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Summary 
Data Mining is the process of extracting interesting and 

previously unknown patterns and correlations form huge data 

stored in databases. Association rule mining- a descriptive 

mining technique of data mining, is the process of discovering 

items or literals which tend to occur together in transactions. As 

the data to be mined is large, the time taken for accessing data is 

considerable. This paper describes a new approach for 

association mining, based on Master-Slave architecture. It uses 

hybrid approach – a combination of bottom up and top down 

approaches for searching frequent itemsets. The Apriori 

algorithm performs well only when the frequent itemsets are 

short. Algorithms with top down approach are suitable for long 

frequent itemsets. This new master slave architecture based 

algorithm combines both bottom-up and top-down approach. 

The Prime number based representation consumes less memory 

as each transaction is replaced with the product of the assigned 

prime numbers of their items. It reduces the time taken to 

determine the support count of the itemsets. The Prime number 

based representation offers the flexibility for testing the validity 

of metarules and provides reduction in   the data complexity. 

Key words: 
Frequent patterns, Candidate distribution, Hybrid approach,  

KDD 

1. Introduction 

Due to widespread computerization and affordable storage 

facilities, an enormous wealth of information is embedded 

in huge databases belonging to different enterprises. Such 

databases, whether their origin is the business enterprise 

or scientific experiment, have spurred a tremendous 

interest in the areas of Knowledge Discovery and Data 

Mining [1]-[2]. These areas have motivated allowed 

statisticians and data miners to develop faster analysis 

tools that can help sift and analyze the stockpiles of data, 

turning up valuable and often surprising information. 

Data mining is the act of drilling through huge volumes of 

data to discover relationships, or answer queries too 

generalized for traditional query tools. Data mining is part 

of the process known as Knowledge Discovery in 

Databases (KDD) [1]-[3], which is the automated 

approach of the extraction of implicit, understandable, 

previously unknown and potentially useful information 

from large databases. For extraction of such valuable 

information, the KDD process follows an iterative 

sequence of steps that include data selection and 

integration, data cleaning and preprocessing, data mining 

and algorithm selection, and, finally, post processing and 

knowledge presentation. 

2. Association Rule Problem 

The problem of mining association rules is to generate all 

rules that have support and confidence greater than or 

equal to some user specified minimum support and 

minimum confidence threshold respectively. 

Association rule mining involves detecting items, which 

tend to occur together in transactions, and the association 

rules that relate them [4]-[5]. Mining frequent itemsets is 

a fundamental and essential operation in data mining 

applications including discovery of association rule, 

strong rules, correlations, sequential rules and episodes. 

Due to the huge size of data and amount of computation 

involved in data mining, high-performance computing is 

an essential component for any successful large-scale data 

mining applications.   

Association rule mining finds the set of all subsets of 

items that frequently occur in many database records or 

transactions, and additionally extracts rule on how a 

subset of items influences the presence of another subset. 

Consider I= {i1, i2,………im} as a set of items. Let D, the 

task relevant data, is a set of database transactions where 

each transaction T is a set of items such that T is a subset 

of I. Each transaction is associated with an identifier, 

called TID. Let A be a set of items. A transaction T is said 

to contain A if and only if A is a subset of T.  

      An association rule is an implication of the form A => 

B, where A and B are subsets of I and A∩B is also a 

subset of I. The rule A => B holds in the transaction set D 

with support S, where S is the percentage of transactions 

in D that contain AUB (i.e., both A and B). This is the 

probability, P (AUB). The rule A => B has confidence C 

in the transaction set D if C is the percentage of 

transactions in D containing A that also contain B. This is 

taken to be the conditional probability, P (B/A). That is, 

 
                    Support (AUB) = P (AUB)                                    

                    Confidence (AUB) = P (B/A) 
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The definition of a frequent pattern relies on the following 

considerations. A set of items is referred to as an itemset 

(pattern). An itemset that contains K items is a K-itemset. 

