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Summary 
Typical stepwise refinement is widely used in design process, but 

due to increased design complexity a new way of designing is 

necessary.  In this paper, we present a system-level design 

methodology using Executable-UML (xUML) and Model Driven 

Architecture (MDA) concepts.  This proposed research aims at 

developing a language-independent framework for stepwise 

refinement by refactoring of xUML models.  We investigate a 

transformation mechanism from an abstract specification model 

to a concrete implementation model in xUML representation 

exploiting the MDA capabilities in a step-by-step manner.  Our 

modeling framework uses selected subsets of UML diagram 

types with action semantics.  We show the application of our 

work by several design examples including GSM Vocoder design.  

As a result, we obtained executable models and a set of well-

defined refactoring rules to accelarate design processes and 

improve product qualities of not only SoC but embedded systems 

in general. 
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1. Introduction 

The increasing design complexity coupled with requests 

for shorter development timeframe have produced high 

pressures in the design of System-on-Chip (SoC) or 

embedded systems in general.  This leads to exploration of 

new ways or methods of designing SoC from various 

aspects.  In order to cope with this issue, one accepted 

approach by the design community is to raise the level of 

abstraction of the design process to a higher level called 

system-level.  At the system-level, there is no difference 

between hardware and software.  Great productivity gains 

can be achieved by starting design from this level. In 

system-level design, there are several programming 

languages called system-level description languages, 

proposed to facilitate the design methodology such as 

SpecC [20], SystemC [22] and SystemVerilog [23]. The 

choice of the language used depends on various factors.  

However, all of these methodologies are very dependent 

on the language and platform it used and this will restrict 

the design flexibility. A new way is needed to describe an 

entire system. Thus, what we need is a language-

independent framework to increase the design portability. 

The same issue has already been addressed in Software 

Engineering area and Model Driven Architecture (MDA) 

[12, 16] is proposed. The application of MDA concepts are 

being actively researched in this area and have received a 

lot of attention in recent years from industry and academic 

communities. With MDA, an abstract specification model 

is defined in the form of Executable-UML (xUML) [9, 12, 

16], and transformed into a concrete implementation model 

with specific platform information and constraints, and 

then is translated into a program code. We found that 

model transformation employed in MDA is equivalent to 

transformation of stepwise refinement in system-level 

design. Therefore, we believe that the MDA concepts can 

also be applied to system-level design. Hence in our 

research, we investigate and organize a design 

methodology of stepwise refinement in system-level design 

with xUML, where xUML is the basis of MDA concept.  

There are already some related studies on application of 

UML or MDA to system design.  Brown [3] and Sunye et 

al. [21] discussed general MDA principles and practice.  

There are also researches applying MDA to SoC design or 

embedded system design such as Boulet et al. [2], De 

Jong [4], Mellor et al. [13], Riccobene et al. [17] and 

Schattkowsky and Muller [19]. In addition to that, the 

roles of UML or xUML in various areas of system-level 

design have been explored and investigated by Katayama 

[8], Martin and Muller [11], Muller et al. [14], Nguyen et 

al. [15], Riccobene et al. [18] and Tan et al. [24].  

However, there has been none yet on xUML 

transformation based on refactoring for system-level 

design. 

Thus, our research addresses the transformation of xUML 

models in a step-by-step manner from an abstract model to 

a more refined and concrete model. Our goal is to 

accomplish a step-by-step transformation in xUML from 

an abstract specification model of the system under design 

and eventually creates a more refined and concrete 

implementation model ready for manufacturing. We 

perform the xUML transformations by using the 
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refactoring technique [5, 26] and generate a well-defined 

set of refactoring rules to guide design process. In this 

paper, we show how this proposed approach is carried out 

using some design examples. The construction of the work 

presents in this paper is part of our ongoing effort to 

develop a full design of language-independent framework 

for xUML-based stepwise refinement. Fig. 1 illustrates the 

flow of proposed approach in comparison with typical 

system-level design and MDA flow. 

 

Fig. 1  Proposed design flow. 

The outcomes of our proposed research will benefit the 

system-level design area in general where it will help to 

improve the existing system design methodology and 

increase design portability. It also produces a richer and 

more useful documentation of a well-defined stepwise 

refinement process. For system designers, this approach 

provides a simplified design process based on meticulous, 

clear, and structured models at each design phase which 

enables quick exploration and synthesis. This will reduce 

the amount of resources and the man power required to 

complete any design. Furthermore, with a clear and 

detailed set of refactoring rules which acts as a guidance in 

designing, the design process can easily be understood, 

thus low designer expertise is required. 

