
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

126

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

A Novel Neural Network Approach For Software Cost Estimation

Using Functional Link Artificial Neural Network (FLANN)

B. Tirimula Rao
Senior. Assistant professor,

Department of Computer Science and Engineering

Anil Neerukonda Institute of Technology and Sciences,

Sangivalasa, Bheemili Mdl, Visakhapatnam -531 162

B. Sameet, G. Kiran Swathi, K. Vikram Gupta,

Ch. RaviTeja, S.Sumana
Department of Computer Science and Engineering

Anil Neerukonda Institute of Technology and Sciences,

Sangivalasa, Bheemili Mdl, Visakhapatnam -531 162

Summary:
Software engineering measurement and analysis specifically, cost

estimation initiatives have been in the center of attention for

many firms. The use of the expert judgment and machine learning

techniques using neural network as well as referencing

COCOMO approach to predict the cost of software have shown

their strength in solving complex problems of tolerating extreme

inputs but as the number of inputs increases the complexity of the

neural network is maximized. A novel computationally efficient

Functional Link Artificial Neural Network (FLANN) is proposed

for this purpose and to reduce the computational complexity so

that the neural net becomes suitable for on-line applications.

FLANN do not have any hidden layer; the architecture becomes

simple and training does not involve full back propagation. In the

course of adversity in neural networks, this dynamic neural

network excellently works which will initially use COCOMO

approach to predict the cost of software and uses FLANN

technology with backward propagation. The proposed network

processes each and every neuron crystal clear so that the entire

network is completely “white box”. This method gives much

more accurate value when compared with others because our

method involves proper training of data using back propagation

algorithm which is used to train the network, becomes very

simple because of absence of any hidden layer. As this method

uses COCOMO as a base model, this model gives best estimate

for the projects applied in Software Development Approach.

Keywords:
Functional Link Artificial Neural Networks (FLANN), Chebyshev

Functional Link Artificial Neural Networks (C-FLANN),

Legendre Functional Link Artificial Neural Networks (L-FLANN),

Power Functional Link Artificial Neural Networks (P-

FLANN),Constructive Cost Model (COCOMO), Software Cost

Estimation, Effort.

1. Introduction

Software cost estimation is the prediction of hours of work

and the number of workers needed to develop a project.

Software cost estimation techniques fall into three general

categories includes Algorithmic models, Expert Judgment

and Machine Learning techniques. Among algorithmic

models, COCOMO (Constructive Cost Model) is the most

commonly used Algorithmic cost modeling technique

because of its simplicity for estimating the effort in person-

months for a project at different stages. COCOMO uses

mathematical formulae to predict project cost estimation

[1]. COCOMO is taken as a base model for the software

cost estimation. Expert judgment is a non-structured

process in which experts make decisions to the technical

problems based on knowledge and experience in order to

give accurate results than other techniques and doesn’t

require any previous historical data [2, 3, 4]. And the third

technique is Machine Learning by using the neural

networks. Neural networks has been found as one of the

best techniques for software cost estimation [5]. Numerous

researchers and scientists are constantly working on

developing new software cost estimation techniques using

neural networks [6].

Nasser Tadayon [6] developed an adaptive learning

machine based on neural network to estimate the software

cost using COCOMO model. MLP has a multi-layer

architecture with one or more hidden layer(s) between its

input and output layers. Node output from each layer is

directly input to the successive layer nodes. The nodes in

all layers (except the input layer) of the MLP contain a

nonlinear function. The training of MLP starts with

random initial values for its weights, and its process

consists of a forward pass to propagate the input vector

through the network layer by layer, and a backward pass to

update the weights by the gradient descent rule. In the

forward phase, the weighted sum of outputs of a lower

layer is passed through the nonlinear function of a node in

the upper layer to produce its output. Finally, the outputs

of all the nodes of the network are computed. And then in

the backward phase, the outputs of the final layer (output

layer) are compared with the target values. The error

obtained out of difference between them is used to update

the weights of the network. After having trained for a

period of time, the training error should have converged to

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

127

a global minimum. To overcome the complexities

associated with multi-layer neural network, single layer

neural network can be considered as an alternative

approach. But the single layer neural network being linear

in nature very often fails to map the complex nonlinear

problems. The classification task in data mining is highly

nonlinear in nature. So solving such problems in single

layer feed forward artificial neural network is almost an

impossible task. To bridge the gap between the linearity in

the single layer neural network and the highly complex and

computation intensive multi layer neural network the

Functional Link Artificial Neural Network (FLANN) is

proposed by PAO [7]. The FLANN architecture uses a

single layer feed forward neural network and to overcome

the linear mapping, functionally expands the input vector.