The set {X,Y} is a 2-itemset. The occurrence frequency of 

an itemset is the number of transaction that contain the 

itemset. This is also known as the frequency or the 

support count of an itemset. An itemset satisfies minimum 

support if the occurrence frequency of the itemset is 

greater than or equal to the minimal support threshold 

value defined by the user [7]. The number of transaction 

required for the itemset to satisfy minimum support is 

therefore referred to as the minimum support count. If an 

itemset satisfies minimum support, then it is a frequent 

itemset. 

A frequent itemset is called closed if it does not have any 

superset with the same support [5]. A frequent itemset is 

said to be maximal if it has no supersets that are frequent. 

The collection of maximal frequent itemsets is a subset of 

the collection of closed frequent itemsets, which is a 

subset of the collection of all frequent itemsets. Maximal 

frequent itemsets are necessary for generating association 

rules. 

 

The problem of mining association rules could be 

decomposed into two sub problems:  

 

1. Find out all large itemsets and their support 

counts. A large itemset is a set of items which are 

contained in a sufficiently large number of 

transactions, with respect to a support threshold 

minimum support.  

 

2. From the set of large itemsets found, find out all 

the association rules that have a confidence value 

exceeding a confidence threshold minimum 

confidence.  

 

Since the solution of the second subproblem is 

straightforward, here we are concentrating only on 

the first subproblem. 

3. Basic Association Rule Mining Algorithms 

3.1 Apriori algorithm 

The Apriori algorithm[4]-[5]-[6]
 
 is also called the level-

wise algorithm and was proposed by Agrawal and 

Srikanth in 1994. It is the most popular algorithm to find 

all of the frequent sets which uses the downward closure 

property. The advantage of the algorithm is that before 

reading the database at every level, it prunes many of the 

sets which are unlikely to be frequent sets by using the 

Apriori property, which states that all nonempty subsets 

of frequent sets must also be frequent. This property 

belongs to a special category of properties called anti-

monotone in the sense that if a set cannot pass a test, all of 

its supersets will fail the same test as well. 

Using the downward closure property and the Apriori 

property, this algorithm works as follows. The first pass 

of the algorithm counts the number of single item 

occurrences to determine the L1 or single member frequent 

itemsets. Each subsequent pass, K, consists of two phases. 

First, the frequent itemsets Lk-1 found in the (k-1)th pass 

are used to generate the candidate itemsets Ck, using the 

Apriori candidate generation algorithm. Next, the 

database is scanned and the support of the candidates in 

Ck is determined to ensure that Ck itemsets are frequent 

itemsets. 

 

Candidate Generation Algorithm 

 

The candidate generation procedure works as follows. 

Suppose that the set of frequent 3-itemsets, L3, are {1,2,3}, 

{1,2,5},{1,3,5},{2,3,5},{2,3,4}. The 4-itemsets that are 

generated as candidate itemsets are the supersets of these 

3-itemsets and are {1,2,3,5}, {2,3,4,5}, which satisfy the 

downward closure property. More formally, if k is the 

pass number, Lk-1 is the set of all frequent (k-1)-itemsets, 

Ck is the set of candidate sets of pass k, the candidate 

generation procedure is as follows: 

 

gen_candidate_itemsets with the given L k-1 as follows: 

 

Ck = Φ 

 

for all itemsets l1 є L k-1 do 

 

for all itemsets l2 є L k-1 do 

if l1[1] = l2 [1] ^ l1 [2] = l2 [2] ^ … ^ l1 [k-1] < l2 [k-1] 

 

then c = l1 [1], l1 [2] … l1 [k-1], l2 [k-1] 

 

Ck = Ck  {c} 

 

So once candidate sets are generated those sets are subject 

to pruning process to ensure that all the subsets of the 

candidate set are already known to be frequent itemsets. 

 

Pruning Algorithm 

 

The pruning step eliminates some candidate sets which 

are not found to be frequent, and is: 

 

Prune(Ck) 

 

for all c Є  Ck 

 

for all (k-1)-subsets d of c do 
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 ifd   Є L k-1 

then Ck  = Ck – {c} 

 

3.2 Apriori algorithm description 

The Apriori frequent itemset discovery algorithm uses the 

above algorithms ( candidate generation and pruning) at 

every iteration. It goes from level 1 to level k or until no 

candidate set remains after pruning. The Apriori algorithm 

is as follows. 

