
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

173

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

Refactoring-based Executable UML Transformation

for Embedded System Design

Nurul Azma Zakaria, Noriko Matsumoto, Norihiko Yoshida

Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan

Summary
Typical stepwise refinement is widely used in design process, but

due to increased design complexity a new way of designing is

necessary. In this paper, we present a system-level design

methodology using Executable-UML (xUML) and Model Driven

Architecture (MDA) concepts. This proposed research aims at

developing a language-independent framework for stepwise

refinement by refactoring of xUML models. We investigate a

transformation mechanism from an abstract specification model

to a concrete implementation model in xUML representation

exploiting the MDA capabilities in a step-by-step manner. Our

modeling framework uses selected subsets of UML diagram

types with action semantics. We show the application of our

work by several design examples including GSM Vocoder design.

As a result, we obtained executable models and a set of well-

defined refactoring rules to accelarate design processes and

improve product qualities of not only SoC but embedded systems

in general.

Key words:
Executable-UML, Stepwise Refinement, System-Level Design,

Model Driven Architecture, Refactoring

1. Introduction

The increasing design complexity coupled with requests

for shorter development timeframe have produced high

pressures in the design of System-on-Chip (SoC) or

embedded systems in general. This leads to exploration of

new ways or methods of designing SoC from various

aspects. In order to cope with this issue, one accepted

approach by the design community is to raise the level of

abstraction of the design process to a higher level called

system-level. At the system-level, there is no difference

between hardware and software. Great productivity gains

can be achieved by starting design from this level. In

system-level design, there are several programming

languages called system-level description languages,

proposed to facilitate the design methodology such as

SpecC [20], SystemC [22] and SystemVerilog [23]. The

choice of the language used depends on various factors.

However, all of these methodologies are very dependent

on the language and platform it used and this will restrict

the design flexibility. A new way is needed to describe an

entire system. Thus, what we need is a language-

independent framework to increase the design portability.

The same issue has already been addressed in Software

Engineering area and Model Driven Architecture (MDA)

[12, 16] is proposed. The application of MDA concepts are

being actively researched in this area and have received a

lot of attention in recent years from industry and academic

communities. With MDA, an abstract specification model

is defined in the form of Executable-UML (xUML) [9, 12,

16], and transformed into a concrete implementation model

with specific platform information and constraints, and

then is translated into a program code. We found that

model transformation employed in MDA is equivalent to

transformation of stepwise refinement in system-level

design. Therefore, we believe that the MDA concepts can

also be applied to system-level design. Hence in our

research, we investigate and organize a design

methodology of stepwise refinement in system-level design

with xUML, where xUML is the basis of MDA concept.

There are already some related studies on application of

UML or MDA to system design. Brown [3] and Sunye et

al. [21] discussed general MDA principles and practice.

There are also researches applying MDA to SoC design or

embedded system design such as Boulet et al. [2], De

Jong [4], Mellor et al. [13], Riccobene et al. [17] and

Schattkowsky and Muller [19]. In addition to that, the

roles of UML or xUML in various areas of system-level

design have been explored and investigated by Katayama

[8], Martin and Muller [11], Muller et al. [14], Nguyen et

al. [15], Riccobene et al. [18] and Tan et al. [24].

However, there has been none yet on xUML

transformation based on refactoring for system-level

design.

Thus, our research addresses the transformation of xUML

models in a step-by-step manner from an abstract model to

a more refined and concrete model. Our goal is to

accomplish a step-by-step transformation in xUML from

an abstract specification model of the system under design

and eventually creates a more refined and concrete

implementation model ready for manufacturing. We

perform the xUML transformations by using the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

174

refactoring technique [5, 26] and generate a well-defined

set of refactoring rules to guide design process. In this

paper, we show how this proposed approach is carried out

using some design examples. The construction of the work

presents in this paper is part of our ongoing effort to

develop a full design of language-independent framework

for xUML-based stepwise refinement. Fig. 1 illustrates the

flow of proposed approach in comparison with typical

system-level design and MDA flow.

Fig. 1 Proposed design flow.

The outcomes of our proposed research will benefit the

system-level design area in general where it will help to

improve the existing system design methodology and

increase design portability. It also produces a richer and

more useful documentation of a well-defined stepwise

refinement process. For system designers, this approach

provides a simplified design process based on meticulous,

clear, and structured models at each design phase which

enables quick exploration and synthesis. This will reduce

the amount of resources and the man power required to

complete any design. Furthermore, with a clear and

detailed set of refactoring rules which acts as a guidance in

designing, the design process can easily be understood,

thus low designer expertise is required.