The remainder of this paper is organized as follows.  

Section 2 and Section 3 provide a brief introduction to 

stepwise refinement and refactoring technique. Section 4 

explains on MDA and xUML concepts in general. Section 

5 is the key part of this paper, gives an overview of 

modeling in xUML, application of refactoring rules and 

transformation by examples. Then, Section 6 describes the 

real system design example. Finally, the last section draws 

main conclusion and introduces future work. 

2. Stepwise Refinement 

The stepwise refinement process is a design methodology 

for system-level design. We adopted the SpecC design 

methodology [6, 7] in the system-level design from several 

proposals, because it has been widely accepted and has 

been a fundamental part of SystemC and SystemVerilog.  

The SpecC system-level design methodology starts with 

the generation of the initial specification model that 

describes the functionality as well as other constraints of 

the intended design. This is the highest level of abstraction 

model which ignores any implementation details. 

The design flow of the SpecC methodology consists of two 

main tasks namely the architecture exploration and the 

communication synthesis tasks. The architecture 

exploration tasks include design steps of allocation, 

partitioning of behaviours, channels and variables, and 

scheduling. This is an iterative process generating an 

architecture model which represents a refinement of the 

specification model. Then, it is followed by the 

communication synthesis task which refines the abstract 

communication between behaviours in the architecture 

model into an implementation. The tasks of 

communication synthesis includes the insertion of 

communication protocols, synthesis of interfaces and 

transducers, and inlining of protocols into synthesizable 

components. In the resulting communication model, 

communication is described in terms of actual wires and 

timing relationships are described by bus protocols. Next, 

the result of the synthesis flow is handed off to the backend 

tool for generation of final implementation model. At this 

level, the model represents a clock-cycle accurate 

description of the whole system. This description with a 

concrete level of abstraction serves as the basis for 

manufacturing of the system. 

3. Refactoring 

Refactoring [5, 26] is a disciplined technique for 

restructuring an existing body of code, altering its internal 

structure without changing its external behaviour. It is a 

series of small behaviour-preserving transformations. Each 

transformation called refactoring does little, but a sequence 

of transformations can produce significant restructuring.  

Since each refactoring is small, it is less likely to go wrong.  

The system is also kept fully working after each small 

refactoring, reducing the chances that a system can get 

seriously broken during the restructuring. Refactoring is 

also structured as a practical method that improves 

maintainability, readability, reusability and modularity in 

later design phase by restructuring a system. 

For the above-mentioned reasons, we applied refactoring 

technique to our transformation process. A set of 

refactoring rules is developed for each transformation to 

guide and support the preservation of the original 

behaviour of the system in the design process. 
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4. Model Driven Architecture and 

Executable-UML 

Model Driven Architecture (MDA) introduces a 

transformation process from an abstract specification of 

“platform independent model” (PIM) to a corresponding 

“platform specific model” (PSM). PIM captures all 

information or requirements required for the system. It 

only defines the behaviors and functions of a system, 

which are independent from its implementation platform 

such as programming language, middleware and library. 

PSM comprises all the functionality expressed in the PIM 

with the added design concerns of the realizing platform 

such as translation into a specific program code 

implementation. A different platform yields a different 

PSM from a single PIM, for example, Java-based or C++-

based. 

Models in MDA are formal representation of the function, 

behavior and structure of the system. Each model is 

represented in the form of executable version of UML 

(Unified Modeling Language) [1, 25], i.e. Executable-

UML (xUML) [12, 16]. It is a selected subset of the UML 

notation with the addition of fully defined execution 

semantics of UML which enable executable modeling.  

Some notations use in xUML acts as an informal notation 

such as use cases and activity diagrams. These diagrams 

are included in order to provide informal description and 

assist understanding and development of the system. The 

core and formal part of xUML comprises the class diagram 

and the state machine diagram. The former describes the 

static structure of the system, while the latter defines the 

dynamic behavior. Within the state machine diagram, the 

action semantics of the model is defined using action 

language. In this research, Action Specification Language 

(ASL) is adopted [9] so as to allow model execution. 

5. Modeling in Executable-UML 

Our modeling approach is based on xUML which mainly 

consists of class and state machine diagrams. Class 

diagrams are predominantly used to describe the static 

structure of a system while state machine diagrams depict 

the dynamic behaviour of a class. A set of refactoring rules 

is created to guide the modeling process and a complete 

model is validated and tested by simulation using iUML 

[9], a MDA compliance tool. 