 

Initialize: K: = 1, C1 = all the 1 – itemsets; 

Read the database to count the support of C1 to determine 

L1. 

 

L1 := {Frequent 1- itemsets}; 

K:= 2; // K represents the pass number // 

While ( K-1 ≠ Null set ) do 

begin 

 

Ck := gen_candidate_itemsets with the given Lk-1 

 

Prune (Ck) 

for all transactions t Є T do 

Calculate the support values; 

Lk := All candidates in Ck with a minimum support; 

K:= K+1; 

End 

Answer := k Lk; 

 

For an example of the Apriori algorithm, suppose the 

following transaction database is given below: 

 

Table1: Transaction Database 

 A1 A2 A3 A4 A5 

Ψ t1 1 0 0 0 1 

Ψ t2 0 1 0 1 0 

Ψ t3 0 0 0 1 1 

Ψ t4 0 1 1 0 0 

Ψ t5 0 0 0 0 1 

 

Suppose σ min = 20 %, which means that an itemset must 

supported by at least one transaction to be frequent 

because T only has five records. 

In the first pass, where k=1, T is read to find the support 

of 1- itemsets given below. 

 

{1}→ 1, {2}→2, {3} →1, {4} → 2, {5} → 3 

 

L1 := { {1}→ 1, {2}→2, {3} →1, {4} → 2, {5} → 3} 

 

In the second pass where k=2 , the candidate set C2 

becomes 

 

C2 := { {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, 

{2,4},{2,5},{3,4},{3,5},{4,5} } 

 

The pruning step does not change C2 as all subsets are 

present in C1. 

Read the database to count the support of elements in C2 

to get: 

 

{ {1,2}→ 0, {1,3}→0, {1,4} →0, {1,5}→1, {2,3}→ 1, 

{2,4} →1, {2,5}→0, {3,4}→0, {3,5}→0, {4,5}→1} and 

reduces to 

 

L2 = { {1,5}→1, {2,3}→1, {2,4}→1, {4,5}→1} 

 

In the third pass where k=3, the candidate generation step 

proceeds by: 

 

In the candidate generation step, 

 

 Using {1,5} and {4,5} it generates {1,4,5} 

 

 Using {2,3} and {2,4} it generates {2,3,4} 

 

 Using {2,4} and {4,5} it generates {2,4,5} 

 

So C3 := { {1,4,5}, {2,3,4}, {2,4,5}} 

The pruning step prunes {1,4,5}, {2,3,4},{2,4,5} as not all 

subsets of size 2, i.e., {1,4}, {3,4}, {2,5} are not present 

in L3. 

So C3 := Φ 

 

The total frequent sets become L:= L1  L2. 

4. Partition Algorithm 

The partition algorithm [1]-[2]-[3] is based in the 

observation that the frequent sets are normally very few in 

number compared to the set of all itemsets. As the result, 

if the set of transactions are partitioned in to smaller 

segments such that each segment can be accommodated in 

the main memory, then the set of frequent sets of each of 

these partitions can be computed. Therefore this way of 

finding the frequent sets by partitioning the database may 

improve the performance of finding large itemsets in 

several ways: 
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 By taking advantage of the large itemset property, 

this is that a large itemset must be large in at least one 

of the partitions. This idea can help to design 

algorithms more efficiently than those based on 

looking at the entire database. 

 Partitioning algorithms may be able to adapt better to 

limited main memory. Each partition can be created 

such that it fits in to main memory. In addition it 

would be expected that the number of itemsets to be 

counted per partition would be smaller than those 

needed for the entire database. 

 By using partitioning, cluster based and/or distributed 

algorithms can be easily created, where each 

partitioning could be handled by a separate machine. 

 Incremental generation of association rules may be 

easier to perform by treating the current state of the 

database as one partition and treating the new entries 

as a second partition. 