FLANN architecture configured for software development

effort is a two-layer feed forward network consisting of

one input layer and one output layer. The FLANN

generates output (effort) by expanding the initial inputs

(cost drivers) and summing all to the final output layer.

The activation function used here is sigmoid function. The

output layer consists of one output neuron that computes

the software development effort as a linear weighted sum

of the outputs of the expanded inputs.

In this paper, the main focus is not only investigating the

accuracy of the prediction using FLANN network but also

decreasing the computational complexity of the network.

The aim of this study is to verify if FLANN network can

be used for prediction of effort on the basis of effort

multipliers, size of the project, scale factor used in project

development. To empirically evaluate the training

algorithms and to find which training algorithm is suitable

for the estimation purpose.

2. Cost Estimation Methods

Prediction of software development effort using Artificial

Neural Networks has focused mostly on the accuracy

comparison of algorithmic models rather than on the

suitability of the approach for building software effort

prediction systems.

The use of back propagation learning algorithms on a

multilayer perceptron in order to predict development

effort is well described by Witting and Finnie [8].

Karunanithi [9] reports the use of neural networks for

predicting software reliability; including experiments with

both feed forward and Jordon networks. Samson [10] uses

an Albus multiplayer perceptron in order to predict

software effort. They use Boehm’s COCOMO dataset.

Nasser Tadayon [6] also reports the use of a neural

network with a back propagation learning algorithm.

However it is not clear how the dataset was divided for

training and validation purposes. Khoshgoftaar [11]

presented a case study considering real time software to

predict the testability of each module from source code

static measures. They consider Artificial Neural Networks

as promising techniques to build predictive models. Finally

in the last years, a great interest on the use of Artificial

Neural Networks has grown. Artificial Neural Networks

have been successfully applied to several problem domains.

They can be used as predictive models because they are

modeling techniques capable of modeling complex

functions.

3. Proposed Methodology

In this work, the Functional Link Artificial Neural

Network method is used to predict software development

effort (in person month) using popular algorithmic method

called COCOMO.

3.1 COCOMO

The original COCOMO model was first published by Dr.

Barry Boehm in 1981, and reflected the software

development practices of the day. Constructive Cost Model

(COCOMO) is a model that allows one to estimate the cost,

effort, and schedule when planning a new software

development activity.

COCOMO II is the extension to the original COCOMO.

The model estimates the effort (Person-Months, PM) to

develop a software system based on its projected size SIZE,

effort multipliers EMi and Scale Factors SFi

where PM is the effort expressed in personmonths,

SIZE is the projected size of the software project

(expressed in thousands of lines of code KLOC), EMi (i =

1,2….17) are effort multipliers, and SFi (i = 1,2….5) are

exponent scale factors, A is a multiplicative constant. Scale

factor is a particular characteristic of the software

development that has an exponential effect of increasing or

decreasing the amount of development effort, e.g.

precedentedness, process maturity. The seventeen Post-

Architecture effort multipliers (EM) are used to adjust the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

128

nominal effort, Person-Months, to reflect the software

product under development. These effort multipliers are

grouped into four categories (product, platform, personnel

and project) and their product is used to adjust the effort. A

complete description of COCOMO II and its predecessors

is given by Boehm [7] or in the COCOMO II model

definition manual [12].

3.2 Functional Link Artificial Neural

Network(FLANN)

FLANN architecture for predicting software development

effort is a single-layer feed forward neural network

consisting of one input layer and an output layer. The

FLANN generates output (effort) by expanding the initial

inputs (cost drivers) and then processing to the final output

layer. Each input neuron corresponds to a component of an

input vector. The output layer consists of one output

neuron that computes the software development effort as a

linear weighted sum of the outputs of the input Layer.