5.1 Refactoring Rules in Executable-UML 

A set of refactoring rules is generated and as we continue 

working on this research, this list will be expanded in the 

future. Currently, the work completed is up to 3(a) task.  

The rest of the tasks will be left for future works. 

1. Specification model 

a) Separation of concerns 

 Define channel class to represent 

communication 

 Define class to represent behaviour 

 Define data and relationship 

b) Identify level of hierarchy for related 

behaviours, data and communication 

c) Create state machine to explicitly model the 

semantic of the design 

2. Architecture exploration 

a) Allocation and behaviour partitioning 

 Introduce additional level of hierarchy to 

existing class diagram 

 Identify class for processing elements 

(PEs) 

 Add relationship to behaviour classes 

 Group behaviour classes to related PEs 

classes 

 Add behaviour and channel classes to 

introduce synchronization 

 Move channel classes to represent global 

channels 

b) Variable partitioning 

 Move variables into related classes 

 Add communication channel classes 

 Update variable accesses 

c) Scheduling 

 Serialize behaviour classes' hierarchy 

3. Communication synthesis 

a) Bus allocation and channel partitioning 

 Add another level of hierarchy to 

existing class diagram to model bus 

structure 

 Bind channel classes to buss classes and 

group communication 

 Renewal of access towards channel 

classes 

b) Protocol insertion 

 Insert protocol code 

 Generate application layer 

 Replace bus channels 

c) Transducer synthesis 

 Insert transducers 

 Encapsulate with wrappers 

 Synthesis transducer code 

d) Inlining 

 Inline communication methods 

 Optimize 

4. Backend 

a) Hardware synthesis 

b) Software development 

c) Interface synthesis 
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5.2 Transformation Examples 

In this section, we demonstrate some examples to show the 

representation of the models in SpecC which are translated 

and transformed into xUML models by applying the 

refactoring rules listed above. 

Example 1: Representation of Specification Model 

Fig. 2 depicts a simple yet typical example design of the 

specification model which consists of behaviour, channel 

and variable in xUML diagram. Each behaviour and 

channel is represented by a class and the relationship is 

depicted by association between the classes. Fig. 3 depicts 

the state machine diagram which relates to class 

organization shown in Fig. 2. This type of state machine 

diagram is attached to every class presented in the class 

diagram. 

 

Fig. 2  xUML specification model. 

 

Fig. 3  State diagram of Main class. 

In our research, generated models are simulated for design 

validation and we used iUML simulation suite [9, 16] for 

simulation process. The model execution is started by 

executing the initialisation sequence segment which creates 

all classes and associations described in class diagram.  

Then, the startMain operation of the Main class as shown 

in Fig. 2 is called in order to generate the first start signal 

to the first state of Main class in state machine diagram 

which is WaitStart as depicted in Fig. 3. The startSignal 

activates the startMain operation of desired class. The 

startMain operation consists of execution statement which 

then generates the following signal to WaitStart state of 

other relevant classes for further execution. Once the 

desired process is completed, returnMain operation is 

instantiated to generate returnSignal to the respective 

classes which at the end activates the returnMain operation 

of Main class and eventually endSignal is generated in 

order to stop the execution. The complete execution 

involves the combination of the different classes outlined 

in the class and state machine diagrams for each class. At 

the end of the simulation process, results such as output 

messages are displayed on the application window. Data 

tables and signal traces window can also be viewed for 

design conformation. The simulation process explained 

above is generally the same for every model including the 

execution of the following examples describe in later 

sections. 

Example 2: Allocation and Behaviour Partitioning 

The second example describes the xUML transformation 

involved in allocation and behaviour partitioning task 

which corresponds to transformation decribed in SpecC. 

This task determines the allocation of a set of system 

components in the specification model, partitions the 

behaviours onto the processing elements (PEs) according 

to functionality and also arranges variables and channels of 

the system architecture. Through this process, the system 

architecture model is developed from the specification 

model. Fig. 4 shows the xUML representation of the 

transformed model of this example. 

In brief, this process determines the groups of computation 

in the specification model which defines the functionality 

to be implemented by each processing element (PE). Based 

on the analysis, we allocated two processing elements, PE1 

and PE2, and we mapped the main leaf behaviours B1 and 

B2 onto PE1 while leaf behaviour B3 is placed on PE2.  

After several intermediate refinements, other leaf 

behaviours such as B3Stub, B13snd, B34rcv, B13rcv and 

B34snd are mapped to PE1 and PE2 respectively. Variable 

v1 and message-passing channels named cb13, c2 and 

cb34 become system-global variable and channels which 

both represent the communication between PEs. 
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Fig. 4  xUML model after allocation and behavior partitioning. 