The remainder of this paper is organized as follows.

Section 2 and Section 3 provide a brief introduction to

stepwise refinement and refactoring technique. Section 4

explains on MDA and xUML concepts in general. Section

5 is the key part of this paper, gives an overview of

modeling in xUML, application of refactoring rules and

transformation by examples. Then, Section 6 describes the

real system design example. Finally, the last section draws

main conclusion and introduces future work.

2. Stepwise Refinement

The stepwise refinement process is a design methodology

for system-level design. We adopted the SpecC design

methodology [6, 7] in the system-level design from several

proposals, because it has been widely accepted and has

been a fundamental part of SystemC and SystemVerilog.

The SpecC system-level design methodology starts with

the generation of the initial specification model that

describes the functionality as well as other constraints of

the intended design. This is the highest level of abstraction

model which ignores any implementation details.

The design flow of the SpecC methodology consists of two

main tasks namely the architecture exploration and the

communication synthesis tasks. The architecture

exploration tasks include design steps of allocation,

partitioning of behaviours, channels and variables, and

scheduling. This is an iterative process generating an

architecture model which represents a refinement of the

specification model. Then, it is followed by the

communication synthesis task which refines the abstract

communication between behaviours in the architecture

model into an implementation. The tasks of

communication synthesis includes the insertion of

communication protocols, synthesis of interfaces and

transducers, and inlining of protocols into synthesizable

components. In the resulting communication model,

communication is described in terms of actual wires and

timing relationships are described by bus protocols. Next,

the result of the synthesis flow is handed off to the backend

tool for generation of final implementation model. At this

level, the model represents a clock-cycle accurate

description of the whole system. This description with a

concrete level of abstraction serves as the basis for

manufacturing of the system.

3. Refactoring

Refactoring [5, 26] is a disciplined technique for

restructuring an existing body of code, altering its internal

structure without changing its external behaviour. It is a

series of small behaviour-preserving transformations. Each

transformation called refactoring does little, but a sequence

of transformations can produce significant restructuring.

Since each refactoring is small, it is less likely to go wrong.

The system is also kept fully working after each small

refactoring, reducing the chances that a system can get

seriously broken during the restructuring. Refactoring is

also structured as a practical method that improves

maintainability, readability, reusability and modularity in

later design phase by restructuring a system.

For the above-mentioned reasons, we applied refactoring

technique to our transformation process. A set of

refactoring rules is developed for each transformation to

guide and support the preservation of the original

behaviour of the system in the design process.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

175

4. Model Driven Architecture and

Executable-UML

Model Driven Architecture (MDA) introduces a

transformation process from an abstract specification of

“platform independent model” (PIM) to a corresponding

“platform specific model” (PSM). PIM captures all

information or requirements required for the system. It

only defines the behaviors and functions of a system,

which are independent from its implementation platform

such as programming language, middleware and library.

PSM comprises all the functionality expressed in the PIM

with the added design concerns of the realizing platform

such as translation into a specific program code

implementation. A different platform yields a different

PSM from a single PIM, for example, Java-based or C++-

based.

Models in MDA are formal representation of the function,

behavior and structure of the system. Each model is

represented in the form of executable version of UML

(Unified Modeling Language) [1, 25], i.e. Executable-

UML (xUML) [12, 16]. It is a selected subset of the UML

notation with the addition of fully defined execution

semantics of UML which enable executable modeling.

Some notations use in xUML acts as an informal notation

such as use cases and activity diagrams. These diagrams

are included in order to provide informal description and

assist understanding and development of the system. The

core and formal part of xUML comprises the class diagram

and the state machine diagram. The former describes the

static structure of the system, while the latter defines the

dynamic behavior. Within the state machine diagram, the

action semantics of the model is defined using action

language. In this research, Action Specification Language

(ASL) is adopted [9] so as to allow model execution.

5. Modeling in Executable-UML

Our modeling approach is based on xUML which mainly

consists of class and state machine diagrams. Class

diagrams are predominantly used to describe the static

structure of a system while state machine diagrams depict

the dynamic behaviour of a class. A set of refactoring rules

is created to guide the modeling process and a complete

model is validated and tested by simulation using iUML

[9], a MDA compliance tool.

5.1 Refactoring Rules in Executable-UML

A set of refactoring rules is generated and as we continue

working on this research, this list will be expanded in the

future. Currently, the work completed is up to 3(a) task.

