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Summary: 
Software engineering measurement and analysis specifically, cost 

estimation initiatives have been in the center of attention for 

many firms. The use of the expert judgment and machine learning 

techniques using neural network as well as referencing 

COCOMO approach to predict the cost of software have shown 

their strength in solving complex problems of tolerating extreme 

inputs but as the number of inputs increases the complexity of the 

neural network is maximized. A novel computationally efficient 

Functional Link Artificial Neural Network (FLANN) is proposed 

for this purpose and to reduce the computational complexity so 

that the neural net becomes suitable for on-line applications. 

FLANN do not have any hidden layer; the architecture becomes 

simple and training does not involve full back propagation. In the 

course of adversity in neural networks, this dynamic neural 

network excellently works which will initially use COCOMO 

approach to predict the cost of software and uses FLANN 

technology with backward propagation. The proposed network 

processes each and every neuron crystal clear so that the entire 

network is completely “white box”. This method gives much 

more accurate value when compared with others because our 

method involves proper training of data using back propagation 

algorithm which is used to train the network, becomes very 

simple because of absence of any hidden layer. As this method 

uses COCOMO as a base model, this model gives best estimate 

for the projects applied in Software Development Approach. 
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1. Introduction 

Software cost estimation is the prediction of hours of work 

and the number of workers needed to develop a project. 

Software cost estimation techniques fall into three general 

categories includes Algorithmic models, Expert Judgment 

and Machine Learning techniques. Among algorithmic 

models, COCOMO (Constructive Cost Model) is the most 

commonly used Algorithmic cost modeling technique 

because of its simplicity for estimating the effort in person-

months for a project at different stages. COCOMO uses 

mathematical formulae to predict project cost estimation 

[1]. COCOMO is taken as a base model for the software 

cost estimation. Expert judgment is a non-structured 

process in which experts make decisions to the technical 

problems based on knowledge and experience in order to 

give accurate results than other techniques and doesn’t 

require any previous historical data [2, 3, 4]. And the third 

technique is Machine Learning by using the neural 

networks. Neural networks has been found as one of the 

best techniques for software cost estimation [5]. Numerous 

researchers and scientists are constantly working on 

developing new software cost estimation techniques using 

neural networks [6]. 

Nasser Tadayon [6] developed an adaptive learning 

machine based on neural network to estimate the software 

cost using COCOMO model. MLP has a multi-layer 

architecture with one or more hidden layer(s) between its 

input and output layers. Node output from each layer is 

directly input to the successive layer nodes. The nodes in 

all layers (except the input layer) of the MLP contain a 

nonlinear function. The training of MLP starts with 

random initial values for its weights, and its process 

consists of a forward pass to propagate the input vector 

through the network layer by layer, and a backward pass to 

update the weights by the gradient descent rule. In the 

forward phase, the weighted sum of outputs of a lower 

layer is passed through the nonlinear function of a node in 

the upper layer to produce its output. Finally, the outputs 

of all the nodes of the network are computed. And then in 

the backward phase, the outputs of the final layer (output 

layer) are compared with the target values. The error 

obtained out of difference between them is used to update 

the weights of the network. After having trained for a 

period of time, the training error should have converged to 
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a global minimum. To overcome the complexities 

associated with multi-layer neural network, single layer 

neural network can be considered as an alternative 

approach. But the single layer neural network being linear 

in nature very often fails to map the complex nonlinear 

problems. The classification task in data mining is highly 

nonlinear in nature. So solving such problems in single 

layer feed forward artificial neural network is almost an 

impossible task. To bridge the gap between the linearity in 

the single layer neural network and the highly complex and 

computation intensive multi layer neural network the 

Functional Link Artificial Neural Network (FLANN) is 

proposed by PAO [7]. The FLANN architecture uses a 

single layer feed forward neural network and to overcome 

the linear mapping, functionally expands the input vector. 

FLANN architecture configured for software development 

effort is a two-layer feed forward network consisting of 

one input layer and one output layer. The FLANN 

generates output (effort) by expanding the initial inputs 

(cost drivers) and summing all to the final output layer. 