 
In order to achieve all the above advantages of 

partitioning the transaction database,   the partition 

algorithm works as follows: 

 

The partition algorithm uses two scans of the database to 

discover all frequent sets. In one scan, it generates a set 

of all potential frequent itemsets by scanning the 

database. This set is a superset of all frequent itemsets, 

i.e. it may contain false positives, but no false negatives 

are reported. During the second scan, counters for each 

of these itemsets are setup and their actual support is 

measured in one scan of the database. 

 

The partition approach of generating frequent itemsets is 

given below: 

 

P = partition_database (T); N = Number of partitions; 

// Phase 1 

 for i = 1 to n do begin 

 read _in_partition(Ti in P) 

Li = generate all frequent itemsets of Ti using apriori 

method in main memory. 

End 

 

// Merge Phase 

 For ( k=2 ; Li
k
 ≠Φ, i= 1,2,………,n;  k++) do begin 

 

Ck
G 

= Y i-1
n 
L i

k 

 

End 

 

// Phase II 

 For i= 1 to n do begin 

 

Read _ in _ partition(Ti in P) 

For all candidates c Є C
G 

 compute s(c)Ti  

End 

 

 L
G
 = { c Є C

G 
 / s(c)Ti  ≥ σ } 

 

Answer = L
G 

 

 

As given the partition algorithm above, here is the 

example of implementing it: 

 

Table2: Transaction Database 

 A1 A2 A3 A4 A5 

Ψ t1 1 0 0 0 1 

Ψ t2 0 1 0 1 0 

Ψ t3 0 0 0 1 1 

Ψ t4 0 1 1 0 0 

Ψ t5 0 0 0 0 1 

Ψ t6 0 1 1 1 0 

 

Here is the transaction database, A = {A1, A2, A3, A4, 

A5}, assume σ = 20 %. 

Here the database is partitioned in to 3 partitions say ξT1, 

ξT2, ξT3, each containing 2 transactions. The first 

partition ξT1 contains 1 to 2 transactions, ξT2 contains 3 

to 4, and ξT3 contains 5 to 6 transactions. Here the local 

support is equal to the given support, which is 20%. So 

σ = σ1= σ2 = σ3 = 20%. 

 

The working of partition algorithm is as follows: 

 

L1 :=  the frequent sets from the partition in ξT1,  which 

are found using the apriori algorithm on ξT1   separately. 

 

L2 :=  the frequent sets from the partition in ξT2,  which 

are found using the apriori algorithm on ξT2  separately. 

 

L3 :=  the frequent sets from the partition in ξT3,  which 

are found using the apriori algorithm on ξT3  separately. 

 

In phase II, the candidate set as  

 

C := L1  L2  L3 

 

Later read the database once again to compute the global 

support of the sets in C and get the final set of frequent 

sets. 
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4.1 Problem specification 

In recent years several fast algorithms including Apriori 

[3] and Partition [2] for generating frequent itemsets have 

been suggested in the literature[4]-[7]-[8]-[9]-[10]
  

. A 

critical analysis of these has led the authors to identify the 

following limitations/shortcomings in them.  

 

 By using partitioning, cluster based parallel and/or                                                                                                       

distributed algorithms can be easily created, where each 

partitioning could be handled by a separate machine. 

 

 Most of the algorithms[2]-[8]-[9]  for discovering 

Frequent Patterns require multiple passes over the 

database resulting in a large number of disk reads and 

placing a huge burden on the I/O subsystem. 

 

 Algorithms are available for maintaining the 

association rules[2]-[10]  due to addition or deletion of 

transactions in the database. However, algorithms are not 

available for mining incremental rules due to addition of 

more items. 

 

 Currently  available Algorithms [1]- [4]-[8] for 

mining frequent itemsets do not offer flexibility and 

reusability of computation during mining process.  

