
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009 

 

142 

Manuscript received  June 5, 2009 

Manuscript revised  June 20, 2009 

Design of Plant Estimator Model Using Neural Network 
 

K.SURESH MANIC, R.SIVAKUMAR, V.NERTHIGA, R.AKILA,  K.BALU* 

Research Scholar, Department of Chemical Engineering, A.C. Tech, Anna University, T.N, India. 

*Professor, Department of Chemical Engineering, A.C. Tech, Anna University, T.N, India. 

  

 
Abstract 

The construction of a parameter (or state) estimator can be 

basically considered as a function approximation problem. To 

design an estimator, it is first necessary, to obtain the training 

data set ‘G’ such that, this training data set contains as much 

information as possible about a system ‘g’. Once trained 

properly, the estimator will adaptively follow the slope of ‘g’ at 

all times. In this paper, signals are processed in real time and 

combined with previous monitoring data to estimate, using the 

neural network, the process variable level in a nonlinear process 

control plant.   
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1. Introduction 

In the area of process engineering, process design 

and simulation, process supervision, control and 

estimation, and process fault detection and diagnosis rely 

on the effective processing of unpredictable and imprecise 

information. In such situations, the neural network, which 

can achieve the sophisticated level of information 

processing the brain is capable of, can excel. The neural 

networks are generally viewed as process modeling 

formalism and given the appropriate network topology, 

they are capable of characterizing nonlinear functional 

relationships [3]. Furthermore, the structure of the 

resulting neural network based process model may be 

considered generic, in the sense that little prior process 

knowledge is required in its determination. The knowledge 

about the plant dynamics and mapping characteristics is 

implicitly stored within the network.  

 

2. Design of Estimator Using Neural Network 
 

Training a neural network using input-output data from 

a nonlinear plant is considered as a nonlinear functional 

approximation problem. A generic neural network 

estimator model, used to detect a sensor failure is shown 

in figure 1. Neural networks have effectively been used in 

many applications to predict performance degradation of 

operating systems in real-time. Neural networks are data 

driven models and data under a variety of conditions need 

to be obtained. In the present work the experimental setup 

was used to gather data and the key measurable signals 

that were collected for training the network consisted of 

the inflow, outflow rate and the process value level. 

Different operating conditions were simulated and the 

change in inflow, outflow and the level were recorded. The 

data collected from the plant were pre-processed for 

normalization and fed to the  

 

 
 

 
 

    Figure 1 Neural network estimator model 
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Neural network for training. Data pre-processing was 

performed as the data obtained from the experiment in not 

ready to use for training directly. The first step in pre 

processing is to identify and remove outliers [7]. Outliers 

are treated in statistics as samples that carry high leverage. 

Outliers can result from sensor failure, misreading from 

lab tests and other possible unknown upsets to the process. 

A distinctive feature of outliers is that they have extremely 

large influence on the model. As a sequence, it is 

necessary to perform outlier detection and pretreatment 

before training the network. The presence of outliers in the 

present data set is identified, by observing the signals in 

frequency domain. The network was trained with the back 

propagation algorithm is shown in figure 2.  

 

 

 
 

Figure. 2. BPN model of the neural estimator (2-3-(5-5-5)-1) network 

 

3. Plant Description 
 

The prototype model constructed for experimental 

study consists of the cylindrical tank with a conical bottom 

open to the atmosphere at the top end. The experimental 

model is to be used, to study the performance of the 

proposed intelligent control algorithms by obtaining the 

servo and regulatory response, in the presence of 

disturbances, feedback sensor failure and sensor noise. 

Suitable signals are given to a pneumatic operated control 

valve to regulate the manipulated variable inflow. 

Disturbances in the form of random variations in outflow 

(measurable) and/ or changes in outflow coefficient are 

considered to enter the process. The schematic diagram of 

the plant is shown in figure 3. The process variable level is 

sensed by means of an RF capacitance probe and using 

suitable electronics circuitry, a voltage output is obtained. 

The analog voltage is converted into digital form using an 

8- bit A/D converter. The inflow and outflow rates are 

measured using suitable flow transmitters. 
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Figure 3. Geometric cross section of the tank. 

 

  Note: (i) „b‟ instantaneous tank height 

        (ii) „H‟ total conical tank height 

        (iii) „R‟ total radius of tank 

        (iv) „r‟ instantaneous radius 

 

 

4. Plant With Sensor Validation Model    

Using Neural Estimator 
 

  The plant failure model with the neural 

estimator to take care of feedback sensor failure is 

shown in figure 4. 

 

 
Figure. 4. Plant model with Neural Estimator to take care of 

feedback sensor failure 

 

   In the model, the decision logic determines the 

feedback signal to be provided to the controller, by 

computing the deviation between the estimator output and 

the plant output, and comparing this deviation with a 

pre-defined threshold value. It is proposed to construct 

a neural state estimator to estimate a single parameter in 

the plant „g‟. For this purpose, random excitation inputs 

were chosen to form the training data set. Excitation with 

random inputs was chosen, since, it had a better tendency 

to place the data points over a whole range of locations 

and also it is difficult to choose other inputs „u‟ that result 

in a better data set G.. A set of experiments were conducted 

with system „g‟ by varying the parameters fin(k) and fout(k) 

about its steady state values. The parameters were varied 

individually over a specified range of values to account for 
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the possible failure scenarios the system might encounter. 

The random variations in inflow rate, outflow rate about 

its steady state values (that were used as excitation inputs 

for forming the training data set) and the resultant plant 

response obtained experimentally is shown in Appendix I 

(figure A and B). The parameters fin(k) and fout(k) were 

varied between –50% and +50% of its nominal value i.e. 

fin(k) and fout(k)  [-0.5,+0.5], and the steady state 

deviations of the plant output was recorded. 

