

t t t t t

τ α β
τ τ
α

≤ +Δ + +Δ

+ +Δ + +Δ + −

+ + + +Δ +Δ

+ +Δ +Δ + −

& x x A A B B LK P
P A A B B LK x x PBI L f

x P B B LKK BL B L Px

x A A A A x f I L) ( ) ( )

    ( ) ( ( ( ) )) ( ( ( ) ) ( )

T
a

T T T

t

t t d t t d t tτ θ θ
β

−

+ +Δ + + +Δ + +

B BI L f

x K BL B L BL B LKx
(15) 

According to Lemma 1[8], the following inequalities 
are obtained: 

2 1( ) ( ) Tt t ζ
ζ

Δ + Δ ≤ +P A A P P A P I
 

  
2 1( ) ( )T T T Tt t η

η
Δ + Δ ≤ +P B LK K L B P PB P K K

 

2 2
max

( ( ( ) )) ( ( ( ) )

[ 2 ( ( ) )

( ( )) ( ( ) )]

[ (1 ( )) ]

T T

T T T T T

T T

T T T T T

t d t t d t

t d t

t d t t d t

τ θ θ
β
τ θ
β

θ θ
τ σ
β

+Δ + + +Δ + +

= + Δ + +

+ Δ + + Δ + +

≤ + + +

K BL B L BL B L K

K L B BL L B B L

L B B L K

K L B BL L B B BL B I K
 (16) 

 
Lemma 2[9]: Let A  and ΔA  be n n×  real 

matrices and assume inequality 
2( ) ( )Tt tΔ Δ ≤A A A  is 

satisfied, where A is a symmetric matrix. Then for any 
0 1ε< < ,we have 

21 1( )( )
1

T T

ε ε
+Δ +Δ ≤ +

−
A A A A AA A

 
Let 1( 1)δ α β δ+ + = ,  then 
 

2 2
2

1 1

( 1) ( ( )) ( ( ) )
( 1) ( 1)( )

1

T T

T

t tτ α β
α β α βτκ

α β δ δ

+ + + Δ + Δ

+ + + +
≤ +

+ + −

P B B LKK BL B L P

P BLL B B P
 (17) 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009 

 

116

 

where 11 0α β δ+ + − > .κ  is a given constant satisfying 
0κ >  and T κ≤KK I . 
Lemma 3[9]: Let A and ΔA be n n×  real matrices 

and assume inequality 
2( ) ( )Tt tΔ Δ ≤A A A  is satisfied, 

where A is a symmetric matrix. Then for any 0 1ε< <  and 
21 0ε− >A , we have  

2 1 1( ) ( ) (1 )T T ε σ
ε

−+Δ +Δ ≤ − +A A A A A A A I
 

where 

0 0
1 otherwise

σ
Δ ≡⎧

= ⎨
⎩

A

. Let 
'

2αδ δ= , the following 
inequalities are satisfied:  

2 1
2

2

1( )( ( )) ( ( )) ( ) [ ( ) ]T T Tt t t tτ τ α δ
α δ

−+Δ +Δ ≤ − +x A A A A x A I A A I
 

Based on above inequalities, formula (15) becomes:  
 

2 2

2 2
2

1 1

2 1
2

2

2 2
max

( , ) ( )( ( ) ) ( )
1 1( ){( )

( 1) ( 1)( )
1

1[ ( ) ]

[ (1 ( )) ] } ( )

2 ( ) ( ) ( ) (

T T T

T T

T

T

T T T T T

T T
a a

V t t t

t

t

t t t

ζ η
ζ η

α β α βτκ
α β δ δ

τ α δ
δ

τ σ
β

τ

−

≤ + + +

+ + + +

+ + + +
+ +

+ + −

+ − +

+ + + +

+ − +

x x A P AP BLK P PBLK x

x PA P I PB P KK

P BLL B B P

A I A A I

K L B BL L B B BL B I K x

x PB I L f f

&

)( ) ( ) ( )T
a t− −I L B B I L f  (18) 

 
If ( ) 0a tf ≡ , the stability of system is only 

considered, then  
( ) ( ) ( ) ( )( ) ( ) ( ) 0T T T

a a at t t tτ− + − − =x PB I L f f I L B B I L f  
So formula(18) is simplified as ˆ( , ) ( ) ( )TV t t t≤x x Mx& , 

where 
2

2 2
2

1 1

2 2
max

2 1 2
2

2

1ˆ ( )

( 1) ( 1)       ( )
1

       ( (1 ( )) )

1 1       ( ( ) )

T T

T

T T T T T

T T

ζ
ζ

α β α βτκ
α β δ δ

τ σ
β

τ α δ η
η δ

−

= + + + + +

+ + + +
+ +

+ + −

+ + + +

+ + − + +

M A P AP BLK P PBLK PA P I

P BLL B B P

K L B BL L B B BL B I K

KK A I A A I PB P
  (19) 

 

Therefore, if ˆ 0<M , ( , ) 0V t <x& . That means the 
closed-loop system express by (5) is stable. 