The rest of the tasks will be left for future works.

1. Specification model

a) Separation of concerns

 Define channel class to represent

communication

 Define class to represent behaviour

 Define data and relationship

b) Identify level of hierarchy for related

behaviours, data and communication

c) Create state machine to explicitly model the

semantic of the design

2. Architecture exploration

a) Allocation and behaviour partitioning

 Introduce additional level of hierarchy to

existing class diagram

 Identify class for processing elements

(PEs)

 Add relationship to behaviour classes

 Group behaviour classes to related PEs

classes

 Add behaviour and channel classes to

introduce synchronization

 Move channel classes to represent global

channels

b) Variable partitioning

 Move variables into related classes

 Add communication channel classes

 Update variable accesses

c) Scheduling

 Serialize behaviour classes' hierarchy

3. Communication synthesis

a) Bus allocation and channel partitioning

 Add another level of hierarchy to

existing class diagram to model bus

structure

 Bind channel classes to buss classes and

group communication

 Renewal of access towards channel

classes

b) Protocol insertion

 Insert protocol code

 Generate application layer

 Replace bus channels

c) Transducer synthesis

 Insert transducers

 Encapsulate with wrappers

 Synthesis transducer code

d) Inlining

 Inline communication methods

 Optimize

4. Backend

a) Hardware synthesis

b) Software development

c) Interface synthesis

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

176

5.2 Transformation Examples

In this section, we demonstrate some examples to show the

representation of the models in SpecC which are translated

and transformed into xUML models by applying the

refactoring rules listed above.

Example 1: Representation of Specification Model

Fig. 2 depicts a simple yet typical example design of the

specification model which consists of behaviour, channel

and variable in xUML diagram. Each behaviour and

channel is represented by a class and the relationship is

depicted by association between the classes. Fig. 3 depicts

the state machine diagram which relates to class

organization shown in Fig. 2. This type of state machine

diagram is attached to every class presented in the class

diagram.

Fig. 2 xUML specification model.

Fig. 3 State diagram of Main class.

In our research, generated models are simulated for design

validation and we used iUML simulation suite [9, 16] for

simulation process. The model execution is started by

executing the initialisation sequence segment which creates

all classes and associations described in class diagram.

Then, the startMain operation of the Main class as shown

in Fig. 2 is called in order to generate the first start signal

to the first state of Main class in state machine diagram

which is WaitStart as depicted in Fig. 3. The startSignal

activates the startMain operation of desired class. The

startMain operation consists of execution statement which

then generates the following signal to WaitStart state of

other relevant classes for further execution. Once the

desired process is completed, returnMain operation is

instantiated to generate returnSignal to the respective

classes which at the end activates the returnMain operation

of Main class and eventually endSignal is generated in

order to stop the execution. The complete execution

involves the combination of the different classes outlined

in the class and state machine diagrams for each class. At

the end of the simulation process, results such as output

messages are displayed on the application window. Data

tables and signal traces window can also be viewed for

design conformation. The simulation process explained

above is generally the same for every model including the

execution of the following examples describe in later

sections.

Example 2: Allocation and Behaviour Partitioning

The second example describes the xUML transformation

involved in allocation and behaviour partitioning task

which corresponds to transformation decribed in SpecC.

This task determines the allocation of a set of system

components in the specification model, partitions the

behaviours onto the processing elements (PEs) according

to functionality and also arranges variables and channels of

the system architecture. Through this process, the system

architecture model is developed from the specification

model. Fig. 4 shows the xUML representation of the

transformed model of this example.

In brief, this process determines the groups of computation

in the specification model which defines the functionality

to be implemented by each processing element (PE). Based

on the analysis, we allocated two processing elements, PE1

and PE2, and we mapped the main leaf behaviours B1 and

B2 onto PE1 while leaf behaviour B3 is placed on PE2.

After several intermediate refinements, other leaf

behaviours such as B3Stub, B13snd, B34rcv, B13rcv and

B34snd are mapped to PE1 and PE2 respectively. Variable

v1 and message-passing channels named cb13, c2 and

cb34 become system-global variable and channels which

both represent the communication between PEs.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

177

Fig. 4 xUML model after allocation and behavior partitioning.

