
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

154

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

Enhancing Bengali character recognition process applying

heuristics on Neural Network

Golam Sarowar, M.A. Naser , S.M. Nizamuddin, Nafiz I.B. Hamid, Adnan Mahmud

Islamic University of Technology (IUT), Gazipur 1704, Bangladesh

Summary
Recognition of Bengali characters by neural network has

received much attention already. Better preprocessing and feature

extraction may fail to give better accuracy if the recognition

process (includes training and testing) is incompetent. In this

paper, some heuristics are proposed to make the back-

propagation training algorithm perform better. Finally, character

recognition accuracy results obtained from different algorithms

are compared.

Key words:
Character recognition, neural network, backpropagation.

1. Introduction

A neural network performs pattern recognition by

responding when an input vector close to a learned vector

is presented. That is, it undergoes a training session first. If

the training process is not proper, the network cannot

classify new patterns as desired even with good

preprocessing and feature extraction techniques.

Backpropagation is a learning rule applied to train the

network. There are methods that can significantly improve

the performance of backpropagation algorithm as well as

that of the network. The heuristics applied [1] are training

algorithms with sequential update and faster convergence,

transfer function, maximizing information content,

normalization of the inputs and generalization of the

trained network.

The preprocessing and feature extraction techniques prior

to the recognition process are detailed in many

publications [2-5]. This paper is based on transitions [4]

taken as features. Artificial neural networks are used to

classify characters as well as for segmentation [6], [7], [8].

A. A. Chowdhury et. al. [6.] employs neural network as

classifier for their extracted features. Mahmud et. al. [7]

uses normalized slope distribution of four regions as

features for their neural network classifier. Conversely,

Bhttacharya et. Al. [8] proposes segmentation based on

neural network with the benefit of not selecting a feature

set. In this paper, only the classification part done by

neural network is emphasized. Section 2 describes the

heuristics applied and section 3 contains the results.

Finally, section 4 concludes the paper.

2. Heuristics:

2.1 Training algorithms

Backpropagation algorithm uses the gradient of the

performance function to determine how to adjust the

weights to minimize performance. In backpropagation, the

gradient is determined by performing computations

backwards through the network [9]. There are many

variations of backpropagation. Some of them provide

faster convergence while others give smaller memory

requirement.

2.1.1 Backpropagation with adaptive Learning Rate:

Picking the learning rate is a challenge. The performance

of the standard steepest descent algorithm is very sensitive

to the proper setting of the learning rate. The algorithm

may oscillate and become unstable if learning rate is too

high. Conversely, algorithm will take longer time to

converge or may never converge if the learning rate is too

small. One thing can be done in this regard that an optimal

rate can be assigned. But it is not practical to determine the

optimal value for the learning rate before training and also

the optimal learning rate changes during the training

process. Instead of assigning an optimal rate, learning rate

can be made adaptive which can keep the learning step size

as large as possible while keeping learning stable [9]. The

learning rate is made responsive to the complexity of the

local error surface. The procedure is like this: first, the

initial network output and error are calculated. At each

epoch new weights, biases, outputs and errors are

calculated using the current learning rate. If the new error

exceeds the old error by more than a predefined ratio, the

new weights and biases are discarded and the learning rate

is decreased. If the new error is less than the old error, the

learning rate is increased. The learning rate is increased

but only to the extent that the network can learn without

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

155

large error increases. When the error gets increased,

learning rate gets decreased until stable learning resumes.

2.1.2 Backpropagation with momentum:

Momentum accelerates the descent to the minimum of the

error surface [9]. Normally the backpropagation uses the

weight change proportional to the negative gradient of

current error. It uses only the first derivative of that error

with respect to the weight. Weight changes can be

estimated in a better way if information of second

derivative is used. Momentum method is such a method

where both the weight change at the previous step and the

gradient at the current step are used to determine the

weight change for the current step. Momentum allows the

network to ignore small features in the error surface.

Without momentum a network may get stuck in a shallow

local minimum. With momentum a network can slide

through such a minimum. Thus it gives faster convergence.

2.1.3 Conjugate Gradient Algorithms:

As discussed earlier, the basic backpropagation algorithm

adjusts the weights in the steepest descent direction

(negative of the gradient). Though performance function

decreases most rapidly in this direction, this does not

necessarily produce the fastest convergence. In the

conjugate gradient algorithms a search is performed along

conjugate directions, which produces generally faster

convergence than steepest descent directions [9]. Some

conjugate gradient algorithms are: Fletcher-Reeves Update,

Polak-Ribiere update, Powell-Beale restarts and scaled

conjugate gradient [10]. The last one avoids the time-

consuming line search.

2.2 Antisymmetric activation function

Learning is faster if the activation or transfer function is

antisymmetric [1]. Figure 1 shows an antisymmetric

function in the form of hyperbolic tangent. For the learning

time to be minimized, the use of nonzero mean inputs

should be avoided. If the activation function is

nonsymmetric, the output of each neuron is restricted to

the value 0 and 1 (limiting value), shown in figure 2. This

introduces systematic biases for the neurons located in the

layers other than input layer. For the antisymmetric case

the values can vary from -1 to 1 in which case it is likely to

have the mean zero.

