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Summary 
Recognition of Bengali characters by neural network has 

received much attention already. Better preprocessing and feature 

extraction may fail to give better accuracy if the recognition 

process (includes training and testing) is incompetent. In this 

paper, some heuristics are proposed to make the back-

propagation training algorithm perform better. Finally, character 

recognition accuracy results obtained from different algorithms 

are compared. 
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1. Introduction 

A neural network performs pattern recognition by 

responding when an input vector close to a learned vector 

is presented. That is, it undergoes a training session first. If 

the training process is not proper, the network cannot 

classify new patterns as desired even with good 

preprocessing and feature extraction techniques. 

Backpropagation is a learning rule applied to train the 

network. There are methods that can significantly improve 

the performance of backpropagation algorithm as well as 

that of the network. The heuristics applied [1] are training 

algorithms with sequential update and faster convergence, 

transfer function, maximizing information content, 

normalization of the inputs and generalization of the 

trained network.  

 

The preprocessing and feature extraction techniques prior 

to the recognition process are detailed in many 

publications [2-5]. This paper is based on transitions [4] 

taken as features. Artificial neural networks are used to 

classify characters as well as for segmentation [6], [7], [8]. 

A. A. Chowdhury et. al. [6.] employs neural network as 

classifier for their extracted features. Mahmud et. al. [7] 

uses normalized slope distribution of four regions as 

features for their neural network classifier. Conversely, 

Bhttacharya et. Al. [8] proposes segmentation based on 

neural network with the benefit of not selecting a feature 

set. In this paper, only the classification part done by 

neural network is emphasized.  Section 2 describes the  

 

 

heuristics applied and section 3 contains the results. 

Finally, section 4 concludes the paper. 

2. Heuristics: 

2.1 Training algorithms 

Backpropagation algorithm uses the gradient of the 

performance function to determine how to adjust the 

weights to minimize performance. In backpropagation, the 

gradient is determined by performing computations 

backwards through the network [9]. There are many 

variations of backpropagation. Some of them provide 

faster convergence while others give smaller memory 

requirement.  

2.1.1 Backpropagation with adaptive Learning Rate:  

Picking the learning rate is a challenge. The performance 

of the standard steepest descent algorithm is very sensitive 

to the proper setting of the learning rate. The algorithm 

may oscillate and become unstable if learning rate is too 

high. Conversely, algorithm will take longer time to 

converge or may never converge if the learning rate is too 

small. One thing can be done in this regard that an optimal 

rate can be assigned. But it is not practical to determine the 

optimal value for the learning rate before training and also 

the optimal learning rate changes during the training 

process. Instead of assigning an optimal rate, learning rate 

can be made adaptive which can keep the learning step size 

as large as possible while keeping learning stable [9]. The 

learning rate is made responsive to the complexity of the 

local error surface. The procedure is like this: first, the 

initial network output and error are calculated. At each 

epoch new weights, biases, outputs and errors are 

calculated using the current learning rate. If the new error 

exceeds the old error by more than a predefined ratio, the 

new weights and biases are discarded and the learning rate 

is decreased. If the new error is less than the old error, the 

learning rate is increased. The learning rate is increased 

but only to the extent that the network can learn without 
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large error increases. When the error gets increased, 

learning rate gets decreased until stable learning resumes.  

2.1.2 Backpropagation with momentum: 

Momentum accelerates the descent to the minimum of the 

error surface [9]. Normally the backpropagation uses the 

weight change proportional to the negative gradient of 

current error. It uses only the first derivative of that error 

with respect to the weight. Weight changes can be 

estimated in a better way if information of second 

derivative is used. Momentum method is such a method 

where both the weight change at the previous step and the 

gradient at the current step are used to determine the 

weight change for the current step. Momentum allows the 

network to ignore small features in the error surface. 

Without momentum a network may get stuck in a shallow 

local minimum. With momentum a network can slide 

through such a minimum. Thus it gives faster convergence. 

2.1.3 Conjugate Gradient Algorithms: 

As discussed earlier, the basic backpropagation algorithm 

adjusts the weights in the steepest descent direction 

(negative of the gradient). Though performance function 

decreases most rapidly in this direction, this does not 

necessarily produce the fastest convergence. In the 

conjugate gradient algorithms a search is performed along 

conjugate directions, which produces generally faster 

convergence than steepest descent directions [9]. Some 

conjugate gradient algorithms are: Fletcher-Reeves Update, 

Polak-Ribiere update, Powell-Beale restarts and scaled 

conjugate gradient [10]. The last one avoids the time-

consuming line search. 

2.2 Antisymmetric activation function 

Learning is faster if the activation or transfer function is 

antisymmetric [1]. Figure 1 shows an antisymmetric 

function in the form of hyperbolic tangent. For the learning 

time to be minimized, the use of nonzero mean inputs 

should be avoided. If the activation function is 

nonsymmetric, the output of each neuron is restricted to 

the value 0 and 1 (limiting value), shown in figure 2. This 

introduces systematic biases for the neurons located in the 

layers other than input layer. For the antisymmetric case 

the values can vary from -1 to 1 in which case it is likely to 

have the mean zero.  

 

Fig. 1  Antisymmetric activation function 

 

 
Fig. 2   Non-symmetric activation function 

 

2.3 Maximizing information content 

As a general rule, every training example presented to the 

back-propagation algorithm should be chosen such that 

they contain maximum possible information [11]. This is 

done by introducing a training set that results largest 

training error (in this case bad handwriting) and by the use 

of a set that is radically different from all those previously 

used (different fonts for the same character). 