 

 

5. Training data for Neural Network 
  

  Sample values of input-output patterns obtained 

from the response and subsequently used for training the 

network is given in Table 1. . The training data should be 

spread over the input space uniformly to ensure that there 

is a regular spacing between points and not too many more 

points in one region than another [5]. This is essential to 

get a good coverage of the whole input space. The 

information as to how the mapping „g‟ is shaped in all 

regions should be implicitly presented as much as possible 

in the training data set. 

 
Table .1. Sample values of input-output patterns 

Sample 

values 

fout(k) (in%) average change in liquid 

level/sample (cms/sample) 
100% 0% 0.10625 

100% 20% 0.09 

100% 40% 0.0812 

100% 50% 0.06818 

100% 65% 0.03846 

100% 80% 0.02666 

90% 0% 0.0941176 

90% 20% 0.081632 

90% 40% 0.074 

90% 50% 0.059259 

90% 65% 0.053333 

90% 80% 0.026229 

80% 0% 0.0805 

80% 20% 0.0744186 

80% 40% 0.05927 

80% 50% 0.05317 

80% 65% 0.04 

80% 80% 0.0 

65% 0% 0.057142 

65% 20% 0.04507 

65% 40% 0.034408 

65% 50% 0.02758 

65% 65% 0.01333 

50% 0% 0.03368 

50% 20% 0.01758 

50% 30% 0.013636 

50% 40% 0.0056818 

40% 0% 0.0125 

40% 20% 0.01 

40% 30% 0.006818 

30% 0% 0.012 

30% 10% 0.006 

 

6. Experimental Response With The Neural 

Estimator 
The performance of the designed neural estimator 

was tested on the nonlinear hopper type tank by 

introducing feedback sensor failure at random time 

instants during the experimental run. The decision logic of 

figure 4 selects the neural estimator output as the feedback 

signal to the controller at those time instants when the 

deviation between the actual sensor value and the 

estimated value exceeds a set threshold. The actual plant 

response that would have been obtained with a faultless 

sensor was compared with the estimator response for 

different operating conditions such as variations in set 

point and outflow. These responses were obtained 

independently with fuzzy controller present in the forward 

path of the control loop. The ISE is calculated for both the 

servo and regulatory control with the estimator alone in 

the loop.  

 

6.1 Response to set point variations 
 

In the servo tracking experimental study on the 

real time plant, step signal with randomly varying 

magnitudes were used as the excitation input. The chosen 

variations of input signal sp(k) in the interval [-20,20] is 

shown in fig 5, for the first 500 samples. The obtained 

servo and neural estimated response of the nonlinear plant 

with the fuzzy controller in the forward path of the control 

loop is shown in Figure.6. The objective of this 

experimental study is to study the input signal adaptation 

capability of the designed neural estimator.  

 

 
 

 

 
 

 

 

      

 

 
 

 

 

Figure 5. Set point variations chosen for the experimental study 

 

 
 

 Figure 6. Measured variations of manipulated variable inflow ( %) 
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Figure 7. Measured variations of load variable outflow (%)   
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Figure  8. Actual and neural network estimated level variations of 

the real time plant with neural estimator 

 

6.2 Response to variations in load variable outflow  
 

 The regulatory response of the plant estimated 

by the neural estimator during level sensor failure, with 

the fuzzy controller in the loop is shown in figure 9. The 

perturbations introduced in the load variable outflow were 

exactly the same. 
 

 

Figure 9. Measured and neural estimated level variations of the real 

time plant with fuzzy controller in response to perturbations in load 

variable outflow. 

 

6.3 Online acquired plots 

 
  The on line acquired plots for the process 

variable of level, outflow, estimated value for regulatory 

tracking and set point tracking are shown in figure 10 and 

11. 

 

 
 
 Figure 10. On-line acquired plots showing the true process value of 

outflow (1st quadrant), Neural network estimated value (2nd 

quadrant) and fuzzy estimator o/p value (4th quadrant). (Plot 

obtained during regulatory tracking) 

 

 

 
 
Figure 11. On-line acquired plots showing the true process value of 

level (1st quadrant), Neural network estimated value (2nd quadrant) 

and the fuzzy estimator o/p value (4th quadrant). (Plot obtained 

during set point tracking) 

 

7. Comparison Results 
The experimental servo and regulatory response 

of the system with the two designed estimators were 

obtained for the following cases, and shown in table 2. 

1) Fuzzy estimator with fuzzy controller for servo 

tracking 

2) Fuzzy estimator with fuzzy controller for regulatory 

response 

3) Neural estimator with fuzzy controller for servo 

tracking 

neural estimator (during 

sensor                      

                         

failure) 
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4) Neural estimator with fuzzy controller for regulatory 

response 

 
Table 2. Normalized MSE 

 

 

8. Conclusion 
  

In this paper, signals are processed in real time and 

combined with previous monitoring data to estimate, using 

the neural network, the process variable level in a 

nonlinear process control plant. Neural Estimator and 

Fuzzy Estimator are designed for hopper type tank process. 

Experimental results were carried out for servo and 

regulatory problems, and improved results were obtained 

for Neural Estimator. 
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APPENDIX I 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A- Inflow fluctuating between 90-100% and outflow fluctuating between 40-50% after 50 samples 

B- Inflow fluctuating between 90-100% and outflow fluctuating between 50-60% after 50 samples 

C- Inflow fluctuating between 0-10% and outflow fluctuating between 70-80% after 50 samples 

D- Inflow fluctuating between 90-100% and outflow fluctuating between 90-100% after 50 samples 

 

Figure A. Combined plot of (inflow-outflow) for four different experimental conditions 
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Figure B. Combined plot of resultant level response corresponding to the case A,B,C,D of figure A 
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