In Fig. 4 which illustrates the xUML model, the 

components which represent by classes are divided into 

two main processing elements, PE1 and PE2. PE1 is the 

software component whilst PE2 is the hardware 

component. In Fig. 4, the Hardware tag is added in some 

of the classes named B13Rcv, B3, B34Snd to differentiate 

them from the software classes which residing in the 

software component. The Channel tag is attached to class 

CB13, C2 and CB34 to depict the message-passing 

communication in the design. The Main class which 

represents the top-level hierarchy is attached with Parallel 

tag in order to show that PE1 and PE2 classes are running 

in parallel to preserve the original specification of the 

design. 

Example 3: Channel Partitioning 

Our third example is the main example which describes the 

step-by-step refinement involved in channel partitioning 

process. This work is a continuation from our previous 

examples. Channel partitioning refines abstract 

communication between components in architecture model 

towards an actual implementation of system busses. In this 

process, an abstract architecture model is gradually refined 

into more concrete model. 

(1) Refactoring Rules of Channel Partitioning 

The elaborate step-by-step refactoring rules involved in 

this process are: 

1. Add another level of hierarchy to the existing 

class diagram to model its bus structure 

 Introduce an additional level of 

hierarchy by creating a new class to 

represent the bus structure 

 Add relationship to connect bus class to 

Main class 

2. Bind channel classes to the bus class and group 

communication 

 Remove relationship of channel classes 

from Main class 

 Add relationship to connect channel 

classes to the bus class 

3. Renew access towards channel classes 

 Remove the relationship of related 

behaviour classes from channel classes 

 Add relationship to connect related 

behaviour classes to bus class 

The bus structure is represented by channel and employs 

all channel properties and it acts as top-level channel. Then, 

the abstract communication channels instantiated between 

the components are grouped under the bus channel 

according to the selected mapping. At this point, the bus 

channel Bus1 does not have any connection with the other 

components such as PE1 and PE2. Lastly, the 

communication inside the components is updated to merge 

all bus communication over the bus channel. Bus interfaces 

are created as the union of all sub channel interfaces 

grouped under the bus. A virtual bus addressing scheme is 

introduced for the sub channels at the bus interfaces. Then, 

the components are connected to the busses via bus ports 

and bus interfaces, and all channel accesses inside the PEs 

are replaced with bus access. 

(2) Transformation of Architecture 

The class organizations are specified in xUML as shown in 

Fig. 5, Fig. 6 and Fig. 7. Each function or behaviour is 

assigned to a class. 

 

Fig. 5  xUML model before channel partitioning. 
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Fig. 6  Intermediate xUML model of channel partitioning. 

 

Fig. 7  Final xUML model after channel partitioning. 

In the initial model, Main class represents the top-level 

hierarchy of the design which connects to subclasses such 

as PE1, PE2 and C2. A new level is added with creation of 

a new class and its properties namely Bus1. This Bus1 is 

linked to Main class to model the bus structure. No other 

relationship exists for this new class. 

We performed an intermediate refactoring to the initial 

model which derived a more concrete model as shown in 

Fig. 6. It represents the layout towards channel bus and 

communication grouping. In this step, Bus1 class is 

connected to other channel classes, named CB13, C2 and 

CB34. Lastly, we carried out another refactoring to the 

previous model and finally generated a more refined model 

as defined in Fig. 7. This xUML model describes the 

renewal of access towards channels and communication 

update by linking the Bus1 class to other related classes 

which are B13Rcv, B13Snd, B2, B3, B34Rcv and B34Snd.  

In this transformation, relationships which connect Bus1 

with other channel classes, CB13, C2 and CB34 remain.  

However, the relationships which connect channel classes 

CB13, C2 and CB34 with classes B13Rcv, B13Snd, B2, B3, 

B34Rcv and B34Snd are removed as the communication 

from these classes to channel classes is managed by Bus1 

class. In this step, the xUML model becomes more detailed 

due to change in connectivity among classes. However, 

what is important is that the functions and behaviours of 

the original specification model are strictly preserved, 

while its structure is modified so as to make the model 

more concrete. 

(3) Transformation of State Transition 

The transformation of state transition for channel 

partitioning is specified in xUML as shown in Fig. 8 which 

relates to the transformation described in previous section.  

This is represented in ASL. The state machine diagram of 

B13Rcv class is shown as an example. Each rounded 

rectangle represents a state, and codes in the rectangle 

represent action semantics at each state. Arrows represent 

state transitions. This sort of state transition definition is 

attached to every class presented in the class diagram.  Fig. 