In Fig. 4 which illustrates the xUML model, the

components which represent by classes are divided into

two main processing elements, PE1 and PE2. PE1 is the

software component whilst PE2 is the hardware

component. In Fig. 4, the Hardware tag is added in some

of the classes named B13Rcv, B3, B34Snd to differentiate

them from the software classes which residing in the

software component. The Channel tag is attached to class

CB13, C2 and CB34 to depict the message-passing

communication in the design. The Main class which

represents the top-level hierarchy is attached with Parallel

tag in order to show that PE1 and PE2 classes are running

in parallel to preserve the original specification of the

design.

Example 3: Channel Partitioning

Our third example is the main example which describes the

step-by-step refinement involved in channel partitioning

process. This work is a continuation from our previous

examples. Channel partitioning refines abstract

communication between components in architecture model

towards an actual implementation of system busses. In this

process, an abstract architecture model is gradually refined

into more concrete model.

(1) Refactoring Rules of Channel Partitioning

The elaborate step-by-step refactoring rules involved in

this process are:

1. Add another level of hierarchy to the existing

class diagram to model its bus structure

 Introduce an additional level of

hierarchy by creating a new class to

represent the bus structure

 Add relationship to connect bus class to

Main class

2. Bind channel classes to the bus class and group

communication

 Remove relationship of channel classes

from Main class

 Add relationship to connect channel

classes to the bus class

3. Renew access towards channel classes

 Remove the relationship of related

behaviour classes from channel classes

 Add relationship to connect related

behaviour classes to bus class

The bus structure is represented by channel and employs

all channel properties and it acts as top-level channel. Then,

the abstract communication channels instantiated between

the components are grouped under the bus channel

according to the selected mapping. At this point, the bus

channel Bus1 does not have any connection with the other

components such as PE1 and PE2. Lastly, the

communication inside the components is updated to merge

all bus communication over the bus channel. Bus interfaces

are created as the union of all sub channel interfaces

grouped under the bus. A virtual bus addressing scheme is

introduced for the sub channels at the bus interfaces. Then,

the components are connected to the busses via bus ports

and bus interfaces, and all channel accesses inside the PEs

are replaced with bus access.

(2) Transformation of Architecture

The class organizations are specified in xUML as shown in

Fig. 5, Fig. 6 and Fig. 7. Each function or behaviour is

assigned to a class.

Fig. 5 xUML model before channel partitioning.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

178

Fig. 6 Intermediate xUML model of channel partitioning.

Fig. 7 Final xUML model after channel partitioning.

In the initial model, Main class represents the top-level

hierarchy of the design which connects to subclasses such

as PE1, PE2 and C2. A new level is added with creation of

a new class and its properties namely Bus1. This Bus1 is

linked to Main class to model the bus structure. No other

relationship exists for this new class.

We performed an intermediate refactoring to the initial

model which derived a more concrete model as shown in

Fig. 6. It represents the layout towards channel bus and

communication grouping. In this step, Bus1 class is

connected to other channel classes, named CB13, C2 and

CB34. Lastly, we carried out another refactoring to the

previous model and finally generated a more refined model

as defined in Fig. 7. This xUML model describes the

renewal of access towards channels and communication

update by linking the Bus1 class to other related classes

which are B13Rcv, B13Snd, B2, B3, B34Rcv and B34Snd.

In this transformation, relationships which connect Bus1

with other channel classes, CB13, C2 and CB34 remain.

However, the relationships which connect channel classes

CB13, C2 and CB34 with classes B13Rcv, B13Snd, B2, B3,

B34Rcv and B34Snd are removed as the communication

from these classes to channel classes is managed by Bus1

class. In this step, the xUML model becomes more detailed

due to change in connectivity among classes. However,

what is important is that the functions and behaviours of

the original specification model are strictly preserved,

while its structure is modified so as to make the model

more concrete.

(3) Transformation of State Transition

The transformation of state transition for channel

partitioning is specified in xUML as shown in Fig. 8 which

relates to the transformation described in previous section.

This is represented in ASL. The state machine diagram of

B13Rcv class is shown as an example. Each rounded

rectangle represents a state, and codes in the rectangle

represent action semantics at each state. Arrows represent

state transitions. This sort of state transition definition is

attached to every class presented in the class diagram. Fig.

8 (a) diagram denotes the initial state machine diagram

which corresponds to the static structure of the design

illustrated in Fig. 5. Initially, before undergone the

transformation process the startSignal instantiates the

second state which starts the execution of startMain

operation of CB13 class. However, after the

transformation happened the startSignal activates

startMain of Bus1 class. This is due to change in

connectivity of related classes as presented in Fig. 7.
Finally, after all statements are executed the returnSignal

starts returnMain operation of B13Rcv class to end the

process in both cases.