Fig. 1 Antisymmetric activation function

Fig. 2 Non-symmetric activation function

2.3 Maximizing information content

As a general rule, every training example presented to the

back-propagation algorithm should be chosen such that

they contain maximum possible information [11]. This is

done by introducing a training set that results largest

training error (in this case bad handwriting) and by the use

of a set that is radically different from all those previously

used (different fonts for the same character).

2.4 Target values

Desired response jd of neuron j at the output layer

should be offset by some amount  away from the

limiting value of the transfer function (i.e.  ad
j for

limiting value of +a and  ad j for limiting value

of a to prevent the free parameters of the network being

driven to infinity [1]. If this happens, the hidden neurons

will be saturated slowing down the learning process. This

is done in the opposite way, i.e. by making the limiting

values greater than target values.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

156

2.5 Normalization of the inputs

Each input variable should have zero-mean [11]. If input

variables are consistently positive, then synaptic weights of

a neuron in the first hidden layer can only increase or

decrease together. While changing direction, the weight

vector of that neuron will go zigzagging through the error

surface which is slow. Hence inputs undergo the following

steps: mean removal, decorrelation.

Fig. 3 Input data with non-zero mean

Fig. 4 Mean removed input data

Figure 3 shows the inputs having a non-zero mean and

figure 4 shows the data after removing the mean.

Decorrelation is done by principal component analysis. In

pattern recognition, the dimension of the input vector is

large, but the components of the vectors are highly

correlated (redundant). It is useful in this situation to

reduce the dimension of the input vectors. Principal

component analysis (PCA) is an effective procedure for

performing this operation [12]. This technique has three

effects: it decorrelates the components of the input vectors;

it orders the resulting principal components, so that those

with the largest variation come first; and it eliminates those

components that contribute the least to the variation in the

data set.

2.6 Generalization

The error on the training set is driven to a very small value

after the network is being trained, but when new data is

presented to the network the error is large. The network

has memorized the training examples, but it has not

learned to generalize to new situations. This happens when

the network learns too many input-output examples. It may

do so by finding a feature present in the training set but not

in the test set. This situation is overfitting or overtraining.

When the network is overtrained, it loses the ability to

generalize.

It is very difficult to know when to stop training to prevent

overfitting. Well, the onset of the overfitting may be

identified through the use of cross-validation [13]. The

training set is sub-divided into three sub-sets. The first

subset is the training set, which is used for computing the

gradient and updating the network weights and biases as

usual. The second subset is the validation set. The error on

the validation set is monitored during the training process.

The validation error will normally decrease during the

initial phase of training, as does the training set error.

When the network begins to overfit the data, the error on

the validation set will typically begin to rise. When the

validation error increases for a specified number of

iterations, the training is stopped. The test set error is used

to compare different models. If the error in the test set

reaches a minimum at a significantly different iteration

number than the validation set error, this may indicate a

poor division of the data set. The whole process is referred

to early stopping [12], [14].

3. Results

The network is trained with and without generalization.

Figure 5 and 6 shows those two types of training. In figure

5, the curved line is the performance of the training

algorithm and straight one is the goal-line. It stopped

training at 182 epochs with a performance 9.971e-006,

while our desired goal was 1e-005. Another training

procedure that can generalize the network to new data is

shown in figure 6. To check the progress of training; the

training, validation and test errors are plotted.

In Figure 6, the training stopped after 100 iterations

because the validation error increased. The result is

reasonable, since the test set error and the validation set

error have similar characteristics as discussed in section 6,

and it doesn’t appear that any significant overfitting has

occurred. One interesting but expected thing is that the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

157

training stopped at 100 epochs which is earlier than the

previous one. Hence the name early stopping.

Fig. 5 Training without generalization

Fig. 6 Training with generalization

Bengali numerical characters are given to the previously

trained network. Table 1 has the results for training

without heuristics applied and table 2 has results for

training with heuristics.

We can see that the accuracy rate has increased by a small

amount after applying heuristics for Powell-Beale restarts

and Polak-Ribiere update algorithms. We assume that our

classifier has certain lacking during the building process. If

the classifier was configured properly, it would give much

better result.