5.  Proposed Algorithm  

To address the above-mentioned limitations/shortcomings, 

a new Algorithm for Mining Frequent Itemsets using 

cluster based partition approach (CBPA) is being 

proposed. This algorithm integrates both the bottom up 

search as well as the top-down search. This algorithm is 

suitable for itemsets of any size. It uses the top down 

approach to find the frequent subsets of itemsets. The 

bottom up approach is used to find the supersets of the 

frequent itemsets. Most of the algorithms for mining the 

frequent items are based on bottom-up search approach. 

In this approach, the search starts from 1 itemsets and 

extends one level in each pass until all maximal frequent 

itemsets are found. This approach performs well if the 

length of the maximal itemset is short. If the maximal 

itemset is longer, top down search is suitable. For a 

transaction with a medium sized maximal frequent set, a 

combination of both these approaches performs well. This 

algorithm adopts Candidate distribution method to 
distribute the candidates among all nodes. The support 

count of the supersets and the subsets are found 

effectively from the prime number representation method. 

The Prime number representation reduces the memory 

needed for storing the items of the transactions by 

assigning a unique prime number for each item. 

Proposed algorithm uses prime numbers to represent the 

items in the transaction. Each item is assigned an unique 

prime number. Each transaction is represented by the 

product of the corresponding prime number of individual 

items in the transaction. Since the product of the prime 

number is unique, modulo division of a transaction’s 

prime product by the prime product of the itemset can 

assure the presence or absence of the itemset in any 

transaction. 

 

 If the remainder is zero, then the itemset is present 

in the transaction. 

 

 If the remainder is Non-zero, then the itemset is not 

present in the transaction. 

 

By checking the presence of itemset in any transaction using 

the above discussed method / approach, support count can 

be calculated very quickly. Each transaction in the database 

can be represented in a single number by using prime 

representation. 

5.1  I llustration-I 

Consider a sample database as shown in Table 3. In the 

proposed approach, every item is assigned a unique prime 

number as shown in Table 4. Table 5 shows the transaction 

table with the itemset replaced by the product of the 

equivalent prime numbers of the itemset. 

 
Table 3: Sample Database 

Tid Transaction 

Ψt1 A,B,C,D 

Ψt2 A,B 

Ψt3 C,D,E,F,G,H 

Ψt4 A,C,F,H 

Ψt5 A,D,E,F,G 

Ψt6 B,H,I 

Ψt7 A,J,K,L,M 

Ψt8 A,D,F,G 

Ψt9 A,C,E,G,H 

Ψt10 C,E,M 

Ψt11 A,C,E 

ψt12 A,B,C 
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Table 4: Prime Assignments 

Items Prime Number 

Equivalent 

A 2 

B 3 

C 5 

D 7 

E 11 

F 13 

G 17 

H 19 

I 23 

J 29 

K 31 

L 37 

M 41 

 
Table 5: Novel Representation 

Tid Transaction Transaction multiple 

Ψt1 2*3*5*7 210 

Ψt2 2*3 6 

Ψt3 5*7*11*13*17*19 1616615 

Ψt4 2*5*13*19 2470 

Ψt5 2*7*11*13*17 34034 

Ψt6 3*19*23 1311 

Ψt7 2*29*31*37*41 2727566 

Ψt8 2*7*13*17 3094 

Ψt9 2*5*11*17*19 35530 

Ψt10 5*11*41 2255 

Ψt11 2*5*11 110 

ψt12 2*3*5 30 

 

Support count of an item or an itemset can be easily 

determined by performing modulo division operation with 

the transaction’s prime product and item’s prime or the 

itemset’s prime product. If the modulo operation gives a 

zero remainder, it indicates that the item or itemset is in 

the transaction. If the remainder is non-zero, it indicates 

that the item or itemset is not present in the transaction. 

In the illustration, support count of itemset {B,C} can be 

found by performing the modulo division of each 

transaction’s prime product by the product ‘55’ of item 

‘B’s corresponding prime number ‘5’ and item ‘C’s 

corresponding prime number ‘11’ as shown in Table 6. 

The support count of itemset {B,C} is found to be ‘4’ as 

the modulo division operation of the four transactions 

with 55 gives zero remainder and the modulo operation 

with other transactions resulted in a Non-zero remainder. 