The activation function used here is sigmoid function. The 

output layer consists of one output neuron that computes 

the software development effort as a linear weighted sum 

of the outputs of the expanded inputs.  

In this paper, the main focus is not only investigating the 

accuracy of the prediction using FLANN network but also 

decreasing the computational complexity of the network. 

The aim of this study is to verify if FLANN network can 

be used for prediction of effort on the basis of effort 

multipliers, size of the project, scale factor used in project 

development. To empirically evaluate the training 

algorithms and to find which training algorithm is suitable 

for the estimation purpose. 

2. Cost Estimation Methods 

Prediction of software development effort using Artificial 

Neural Networks has focused mostly on the accuracy 

comparison of algorithmic models rather than on the 

suitability of the approach for building software effort 

prediction systems. 

The use of back propagation learning algorithms on a 

multilayer perceptron in order to predict development 

effort is well described by Witting and Finnie [8]. 

Karunanithi [9] reports the use of neural networks for 

predicting software reliability; including experiments with 

both feed forward and Jordon networks. Samson [10] uses 

an Albus multiplayer perceptron in order to predict 

software effort. They use Boehm’s COCOMO dataset. 

Nasser Tadayon [6] also reports the use of a neural 

network with a back propagation learning algorithm. 

However it is not clear how the dataset was divided for 

training and validation purposes. Khoshgoftaar [11] 

presented a case study considering real time software to 

predict the testability of each module from source code 

static measures. They consider Artificial Neural Networks 

as promising techniques to build predictive models. Finally 

in the last years, a great interest on the use of Artificial 

Neural Networks has grown. Artificial Neural Networks 

have been successfully applied to several problem domains. 

They can be used as predictive models because they are 

modeling techniques capable of modeling complex 

functions. 

3. Proposed Methodology 

In this work, the Functional Link Artificial Neural 

Network method is used to predict software development 

effort (in person month) using popular algorithmic method 

called COCOMO. 

3.1 COCOMO 

The original COCOMO model was first published by Dr. 

Barry Boehm in 1981, and reflected the software 

development practices of the day. Constructive Cost Model 

(COCOMO) is a model that allows one to estimate the cost, 

effort, and schedule when planning a new software 

development activity. 

COCOMO II is the extension to the original COCOMO. 

The model estimates the effort (Person-Months, PM) to 

develop a software system based on its projected size SIZE, 

effort multipliers EMi and Scale Factors SFi 

 
where PM is the effort expressed in personmonths, 

SIZE is the projected size of the software project 

(expressed in thousands of lines of code KLOC), EMi (i = 

1,2….17) are effort multipliers, and SFi (i = 1,2….5) are 

exponent scale factors, A is a multiplicative constant. Scale 

factor is a particular characteristic of the software 

development that has an exponential effect of increasing or 

decreasing the amount of development effort, e.g. 

precedentedness, process maturity. The seventeen Post-

Architecture effort multipliers (EM) are used to adjust the 
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nominal effort, Person-Months, to reflect the software 

product under development. These effort multipliers are 

grouped into four categories (product, platform, personnel 

and project) and their product is used to adjust the effort. A 

complete description of COCOMO II and its predecessors 

is given by Boehm [7] or in the COCOMO II model 

definition manual [12]. 

3.2 Functional Link Artificial Neural 

Network(FLANN) 

FLANN architecture for predicting software development 

effort is a single-layer feed forward neural network 

consisting of one input layer and an output layer. The 

FLANN generates output (effort) by expanding the initial 

inputs (cost drivers) and then processing to the final output 

layer. Each input neuron corresponds to a component of an 

input vector. The output layer consists of one output 

neuron that computes the software development effort as a 

linear weighted sum of the outputs of the input Layer. 

3.3 Architecture of FLANN: 

The FLANN network can be used not only for functional 

approximation but also for decreasing the computational 

complexity. This method is mainly focused on functional 

approximation. In the aspect of learning, the FLANN 

network is much faster than other network. The primary 

reason for this is that the learning process in FLANN 

network has two stages and both stages can be made 

efficient by appropriate learning algorithms.  The use of  

FLANN to estimate software development effort requires 

the determination of its architecture parameters according 

to the characteristics of COCOMO. 