3.3 Architecture of FLANN:

The FLANN network can be used not only for functional

approximation but also for decreasing the computational

complexity. This method is mainly focused on functional

approximation. In the aspect of learning, the FLANN

network is much faster than other network. The primary

reason for this is that the learning process in FLANN

network has two stages and both stages can be made

efficient by appropriate learning algorithms. The use of

FLANN to estimate software development effort requires

the determination of its architecture parameters according

to the characteristics of COCOMO.

Figure 1: FLANN Architecture

A general structure of FLANN is shown in figure 1.

FLANN is a single-layer nonlinear network. Let k be the

number of input-output pattern pairs to be learned by the

FLANN. Let the input pattern vector Xk be of dimension n,

and the output yk be a scalar. The training patterns are

denoted by {Xk, yk}. A set of N basis functions

Ø(Xk)=[Ø(Xk) Ø(Xk) ••• Ø(Xk)]
T
 are adopted to expand

functionally the input signal Xk=[x1(k) x2(k) ••• xn(k)]
T
.

These N linearly independent functions map the n-

dimensional space into an N-dimensional space, that is

R
n
→R

N
, n < N.

The linear combination of these function values can be

presented in its matrix form, that is S = WØ. Here Sk =

[S1(k) S2(k) ••• Sm(k)]
T
, W is the m×N dimensional weight

matrix. The matrix Sk is input into a set of nonlinear

function ρ(•) = tanh(•) to generate the equalized output Ŷ=

[ŷ1 ŷ2 ··· ŷm]
T
, ŷj= ρ(Sj) , j =1, 2, •••, m.

The major difference between the hardware structures of

MLP and FLANN is that FLANN has only input and

output layers and the hidden layers are completely replaced

by the nonlinear mappings. In fact, the task performed by

the hidden layers in an MLP is carried out by functional

expansions in FLANN. Being similar to a MLP, the

FLANN also uses BP algorithm to train the neural

networks.

STAGE-1: The 22 cost factors of the validated dataset are

taken as the input of the network. These factors are then

expanded functionally by using the following formulas.

3.3.1 Three Types of Functional Expansion

There are three different functional expansion of the input

pattern in the FLANN. They are Chebyshev, Legendre and

Power Series, corresponding networks named as C-

FLANN, L-FLANN and P-FLANN respectively.

(1) Chebyshev polynomials are given by:

T0(x) = 1, T1(x) = x, T2(x) = 2x
2
 – 1,

T3(x) = 4x
3
 – 3x, T4(x) = 8x

3
 – 8x

2
 + 1.

Higher order Chebyshev polynomials may be generated by

the recursive formula given by:

Tn(x) = 2xTn-1(x) – Tn-2(x), n ≥ 2, (–1 ≤ x ≤ 1).

(2) Legendre polynomials are given by:

L0(x) = 1, L1(x) = x, L2(x) = (3x
2
–1)/2,

L3(x) = (5x
3
– 3x)/2, L4(x) = (35x

4
 – 30x+3)/8.

Higher order Legendre polynomials may be generated by

the recursive formula given by:

Ln(x) = [(2n–1)x Ln-1(x)–(n–1)Ln-2(x)]/n, n≥2, (–1≤ x≤ 1).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

129

(3) Power series (x =any value)

Pn(x) = x
n
, n≥0.

STAGE-2: Let each element of the input pattern before

expansion be represented as z(i),1 < i < I where each

element z(i) is functionally expanded as zn (i),1 < n < N ,

where N = number of expanded points for each input

element. In this study, N = 5 and I = total number of

features in the dataset has been taken.

Expansion of each input pattern is done as follows:

x0(z(i)) = 1, x1(z(i)) = z(i),

x2(z(i)) = 2z(i)
2
 – 1, x3(z(i)) = 4z(i)

3
 – 3z(i), x4(z(i))

= 8z(i)
3
 – 8z(i)

2
 + 1.

where, z(i), 1 < i < d , d is the set of features in the dataset.