According to Shur Lemma, ˆ 0<M  is equal to matrix 
inequality: 

11 12

12 22

ˆ ˆ
ˆ 0

ˆ ˆT

⎡ ⎤
= <⎢ ⎥
⎢ ⎥⎣ ⎦

M M
M

M M              (20) 
Where 

   
2 2

11
ˆ ( )T T ζ η= + + + + +M A P AP BLK P PBLK PA P PB P , 

12

max

ˆ

            ( ) ]  

T

T T T T T T T T

τκλ τκλ τ τ

τ τ τ τσ

⎡= ⎣M I K PBL PB A I

K L B K L B B K B K  
{

}

2
22 1 2

2

ˆ , , ( ) , ( ) ,

                                    , , , ,

diag ζ η τκ λ δ τ α δ

τδ τβ τβ τβ τβ

= − − − − − −

− − − − −

M I I I I A I

I I I I I  
Because matrix inequalities(20) is a nonliear matrix 

inequality about P and K, it can not compute using Linear 
Matrix Inequality toolbox. So 

1{ , , , , , , , , , }diag P I I I I I I I I I−
is 

multiplied with both sides of inequality(19). Let 
1−=X P , =Y KX , then above matrix inequality becomes 

inequality (6). From a group of feasible solution as (X,Y), 
controller with 1−=K YX  is obtained. 

3.2 Design of fault-tolerant guaranteed cost controller 

Theorem 2:Consider the system (5), for given positive 
constane k, τ, ρ, if there exist positive definite symmetry 
matrix X, symmetry matrix Y and positive scalar α, β, ζ, η, 
δ1, δ2，the following linear matrix inequality is satisfied: 
 

0 0
0

0 f

⎡ ⎤
<⎢ ⎥

⎣ ⎦

M
M            (21) 

s.t. 11 0α β δ+ + − > , 
2

2 0I Aα δ− >  
 

Then the system shown in formula(5) with 1K YX−=  is 
stable and 0J < . When system is normal , M is rewritten 

as 0M . 
( )

0
( ( ) ( )

T

f
T Tρ τ

⎡ ⎤−
⎢ ⎥= ∗ −⎢ ⎥
⎢ ⎥∗ ∗ − − − −⎣ ⎦

M XC B I L
M I

I I L B B I L  
Proof: Considering the performance index: 

  
2

0
( ) ( ) ( ) ( )T T

a aJ t t t t dtρ
∞
⎡ ⎤= −⎣ ⎦∫ y y f f

 

    

20

ˆ( ) ( )( )
( ) ( )( ) ( ( ) ( ))

      ( )

T T

T T T T
a a

t t
dt

t t

V
ρ τ

∞ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ −
≤ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦⎣ ⎦

− ∞

∫
x xM C C PB I L
f fI L B P I I L B B I L

 

If 0J< ，
2

ˆ ( ) 0
( ) ( ( ) ( ))

T

T T T T

M C C PB I L
I L B P I I L B B I Lρ τ

⎡ ⎤+ −
<⎢ ⎥

− − − − −⎣ ⎦ where 
( ( ) ( ) 0T Tρ τ− >I I - L B B I - L . 

According to Shur Lemma, formula(21) is equal to 
matrix inequality: 

 

2

ˆ ( )
0 0

( ( ) ( ))

T

T Tρ τ

⎡ ⎤−
⎢ ⎥
∗ − <⎢ ⎥

⎢ ⎥∗ ∗ − − − −⎣ ⎦

M C PB I L
I

I I L B B I L       (22) 
 

Because fomula (22) is a nonliear matrix inequality, it 
can not be computed using LMI toolbox. So 
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1{ , , , , , , , , , }diag −P I I I I I I I I I  is multiplied with both sides of 
inequality (22), we have  

 
1 1 1ˆ ( )

0 0
( ( ) ( )

T

T Tρ τ

− − −⎡ ⎤−
⎢ ⎥

∗ − <⎢ ⎥
⎢ ⎥∗ ∗ − − − −⎣ ⎦

P MP P C B I L
I

I I L B B I L     (23) 
 

Let 1−=X P , =Y KX , then above matrix inequality 
becomes: 

 
( )

: 0 0
( ( ) ( )

T

f
T Tρ τ

⎡ ⎤−
⎢ ⎥= ∗ − <⎢ ⎥
⎢ ⎥∗ ∗ − − − −⎣ ⎦

M XC B I L
M I

I I L B B I L     (24) 
 

If inequality(2) has solution, closed-loop system 
shown in formula (5) can guarantee the asymptotic 
stability and satisfy 0J< . 