This representation reduces the memory needed for 

storing the items of the transactions by assigning an 

equivalent prime number for each item. 

 

Table 6:  Support count determination for itemset {B,C} 

Tid Modulo Division Remainder 
Item’s  

Presence 

Ψt1 210 mod 55 Non-zero No 

Ψt2 6 mod 55 Non-zero No 

Ψt3 1616615 mod 55 0 Yes 

Ψt4 2470 mod 55 Non-zero No 

Ψt5 34034 mod 55 Non-zero No 

Ψt6 1311 mod 55 Non-zero No 

Ψt7 2727566 mod 55 Non-zero No 

Ψt8 3094 mod 55 Non-zero No 

Ψt9 35530 mod 55 0 Yes 

Ψt10 2255 mod 55 0 Yes 

Ψt11 110 mod 55 0 Yes 

ψt12 30 mod 55 Non-zero No 

 

In the first pass the algorithm scans the data set  and 

computes the support count of all 1-itemsets. The 

infrequent 1-itemsets are removed from further evaluation. 

Each item is represented by a unique assigned prime 

number and each transaction is represented by the 

multiple of the assigned prime number of the items in the 

itemset. The maximal length itemset M is found and the 

support count is found for all the transactions with the 

same length. The support count is found using prime 

number representation method. The two possibilities are 

as follows: 

 

 If the support count is greater than or equal to the 

minimal support count, it is treated as the 

maximal frequent set and the procedure ends. 

 If the support count for the itemsets of  length M 

is less than the minimal support count, the 

subsets of length equal to N=M/2 is generated 

and their support count is determined 

 

This again leads to the following possibilities 

 

 If the support count of the sets of size N is 

greater than the minimal support count, all 

possible supersets of size N+N/2 are generated 

and their support count is determined. 

 

 If the support count is less than the minimal 

support count, the subsets of length equal to N/2 

is generated and their support count is 

determined. 

 

This procedure is repeated in the same manner until the 

maximal frequent itemset is found. Support count is 

determined using prime number representation method. 
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5.2 Algorithm for master 

This algorithm is based on Cluster based Master-Slave 

architecture using candidate distribution technique. 

Candidate distribution technique reduces the 

communication overhead between master and slave nodes. 

Candidate distribution technique assigns the candidate 

itemsets generated from different parts of database to 

different processors and each processor is assigned 

disjoint candidates, independent of other processors. At 

the same time, the database is shared among all processors, 

so that each processor can generate global counts 

independently. 

 

 Steps of Algorithm for Master: 

 

1. Find the infrequent itemsets of length 1 and store 

them in IF 1 

2. Remove the infrequent 1-items as denoted by IF1 

in all transactions. 

3. Assign separate Prime Number Pj to each unique 

item ITj for n-items. 

4. Represent the itemsets in Prime Number 

Representation form as follows: 

(a) Replace each Transaction’s item ITj by 

Corresponding Prime Number Pj. 

(b)  Represent each Transaction Tj of Size 

m by the multiple Mj of all the prime 

number representation Pj of the items in 

the transaction (P1 x P2 x P3 

x…….xPm) and store them in shared 

memory. 

5. Find the size Maxlength of maximal size 

transaction in Database and put it in shared 

memory. 

 

6. For each node j in the cluster 

Divide the transactions equally based on 

the number of nodes and assign to  j-th 

Node.    

 

                Connect to j-th node’s server program to 

initiate process. 

             End loop 

7. For each node j in the cluster 

Wait until result comes from j-th node 

Show the result from j-th node 

End loop 

5.3 Algorithm for slaves 

          Steps of Algorithm for Slaves:     

 

1. Wait until master initiates process. 

2. Read Transactions Tj from shared memory. 

3. Read Prime number multiple Mj of Transactions 

from shared memory. 

4. Read the size Maxlength of Maximal size 

transaction from shared memory. 