These nonlinear outputs are multiplied by a set of random

initialized weights from the range [-0.5, 0.5] and then

summed to produce the estimated output y(k).All the

Y(k)'s are summed to get

STAGE 3: TRAINING DATA:

This output is compared with the corresponding desired

output and the resultant error for the given pattern is used

to compute the change in weight in each signal path P,

given by

where, xf j(k) is the functionally expanded input at k
th

iteration.

If there are p patterns to be applied then average change in

each weight is given by

Then the equation, which is used for weight update, is

given by

where, Wj(k) is the j
th
 weight at the kth iteration, is the

convergence coefficient, its value lies between 0 to 1 and

1<j<J, J = Md. M is defined as the number of functional

expansion unit for one element.

where, y(k) is the target output and is the estimated

output for the respective pattern and is defined as:

where, xfj is the functionally expanded input at kth

iteration and Wj(k) is the j
th

weight at the k
th

 iteration and

Wj(0) is initialized with some random value from the range

[-0.5, 0.5].

4. Experimental Results

The main purpose of this section is to compare the quality

of effort obtained by validating standard 60 NASA projects

dataset using Functional Link Artificial Neural Network

against Artificial Neural Network.

4.1 Tracking Results

4.1.1 Used Data set: To validate our approach, we used the

standard 60 NASA projects dataset [12]. The data is in

COCOMO format so it lacks the scale factors. COCOMO

measures effort in calendar months of 152 hours (and

includes development and management hours).It helps

software developers’ reason about the cost and schedule

implications of their software decisions. These cost factors

are expressed in 6 stages i.e. verylow, low, nominal, high,

veryhigh and extrahigh. We use 10-fold testing in which

each dataset is tested one by one excluding it from the

training dataset.

4.1.2 Comparative Study:The FLANN Networks are

compared with the artificial neural networks interms of

accuracy which is implemented using error graphs. Here

we have considered Root Mean Square(RMS) Error.

Figure 2 represents the comparative study obtained by

validating standard 60 NASA projects dataset using C-

FLANN against ANN in terms of Root Mean Square Error

and the C-FLANN minimizes error when compared to

ANN for software cost estimation.

Figure 2: C-FLANN versus ANN

Figure 3 represents the comparative study obtained by

validating standard 60 NASA projects dataset using L-

FLANN against ANN in terms of Root Mean Square Error

and the L-FLANN minimizes error when compared to

ANN for software cost estimation.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

130

Figure 3: L-FLANN versus ANN

Figure 4 represents the comparative study obtained by

validating standard 60 NASA projects dataset using P-

FLANN against ANN in terms of Root Mean Square Error

and the P-FLANN minimizes error when compared to

ANN for software cost estimation.

Figure 4: P-FLANN versus ANN

Figure 5 represents the comparative study obtained by

validating standard 60 NASA projects dataset using C-

FLANN, L-FLANN, P-FLANN against ANN in terms of

Root Mean Square Error.

Figure 5: Error Graph

Thus, from the above graphs it is very clear that the the

FLANN networks minimizes error to maximum extent

than artificial neural networks and decreases complexity.

5. Conclusion

Software cost estimation is critical for software project

management. Many approaches have been proposed to

estimate the cost with current project by referring to the

data collected from past projects. Our paper discusses an

approach for the validation of the dataset for training the

neural network for the software cost estimation. By

combining the mathematical approach given by Nasser

Tadayon [6] using COCOMO II as the base model with

our validation procedure we get much accurate results

when compared to the primitive ones [6]. By tracking the

results with the standard ones we calculate the error

percentile which is proved to be very efficient than

artificial neural networks and which simplifies the

operations of artificial neural networks.

6. Future Work:

Although numerous approaches have been proposed for

successful project management, planning and accurate cost

prediction. Cost estimators are continually faced with

problems stemming from the dynamic nature of the project

development process itself because software development

is considered to be an intractable procedure and inevitably

depends highly on several complex factors. In order to

optimize the trade-offs in software effort for multiple data

sets genetic algorithm [13] and fuzzy sets [14] are one of

the best emerging techniques for solving real-world

problems and giving accurate results and the performances

with these techniques are evaluated.