2.4 Target values 

Desired response jd  of neuron j at the output layer 

should be offset by some amount   away from the 

limiting value of the transfer function (i.e.  ad
j  for 

limiting value of +a and   ad j  for limiting value 

of a  to prevent the free parameters of the network being 

driven to infinity [1]. If this happens, the hidden neurons 

will be saturated slowing down the learning process. This 

is done in the opposite way, i.e. by making the limiting 

values greater than target values. 
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2.5 Normalization of the inputs 

Each input variable should have zero-mean [11]. If input 

variables are consistently positive, then synaptic weights of 

a neuron in the first hidden layer can only increase or 

decrease together. While changing direction, the weight 

vector of that neuron will go zigzagging through the error 

surface which is slow. Hence inputs undergo the following 

steps: mean removal, decorrelation.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3   Input data with non-zero mean 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4  Mean removed input data 

 

Figure 3 shows the inputs having a non-zero mean and 

figure 4 shows the data after removing the mean. 

Decorrelation is done by principal component analysis. In 

pattern recognition, the dimension of the input vector is 

large, but the components of the vectors are highly 

correlated (redundant). It is useful in this situation to 

reduce the dimension of the input vectors. Principal 

component analysis (PCA) is an effective procedure for 

performing this operation [12]. This technique has three 

effects: it decorrelates the components of the input vectors; 

it orders the resulting principal components, so that those 

with the largest variation come first; and it eliminates those 

components that contribute the least to the variation in the 

data set.  

 

2.6 Generalization 

The error on the training set is driven to a very small value 

after the network is being trained, but when new data is 

presented to the network the error is large. The network 

has memorized the training examples, but it has not 

learned to generalize to new situations. This happens when 

the network learns too many input-output examples. It may 

do so by finding a feature present in the training set but not 

in the test set. This situation is overfitting or overtraining. 

When the network is overtrained, it loses the ability to 

generalize.  

 

It is very difficult to know when to stop training to prevent 

overfitting. Well, the onset of the overfitting may be 

identified through the use of cross-validation [13]. The 

training set is sub-divided into three sub-sets. The first 

subset is the training set, which is used for computing the 

gradient and updating the network weights and biases as 

usual. The second subset is the validation set. The error on 

the validation set is monitored during the training process. 

The validation error will normally decrease during the 

initial phase of training, as does the training set error. 

When the network begins to overfit the data, the error on 

the validation set will typically begin to rise. When the 

validation error increases for a specified number of 

iterations, the training is stopped. The test set error is used 

to compare different models. If the error in the test set 

reaches a minimum at a significantly different iteration 

number than the validation set error, this may indicate a 

poor division of the data set. The whole process is referred 

to early stopping [12], [14].  

 

3. Results 

The network is trained with and without generalization. 

Figure 5 and 6 shows those two types of training. In figure 

5, the curved line is the performance of the training 

algorithm and straight one is the goal-line. It stopped 

training at 182 epochs with a performance 9.971e-006, 

while our desired goal was 1e-005. Another training 

procedure that can generalize the network to new data is 

shown in figure 6. To check the progress of training; the 

training, validation and test errors are plotted.  

 

In Figure 6, the training stopped after 100 iterations 

because the validation error increased. The result is 

reasonable, since the test set error and the validation set 

error have similar characteristics as discussed in section 6, 

and it doesn’t appear that any significant overfitting has 

occurred. One interesting but expected thing is that the 
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training stopped at 100 epochs which is earlier than the 

previous one. Hence the name early stopping. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Training without generalization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Training with generalization 

 

Bengali numerical characters are given to the previously 

trained network. Table 1 has the results for training 

without heuristics applied and table 2 has results for 

training with heuristics.  

 

We can see that the accuracy rate has increased by a small 

amount after applying heuristics for Powell-Beale restarts 

and Polak-Ribiere update algorithms. We assume that our 

classifier has certain lacking during the building process. If 

the classifier was configured properly, it would give much 

better result.  

Table 1: Accuracy without heuristics 

Algorithm Perform

ance 

Error 

Epoch Mis-

classification 

Accuracy 

% 

Backpropagation 

with momentum 

0.021 1251 115 83.57 

Backpropagation 

with adaptive 

learning rate 

0.07 102 180 74.29 

Powell-Beale 

restarts 

0.0121 80 86 87.26 

Polak-Ribiere 

update 

0.02 74 95 86.43 

Scaled Conjugate 

Gradient 

0.021 150 110 84.29 

Table 2: Accuracy with heuristics applied 

Algorithm Perfor

mance 

Error 

Epoch Mis-

classification 

Accuracy 

% 

Backpropagation 

with momentum 

0.40114 9163 102 85.43 

Backpropagation 

with adaptive 

learning rate 

0.69554 62 224 68 

Powell-Beale 

restarts 

0.40538

8 

65 78 88.86 

Polak-Ribiere 

update 

0.4180 43 84 88.00 

Scaled Conjugate 

Gradient 

0.399 81 97 86.14 

 

For training the network, different training algorithms are 

applied and their responses are compared. It is found that 

the fastest algorithm is Polak-Ribiere update which is a 

conjugate gradient algorithm. It converges within 43 

epochs and accuracy is also good. Powell-Beale restarts 

algorithm is stopped at 65 epoch but it has higher accuracy. 
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4. Conclusions and future work 

Design of a neural network is more of an art than a science. 

This is because there are many factors involved in the 

design process. Only an optimized design can give better 

result for a particular problem. In this paper, heuristics are 

applied to improve the performance of the training 

algorithm. Training by backpropagation can be improved 

with the help of heuristics. From the tables the 

improvement is evident. Accuracy rates are higher in the 

second table. There are some other algorithms that can be 

applied here and results can be compared. This work is 

totally based on the feature extraction technique called 

transitions [4]. Accuracy can be improved if better 

preprocessing, feature extraction [2],[3],[5] and 

segmentation techniques are applied.  This is left for the 

future work. 
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