Fig. 8 State transition of B13Rcv class.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

179

6. Application to GSM Vocoder Design

We illustrate a design example of a voice encoder/decoder

(vocoder) for cellular applications known as GSM

Vocoder [6, 7, 10] in order to show the applicability of our

approach to real system application. GSM Vocoder is

based on the standard for speech coding and compression

in the European cellular telephone network system GSM

(Global System for Mobile Communications). The

Enhanced Full Rate (EFR) speech transcoding is

standardized by the European Telecommunication

Standards Institute (ETSI) as GSM 06.60 which is widely

used in voice compression and encoding for speech

transmission [6].

For the purpose of this research we focused on the encoder

part of the vocoder specification. The model shown in Fig.

9 only depicts the top level of the hierarchy that we dealt

with. For a complete hierarchy of the encoding part of the

vocoder down to the leaf behaviours are discussed in [6, 7].

We applied our previous modeling design of allocation and

behaviour partitioning task to this real system design

example. For simplicity, we only explain on transformation

of architecture involved in this design. It shows the

vocoder specification model before undergoing a series of

transformation of refinement process.

All of the classes in Fig. 9 represent components in the

Vocoder system. Based on analysis, we selected the

Codebook behavior to move into hardware component.

This is shown by the HW tag with a circle in Fig. 9. In

order to realize this, several intermediate refinements are

performed by following the refactoring rules. The

specification model is refined to a more concrete model as

described in Fig. 10.

xUML model shown in Fig. 10 consists of additional

classes and relationships. This is as a result of more

detailed design of the system. Although the model

undergone a number of transformation, the functions and

behaviors of the original specification model are strictly

preserved. In the final model, the initial Codebook class

depicted in Fig. 9 is removed from its original relationship

to connect with a new Hw class. Subclasses namely

Codebook_Start_Recv, Codebook and Codebook_Done_

Send comprise of HardWare tags to represent

subbehaviours residing in a hardware component which

denotes by Hw class. Other classes without any tag are

classes related to DSP component. In addition to that,

Codebook_CN class is extended to have three subclasses

namely Codebook_Stub, Codebook_Start_Send, and

Codebook_Done_Recv to preserve the semantic of the

original design.

Variables inside classes and message passing channels

class which are Ch_Codebook_Start and

Ch_Codebook_Done are marked with Channel tag become

system global variables and channels to represent the

communication between PEs. Coder class consists of

Parallel tag to define the parallelism of DSP and Hw

classes. The correctness of these models has been validated

by simulation process using iUML [9]. The results of the

simulation process showed that the designs behaved in

desired manner following the rules specified for each

transformation.

Fig. 9 Vocoder specification model.

Fig. 10 Vocoder refined model.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

180

7. Conclusion and future work

In this paper, we have introduced the modeling framework

in which designs can be specified using xUML notations to

support the specification and modeling of complex SoCs or

embedded system in general. We outlined a transformation

mechanism from an abstract specification model to a more

concrete model by applying the refactoring technique

through well-defined sequence steps. We also presented a

set of refactoring rules which is used as a guideline in the

design process. We have verified our approach by

simulating the models using iUML suite, a MDA tool. In

addition to that, we also verified the applicability of using

xUML concepts in realizing the design process by several

design examples including real system example of GSM

Vocoder design.

As future works, we will extend our work by modeling the

remaining tasks of stepwise refinement to enable

generation of complete system-level design methodology

using our framework, so that we can formalize and catalog

a full set of guidelines and apply them to other real

applications. We are still at the starting point in this

research, and strategically developing a full language-

independent modeling framework for xUML-based

stepwise refinement and also a tool for design automation.

Consequently, we suppose this empirical work will benefit

to accelerate design processes and improve product

qualities.

Acknowledgments

The authors are grateful to Mr. Masahiro Kimura (Toshiba

Solutions Corp., Japan) for his valuable contribution.