References
[1] http://sunset.usc.edu/csse/research/COCOMOII/cocomo_m

ain.html.

[2] Jane M. Booker, Mary M. Meyer. ELICITATION AND

ANALYSIS OF EXPERT JUDGMENT. Los Alamos

National Laboratory.

[3] JE Zull (2002). The Art of Changing the Brain: Enriching

the Practice of Teaching by Exploring the Biology of

Learning. Published: Stylus Publishing.

[4] M. Shepperd, M. Cartwright (2001), Predicting with Sparse

Data, IEEE Trans. Soft. Eng. 27, 987-998

[5] Karunanithi, N., etal (1992). Using neural networks in

reliability prediction, IEEE Software, 53-59.

[6] Nasser Tadayon. (2005). Neural Network Approach for

Software Cost Estimation. Proceedings of the International

Conference on Information Technology: Coding and

Computing (ITCC’05)

[7] Y. H. Pao, Adaptive Pattern Recognition and Neural

Networks, Reading, MA: Addison-Wesley, 1989.

[8] G.Witting, and G. Finnie, “Using Artificial Neural

Networks and Function Points to Estimate 4GL Software

Development Effort”, J.Information Systems,1994, vol.1,

no.2, pp.87-94.

[9] N. Karunanitthi, D.Whitely, and Y.K.Malaiya, “Using

Neural Networks in Reliability Prediction,” IEEE Software,

1992. vol.9, no.4, pp.53-59.

[10] B. Samson, D. Ellison, and P. Dugard, “Software Cost

Estimation Using Albus Perceptron (CMAC),” Information

and Software Technology, 1997,vol.39,pp.55-60.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

131

[11] T.M.Khoshgoftaar, E.B.Allen, and Z.Xu, “Predicting

testability of program modules using a neural network,”

Proc.3rd IEEE Symposium on Application-Specific Systems

and Sof. Eng. Technology, 2000, pp.57-62.

[12] J. Sayyad Shirabad and T. Menzies, “The PROMISE

Repository of Software Engineering Databases...” School of

Information Technology and Engineering, University of

Ottawa, Canada, 2005. Available from

http://promise.site.uottawa.ca/SERepository.

[13] Li, Y.F. Xie, M. Goh, T.N (2007). A study of genetic

algorithm for project selection for analogy based software

cost estimation. IEEE International Conference on

Industrial Engineering and Engineering Management,

1256-1260.

[14] Pedrycz, W. Peters, J.F. Ramanna, S (1999). A fuzzy set

approach to cost estimation of software projects. IEEE

Canadian Conference on Electrical and Computer

Engineering, 2, 1068-1073.

B. Tirimula Rao has Masters of

Technology in Computer Science and

Technology from Andhra University. He is

currently working as a Senior. Assistant

Professor in Computer Science and

Engineering Department at Anil

Neerukonda Institute of Technology and

Sciences. His main interests lie in Image

Processing, Computer Networks, Network Security,

Cryptography, Neural Networks, Software Cost Estimation and

Fuzzy Logic. He is a member of IEEE.

B. Sameet is a B.Tech final year student of

Department of Computer Science

Engineering, Anil Neerukonda Institute of

Technology & Sciences. His interests

include Software Cost Estimation, Image

Processing and Neural Networks.

G. Kiran Swathi is a B.Tech final year

student of Department of Computer

Science Engineering, Anil Neerukonda

Institute of Technology & Sciences. Her

interests include Software Cost Estimation,

Image Processing and Networks.

K. Vikram Gupta is a B.Tech final year

student of Department of Computer

Science Engineering, Anil Neerukonda

Institute of Technology & Sciences. His

interests include Software Cost Estimation

and Neural Networks.

Ch. Ravi Teja is a B.Tech final year

student of Department of Computer

Science Engineering, Anil Neerukonda

Institute of Technology & Sciences. His

interests include Software Cost Estimation

and Neural Networks.

S. Sumana is a B.Tech third year student

of Department of Computer Science

Engineering, Anil Neerukonda Institute of

Technology & Sciences. Her interests

include Software Cost Estimation, Wireless

Communications, Genetic algorithms and

Neural Networks.