 
Figure 1: FLANN Architecture 

 

A general structure of FLANN is shown in figure 1. 

FLANN is a single-layer nonlinear network. Let k be the 

number of input-output pattern pairs to be learned by the 

FLANN. Let the input pattern vector Xk be of dimension n, 

and the output yk be a scalar. The training patterns are 

denoted by {Xk, yk}. A set of N basis functions 

Ø(Xk)=[Ø(Xk) Ø(Xk) ••• Ø(Xk) ]
T
 are adopted to expand 

functionally the input signal Xk=[x1(k) x2(k) ••• xn(k) ]
T
. 

These N linearly independent functions map the n-

dimensional space into an N-dimensional space, that is 

R
n
→R

N
, n < N. 

The linear combination of these function values can be 

presented in its matrix form, that is S = WØ. Here Sk = 

[S1(k) S2(k) ••• Sm(k)]
T
, W is the m×N dimensional weight 

matrix. The matrix Sk is input into a set of nonlinear 

function ρ(•) = tanh(•) to generate the equalized output Ŷ= 

[ŷ1 ŷ2 ··· ŷm]
T
, ŷj= ρ(Sj) , j =1, 2, •••, m.  

The major difference between the hardware structures of 

MLP and FLANN is that FLANN has only input and 

output layers and the hidden layers are completely replaced 

by the nonlinear mappings. In fact, the task performed by 

the hidden layers in an MLP is carried out by functional 

expansions in FLANN. Being similar to a MLP, the 

FLANN also uses BP algorithm to train the neural 

networks. 

 

STAGE-1: The 22 cost factors of the validated dataset are 

taken as the input of the network. These factors are then 

expanded functionally by using the following formulas. 

3.3.1 Three Types of Functional Expansion 

There are three different functional expansion of the input 

pattern in the FLANN. They are Chebyshev, Legendre and 

Power Series, corresponding networks named as C-

FLANN, L-FLANN and P-FLANN respectively. 

 

(1) Chebyshev polynomials are given by: 

T0(x) = 1,  T1(x) = x,  T2(x) = 2x
2
 – 1, 

T3(x) = 4x
3
 – 3x, T4(x) = 8x

3
 – 8x

2
 + 1. 

Higher order Chebyshev polynomials may be generated by 

the recursive formula given by: 

Tn(x) = 2xTn-1(x) – Tn-2(x), n ≥ 2, (–1 ≤ x ≤ 1). 

 

(2) Legendre polynomials are given by: 

L0(x) = 1,  L1(x) = x,  L2(x) = (3x
2
–1)/2, 

L3(x) = (5x
3 
– 3x)/2,  L4(x) = (35x

4
 – 30x+3)/8. 

Higher order Legendre polynomials may be generated by 

the recursive formula given by: 

Ln(x) = [(2n–1)x Ln-1(x)–(n–1)Ln-2(x)]/n, n≥2, (–1≤ x≤ 1). 
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(3) Power series (x =any value) 

Pn(x) = x
n
, n≥0. 

 

STAGE-2:  Let each element of the input pattern before 

expansion be represented as z(i),1 < i < I where each 

element z(i) is functionally expanded as zn (i),1 < n < N , 

where N = number of expanded points for each input 

element. In this study, N = 5 and I = total number of 

features in the dataset has been taken. 

Expansion of each input pattern is done as follows: 

x0(z(i)) = 1,  x1(z(i)) = z(i), 

x2(z(i)) = 2z(i)
2
 – 1, x3(z(i)) = 4z(i)

3
 – 3z(i), x4(z(i)) 

= 8z(i)
3
 – 8z(i)

2
 + 1. 

where, z(i), 1 < i < d , d is the set of features in the dataset. 

These nonlinear outputs are multiplied by a set of random 

initialized weights from the range [-0.5, 0.5] and then 

summed to produce the estimated output y(k).All the 

Y(k)'s are summed to get  

 

STAGE 3: TRAINING DATA: 

This output is compared with the corresponding desired 

output and the resultant error for the given pattern is used 

to compute the change in weight in each signal path P, 

given by 

 

where, xf j(k) is the functionally expanded input at k
th

 

iteration. 