References

[1] Booch, G., Rumbaugh, J. and Jacobson, I.: “The

Unified Modeling Language User Guide”, Addison-

Wesley, 2005

[2] Boulet, P., Dekeyser, J., Dumoulin, C. and Marquet,

P.: “MDA for SoC Design, Intensive Signal

Processing Experiment”, Forum on Specification

and Design Languages (FDL'03), 2003

[3] Brown, A.W.: “Model driven architecture:

Principles and Practice”, Software and Systems

Modeling, Springer, 2004

[4] De Jong, G.: “A UML-Based Design Methodology

for Real-Time and Embedded Systems”, Proc. of

the Design, Automation and Test in Europe

(DATE'02), 2002

[5] Fowler, M.: “Refactoring: Improving the Design of

existing Code”, Addison-Wesley, 1999

[6] Gajski, D.D., Zhu, J., Doemer, R., Gerstlauer, A.,

Zhao, S.: “SpecC: Specification Language and

Methodology”, Kluwer Academic Publishers, 2000

[7] Gerstlauer, A., Domer, R., Peng, J. and Gajski,

D.D.: ``System Design: A Practical Guide with

SpecC”, Kluwer Academic Publishers, 2001

[8] Katayama, T.: “Extraction of Transformation Rules

from UML Diagrams to SpecC”, IEICE Trans.

Information and System, Vol.E88-D, No.6, 2005

[9] iUML, Kennedy Carter Ltd: http://www.kc.com/

[10] Kimura, M., Kobayashi, K., Yamasaki, R. and

Yoshida, N.: “Application of Refactoring-based

Stepwise Refinement Design to GSM Vocoder”,

Embedded Systems Symposium, 2006 (in Japanese)

[11] Martin, G. and Muller, W.: “When Worlds Collide:

Can UML Help SoC Design?”, UML for SOC

Design, Springer, 2005

[12] Mellor, S.J. and Balcer, M.J.: “Executable UML: A

Foundation for Model-Driven Architecture”,

Addison-Wesley, 2002

[13] Mellor, S.J., Wolfe, J.R. and McCausland, C.: “Why

Systems-on-Chip needs More UML like a Hole in

the Head”, UML for SOC Design, Springer, 2005

[14] Muller, W., Rosti, A., Bocchio, S., Riccobene, E.,

Scandurra, P., Dehaene, W. and Vanderperren, Y.:

“UML for ESL Design: Basic Principles, Tools, and

Applications”, Proc. 2006 IEEE/ACM Int. Conf. on

Computer-Aided Design, pp. 73-80, 2006

[15] Nguyen, K.D., Sun, Z., Thiagarajan, P.S. and Wong,

W.F.: “Model-Driven SoC Design via Executable

UML to SystemC”, Proc. 25th IEEE International

Real-Time Systems Symposium (RTSS'04), pp. 459-

468, 2004

[16] Raistrick, C., Francis,P., Wright, J., Carter, C.,

Wilkie, I.: “Model Driven Architecture with

Executable UML”, Cambridge University Press,

2004

[17] Riccobene, E., Rosti, A. and Scandurra, P.:

“Improving SoC Design Flow by means of MDA

and UML Profiles”, 3rd Workshop on Software

Model Engineering (WiSME), 2004

[18] Riccobene, E., Scandurra, P., Rosti, A. and Bocchio,

S.: “A SoC Design Methodology Involving a UML

2.0 Profile for SystemC”, Proc. of the Design,

Automation and Test in Europe (DATE'05), Vol. 2,

pp. 704-709, 2005

[19] Schattkowsky, T. and Muller, W.: “Model-Based

Design of Embedded Systems”, 7th IEEE

International Symposium on Object-Oriented Real-

Time Distributed Computing (ISORC'04), 2004

[20] SpecC Web Site: http://www.cecs.uci.edu/specc/

[21] Sunye, G., Pennaneach, F., Ho, W.M., LeGuennec,

A. and Jezequel, J.: “Using UML Action Semantics

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

181

for Executable Modeling and Beyond”, Lecture

Notes in Computer Science (LNCS), Springer, 2005

[22] SystemC Web Site: http://www.systemc.org/

[23] SystemVerilog Web Site:

http://www.systemverilog.org/

[24] Tan, W.H., Thiaggarajan, P.S., Wong, W.F., Zhu, Y.

and Pialakkat, S.K.: “Synthesizable SystemC Code

from UML Models”, 41th Design Automation

Conference, (workshop UML for SoC Design), 2004

[25] Unified Modeling Language (UML) Web Site:

http://www.omg.org/

[26] Yamasaki, R., Kobayashi, K., Zakaria, N.A.,

Narazaki, S. and Yoshida, N.: “Refactoring-Based

Stepwise Refinement in Abstract System-Level

Design”, Proc. IFIP 2006 Int. Conf. on Embedded

and Ubiquitous Computing, (LNCS, No. 4096,

Springer), pp. 712-721, 2006