8 (a) diagram denotes the initial state machine diagram 

which corresponds to the static structure of the design 

illustrated in Fig. 5. Initially, before undergone the 

transformation process the startSignal instantiates the 

second state which starts the execution of startMain 

operation of CB13 class. However, after the 

transformation happened the startSignal activates 

startMain of Bus1 class. This is due to change in 

connectivity of related classes as presented in Fig. 7. 
Finally, after all statements are executed the returnSignal 

starts returnMain operation of B13Rcv class to end the 

process in both cases. 

 

Fig. 8  State transition of B13Rcv class. 
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6. Application to GSM Vocoder Design 

We illustrate a design example of a voice encoder/decoder 

(vocoder) for cellular applications known as GSM 

Vocoder [6, 7, 10] in order to show the applicability of our 

approach to real system application. GSM Vocoder is 

based on the standard for speech coding and compression 

in the European cellular telephone network system GSM 

(Global System for Mobile Communications). The 

Enhanced Full Rate (EFR) speech transcoding is 

standardized by the European Telecommunication 

Standards Institute (ETSI) as GSM 06.60 which is widely 

used in voice compression and encoding for speech 

transmission [6]. 

For the purpose of this research we focused on the encoder 

part of the vocoder specification. The model shown in Fig. 

9 only depicts the top level of the hierarchy that we dealt 

with. For a complete hierarchy of the encoding part of the 

vocoder down to the leaf behaviours are discussed in [6, 7].  

We applied our previous modeling design of allocation and 

behaviour partitioning task to this real system design 

example. For simplicity, we only explain on transformation 

of architecture involved in this design. It shows the 

vocoder specification model before undergoing a series of 

transformation of refinement process. 

All of the classes in Fig. 9 represent components in the 

Vocoder system. Based on analysis, we selected the 

Codebook behavior to move into hardware component.  

This is shown by the HW tag with a circle in Fig. 9. In 

order to realize this, several intermediate refinements are 

performed by following the refactoring rules. The 

specification model is refined to a more concrete model as 

described in Fig. 10. 

xUML model shown in Fig. 10 consists of additional 

classes and relationships. This is as a result of more 

detailed design of the system. Although the model 

undergone a number of transformation, the functions and 

behaviors of the original specification model are strictly 

preserved. In the final model, the initial Codebook class 

depicted in Fig. 9 is removed from its original relationship 

to connect with a new Hw class. Subclasses namely 

Codebook_Start_Recv, Codebook and Codebook_Done_ 

Send comprise of HardWare tags to represent 

subbehaviours residing in a hardware component which 

denotes by Hw class. Other classes without any tag are 

classes related to DSP component. In addition to that, 

Codebook_CN class is extended to have three subclasses 

namely Codebook_Stub, Codebook_Start_Send, and 

Codebook_Done_Recv to preserve the semantic of the 

original design. 

Variables inside classes and message passing channels 

class which are Ch_Codebook_Start and 

Ch_Codebook_Done are marked with Channel tag become 

system global variables and channels to represent the 

communication between PEs. Coder class consists of 

Parallel tag to define the parallelism of DSP and Hw 

classes. The correctness of these models has been validated 

by simulation process using iUML [9]. The results of the 

simulation process showed that the designs behaved in 

desired manner following the rules specified for each 

transformation. 

 

Fig. 9  Vocoder specification model. 

 

Fig. 10  Vocoder refined model. 
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7. Conclusion and future work 

In this paper, we have introduced the modeling framework 

in which designs can be specified using xUML notations to 

support the specification and modeling of complex SoCs or 

embedded system in general. We outlined a transformation 

mechanism from an abstract specification model to a more 

concrete model by applying the refactoring technique 

through well-defined sequence steps. We also presented a 

set of refactoring rules which is used as a guideline in the 

design process. We have verified our approach by 

simulating the models using iUML suite, a MDA tool. In 

addition to that, we also verified the applicability of using 

xUML concepts in realizing the design process by several 

design examples including real system example of GSM 

Vocoder design. 

As future works, we will extend our work by modeling the 

remaining tasks of stepwise refinement to enable 

generation of complete system-level design methodology 

using our framework, so that we can formalize and catalog 

a full set of guidelines and apply them to other real 

applications. We are still at the starting point in this 

research, and strategically developing a full language-

independent modeling framework for xUML-based 

stepwise refinement and also a tool for design automation. 

Consequently, we suppose this empirical work will benefit 

to accelerate design processes and improve product 

qualities. 
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