4 Simulations Samples and Analysis 

Consider a network control system with uncertain 
parameters, the closed-loop model is 

( ) ( ( )) ( ) ( ( )) ( ( )) ( ) ( )at t t t t d t t= +Δ + +Δ − + −x A A x B B LKx B I L f&  

where

1.3 0.5
0.7 1.8

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦ ,

0.2sin 0
0 0.2cos

t
t

A
⎡ ⎤

Δ =⎢ ⎥
⎣ ⎦ ,

1 0.5
0 1

B
⎡ ⎤

=⎢ ⎥
⎣ ⎦ ,

0.2sin 0
0 0.2cos

t
t

⎡ ⎤
Δ =⎢ ⎥

⎣ ⎦
B

, 

1 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C
, 

0.2 0
0 0.2

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
A B

. 
In general, initial states are randomly  chosen as 

[ ] [ ]1 2(0) (0) 2 1T Tx x = − . Suppose ( ) ( ) 0.1 0.1sinsc cad t d t t= = +  is 

network-induced time-delay. So ( ) 0.2 0.2sind t t= + . Let 
0.4τ = . Impulse signal is adopted as disturbance caused by 

faults. If no actuator fault happens in control system, 
{ }0 1,1diagL = . { }1 0,1diagL =  or { }2 1,0diagL = respectively indicate 

1-th actuator fault or 2-th actuator fault. 
 

A. Example1: Fault-tolerant controller 
 
Suppose 1.5k = . Global optimal solution of inequality(6) 
is obtained as min 0.0505t =−  adopting LMI toolbox. 
Because of min 0t < , LMI is feasible. And a group of 
feasible solutions are obtained. That is, 

87.6505ζ = , 94.9209η= , 108.2793λ= , 1 108.2793δ = , 
2 157.6753δ = , 110.2793α = , 159.1502β= . Variable matrixes of 

the system is

20.4171 0.6198
0.6198 19.0000

X
−⎡ ⎤

=⎢ ⎥−⎣ ⎦ , 

19.0230 2.4639
8.6409 15.2920

Y
−⎡ ⎤

=⎢ ⎥−⎣ ⎦ . 

Proportion constant of fault-tolerant guaranteed cost 

controller is 

0.9287 0.0994
0.4481 0.8195

K
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦ . 
Beasd on above parameters, response curves of states 

are shown in Fig.1. 

  
1 ( )x t                 2 ( )x t  

Fig.1 Response curves of states 

It is obvious that whether actuator fault happens, the 
controller can guarantee the asymptotic stability. 

 
B. Example2:Fault-tolerant guaranteed cost controller 
 

Suppose 1.5k = . 0.9ρ =  is degradation degree of 
disturbance. Global optimal solution of inequality (24) is 
obtained as min 0.0031t =−  adopting LMI toolbox. 
Because of min 0t < , LMI is feasible which ensure 0J< . 
And a group of feasible solutions are obtained. That is, 

0.7415ζ = , 0.7297η= , 2.4106λ = , 1 0.4106δ = , 
2 0.4999δ = , 0.3508α= , 1.3213β = . Variable matrixes of the 

system is

0.1290 0.0188
0.0188 0.1300

X
−⎡ ⎤

=⎢ ⎥−⎣ ⎦ , 

0.1554 0.0175
0.0601 0.1148

Y
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦ . 
Proportion constant of fault-tolerant guaranteed cost 

controller is 

1.2109 0.0403
0.6076 0.9705

K
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦ . 
Beasd on above parameters, response curves of states 

are shown in Fig.2. 

 
1 ( )x t                     2 ( )x t  

Fig.2 Response curves of states 
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It is obvious that whether actuator fault happens, the 
controller can not only guarantee the asymptotic stability, 
but also ensure the robustness and anti-disturbance 
performance. 

4. Conclusion 

Aiming at a class of controlled plant with uncertain 
parameters, the closed-loop model of uncertain networked 
control system with time-varying delay is established 
considering disturbance caused by actuator fault. The 
degradation performance index of systems for fault is 
defined. Combing with fault-tolerant control and 
guaranteed cost control, a fault-tolerant guaranteed cost 
controller is designed adopting Lyapunov stability analysis 
method. Simulation results indicate the controller can not 
only guarantee the asymptotic stability, but also ensure the 
robustness and anti-disturbance performance. 
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