Table 1: Accuracy without heuristics

Algorithm Perform

ance

Error

Epoch Mis-

classification

Accuracy

%

Backpropagation

with momentum

0.021 1251 115 83.57

Backpropagation

with adaptive

learning rate

0.07 102 180 74.29

Powell-Beale

restarts

0.0121 80 86 87.26

Polak-Ribiere

update

0.02 74 95 86.43

Scaled Conjugate

Gradient

0.021 150 110 84.29

Table 2: Accuracy with heuristics applied

Algorithm Perfor

mance

Error

Epoch Mis-

classification

Accuracy

%

Backpropagation

with momentum

0.40114 9163 102 85.43

Backpropagation

with adaptive

learning rate

0.69554 62 224 68

Powell-Beale

restarts

0.40538

8

65 78 88.86

Polak-Ribiere

update

0.4180 43 84 88.00

Scaled Conjugate

Gradient

0.399 81 97 86.14

For training the network, different training algorithms are

applied and their responses are compared. It is found that

the fastest algorithm is Polak-Ribiere update which is a

conjugate gradient algorithm. It converges within 43

epochs and accuracy is also good. Powell-Beale restarts

algorithm is stopped at 65 epoch but it has higher accuracy.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

158

4. Conclusions and future work

Design of a neural network is more of an art than a science.

This is because there are many factors involved in the

design process. Only an optimized design can give better

result for a particular problem. In this paper, heuristics are

applied to improve the performance of the training

algorithm. Training by backpropagation can be improved

with the help of heuristics. From the tables the

improvement is evident. Accuracy rates are higher in the

second table. There are some other algorithms that can be

applied here and results can be compared. This work is

totally based on the feature extraction technique called

transitions [4]. Accuracy can be improved if better

preprocessing, feature extraction [2],[3],[5] and

segmentation techniques are applied. This is left for the

future work.

References
[1] Haykin Simon, “Neural networks: A comprehensive

foundation”, Chapter 4, Pearson Education, 2003.

[2] Angshul Majumdar, "Bangla Basic Character Recognition

Using Digital Curvelet Transform", Journal of Pattern

Recognition Research, 2007.

[3] U. Pal, T. Wakabayashi and F. Kimura, “Handwritten

Bangla Compound Character Recognition using Gradient

Feature”, 10th International Conference on Information

Technology, 2007.

[4] Gader, P. D., Mohamed, M., and Chiang, J. -H., 1997,

“Handwritten Word Recognition with Character and Inter-

Character Neural Networks”, IEEE transactions on systems,

man, and cybernetics 27, pp. 158–164.

[5] Md. Abdur Rahman, Abdulmotaleb El Saddik, “Modified

Syntactic Method to Recognize Bengali Handwritten

Character”, IEEE transaction on instrumentation and

measurement, vol. 56, no. 6, December 2007.

[6] A. A. Chowdhury, E. Ahmed, S. Ahmed, S. Hossain and C.

M. Rahman, "Optical Character Recognition of Bangla

Characters using neural network: A better approach". 2nd

ICEE, 2002.

[7] J. U. Mahmud, M. F. Raihan and C. M. Rahman, "A

Complete OCR System for Continuous Bangla Characters",

Proc. of Conf. on Convergent Tech. for Asia Pacific, 2003.

[8] U. Bhattacharya, B.B. Chaudhuri and S.K. Parui, “An MLP

based segmentation method without selecting a feature set”,

Image and Vision Computing 15 (1997) page 937-948.

[9] Rajsekaran, G.A Vijayalakshmi Pai, “Neural Networks,

Fuzzy Logic, and Genetic Algorithms, Synthesis and

Applications”, Prentice-Hall India, page 34-86.

[10] http://www.mathworks.com/access/helpdesk/help/toolbox/n

net/index.html?/access/helpdesk/help/toolbox/nnet/&http://

www.mathworks.com/products/neuralnet/technicalliterature.

html

[11] LeCun, Y., “Efficient Learning and Second-order Methods”,

A Tutorial at NIPS 93, Denver, 1993.

[12] http://www.mathworks.com/access/helpdesk/help/toolbox/n

net/index.html?/access/helpdesk/help/toolbox/nnet/function.

html&http://www.mathworks.com/products/neuralnet/

[13] B. Yegananarayana, “Artificial Neural Network”. Prentice-

Hall India

[14] Amari, S., N. Murata, K.R.Muller, M.Finke, and H. Yang,

1996a. “Statistical theory of overtraining-Is cross-validation

asymptotically effective”, Advances in Neural Information

Processing Systems, vol. 8, pp-176-182, Cambridge, MA:

MIT Press.

http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/index.html?/access/helpdesk/help/toolbox/nnet/&http://www.mathworks.com/products/neuralnet/technicalliterature.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/index.html?/access/helpdesk/help/toolbox/nnet/&http://www.mathworks.com/products/neuralnet/technicalliterature.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/index.html?/access/helpdesk/help/toolbox/nnet/&http://www.mathworks.com/products/neuralnet/technicalliterature.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/index.html?/access/helpdesk/help/toolbox/nnet/&http://www.mathworks.com/products/neuralnet/technicalliterature.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/index.html?/access/helpdesk/help/toolbox/nnet/function.html&http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/index.html?/access/helpdesk/help/toolbox/nnet/function.html&http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/index.html?/access/helpdesk/help/toolbox/nnet/function.html&http://www.mathworks.com/products/neuralnet/