If there are p patterns to be applied then average change in 

each weight is given by 

 
Then the equation, which is used for weight update, is 

given by 

 

where, Wj(k) is the j
th
 weight at the kth iteration, is the 

convergence coefficient, its value lies between 0 to 1 and 

1<j<J, J = Md. M is defined as the number of functional 

expansion unit for one element. 

 

where, y(k) is the target output and is the estimated 

output for the respective pattern and is defined as: 

 

where, xfj is the functionally expanded input at kth 

iteration and Wj(k) is the j
th 

weight at the k
th

 iteration and 

Wj(0) is initialized with some random value from the range 

[-0.5, 0.5]. 

4. Experimental Results 

The main purpose of this section is to compare the quality 

of effort obtained by validating standard 60 NASA projects 

dataset using Functional Link Artificial Neural Network 

against Artificial Neural Network. 

4.1 Tracking Results 

4.1.1 Used Data set: To validate our approach, we used the 

standard 60 NASA projects dataset [12]. The data is in 

COCOMO format so it lacks the scale factors.  COCOMO 

measures effort in calendar months of 152 hours (and 

includes development and management hours).It helps 

software developers’ reason about the cost and schedule 

implications of their software decisions. These cost factors 

are expressed in 6 stages i.e. verylow, low, nominal, high, 

veryhigh and extrahigh. We use 10-fold testing in which 

each dataset is tested one by one excluding it from the 

training dataset. 

 

4.1.2 Comparative Study:The FLANN Networks are 

compared with the artificial neural networks interms of 

accuracy which is implemented using error graphs. Here 

we have considered Root Mean Square(RMS) Error. 

Figure 2 represents the comparative study obtained by 

validating standard 60 NASA projects dataset using C-

FLANN against ANN in terms of Root Mean Square Error 

and the C-FLANN minimizes error when compared to 

ANN for software cost estimation. 

 
Figure 2: C-FLANN versus ANN 

 

Figure 3 represents the comparative study obtained by 

validating standard 60 NASA projects dataset using L-

FLANN against ANN in terms of Root Mean Square Error 

and the L-FLANN minimizes error when compared to 

ANN for software cost estimation. 
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Figure 3: L-FLANN versus ANN 

Figure 4 represents the comparative study obtained by 

validating standard 60 NASA projects dataset using P-

FLANN against ANN in terms of Root Mean Square Error 

and the P-FLANN minimizes error when compared to 

ANN for software cost estimation. 

 

 
Figure 4: P-FLANN versus ANN 

 

Figure 5 represents the comparative study obtained by 

validating standard 60 NASA projects dataset using C-

FLANN, L-FLANN, P-FLANN against ANN in terms of 

Root Mean Square Error. 

 

 
Figure 5: Error Graph 

 

Thus, from the above graphs it is very clear that the the 

FLANN networks minimizes error to maximum extent 

than artificial neural networks and decreases complexity. 

5. Conclusion 

Software cost estimation is critical for software project 

management. Many approaches have been proposed to 

estimate the cost with current project by referring to the 

data collected from past projects. Our paper discusses an 

approach for the validation of the dataset for training the 

neural network for the software cost estimation. By 

combining the mathematical approach given by Nasser 

Tadayon [6] using COCOMO II as the base model with 

our validation procedure we get much accurate results 

when compared to the primitive ones [6]. By tracking the 

results with the standard ones we calculate the error 

percentile which is proved to be very efficient than 

artificial neural networks and which simplifies the 

operations of artificial neural networks. 

6. Future Work: 

Although numerous approaches have been proposed for 

successful project management, planning and accurate cost 

prediction. Cost estimators are continually faced with 

problems stemming from the dynamic nature of the project 

development process itself because software development 

is considered to be an intractable procedure and inevitably 

depends highly on several complex factors. In order to 

optimize the trade-offs in software effort for multiple data 

sets genetic algorithm [13] and fuzzy sets [14] are one of 

the best emerging techniques for solving real-world 

problems and giving accurate results and the performances 

with these techniques are evaluated. 
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