 

                      SG=empty                                               

Where SG is the subset group 

                      FrequentItemset = empty 

                      Start = 1 

 

                       End = Maxlength 

                        j = Maxlength 

 

                       Exitflg = 0 

5. Do While Exitflg = 0 

    For each transaction Tj with size >= j do 

                    For each itemset S of Transaction Tj 

with size j do 

       If S is not in SG AND if IF1’s items are not a 

subset of S then 

         Find the Support count of itemset S 

                          Mj mod K and counting its presence 

using the remainder and store it   in SUPPORT                            

            If SUPPORT >= minsupport then 

Add S to FrequentItemset 

               

            End If  

 

                          Add S to SG;            

              End If 

                                       End loop 

 

                           End loop      

 

                                       Clear the SG 

 

         If  FrequentItemset is not empty 

                                           Start = j 

             j = Round (( Start + End)/2) 

                            If j = End then 

         Send all Itemset AllFrequentItemset to master 

                                                         Exitflg = 1 

 Exit the Do loop 

                  End if 

   Find the infrequent items in infrequent j-size 

                     Itemsets and add them to IF1 

Add FrequentItemset to AllFrequentItemset 

                  Clear the FrequentItemset 

                                      Else 

                                                 

                                  End= j 

                  j = Round (Start + End) /2 

                                If j= Start -1 then 

                                                             Send all 

Itemset AllFrequentItemset to master 
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                                                              Exit the Do 

loop. 

 

                                                End if 

                                        End if 

                              End Do loop      

                                                   

The Master node prunes the transactions by removing 1-

infrequent itemsets and stores the Prime number multiple 

for each transaction in shared memory. It finds the 

maximal length transaction size Maxlength and puts in 

shared memory. It divides the transactions equally to each 

node for candidate generation. Though horizontal 

partitioning, Vertical partitioning methods can be used to 

divide and distribute the transactions, horizontal 

partitioning method is adopted, as it demands minimum 

communication. 

If there are S number of slaves and T number of 

transactions, then T/S number of transactions are assigned 

to each slave if T is a integral  multiple of S. Otherwise, 

S-1 slaves will be assigned T/S transactions and S
th 

slave 

will be assigned (T/S + mod (T/S)) transactions.  Master 

connects to each slave node and initiates the process of 

finding the frequent itemset. Finally, the master node 

shows the global frequent itemsets after gathering the 

local frequent itemsets. After the Master node initiates the 

slave node, it reads the allotted number of transactions 

and Maximal length transaction size Maxlength.  

5.4 Illustration – II 

For the set of transactions given in table 1, the master 

removes the 1-infrequent items {J,   K, L} since their 

support count is less than the minimum support count of 2. 

The transactions are then represented with their assigned 

prime numbers and stored in common memory. The 

transactions are divided equally sent to the slaves. In this 

illustration, 

 

Total number of transactions T = 12 

Number of slaves S = 3 

Number of transactions sent to each slave = 4 

Slave node 1 will process candidates from 1-4 

transactions 

Slave node 2 will process candidates from 5-8 

transactions 

Slave node 3 will process candidates from 9-12 

transactions 

Maxlength = 6 

 

The transactions after removing the 1-infrequent items are 

shown in table 7. Table 8 illustrates the Prime number 

representation of the transactions after pruning the 1-

infrequent items. 

 

Table 7: Transactions after pruning 

Tid Transaction 

Ψt1 A,B,C,D 

Ψt2 A,B 

Ψt3 C,D,E,F,G,H 

Ψt4 A,C,F,H 

Ψt5 A,D,E,F,G 

Ψt6 B,H,I 

Ψt7 A,M 

Ψt8 A,D,F,G 

Ψt9 A,C,E,G,H 

Ψt10 C,E,M 

Ψt11 A,C,E 

ψt12 A,B,C 

 

Table 8: Novel Representation after pruning 

Tid Transaction Transaction multiple 

Ψt1 2*3*5*7 210 

Ψt2 2*3 6 

Ψt3 5*7*11*13*17*19 1616615 

Ψt4 2*5*13*19 2470 

Ψt5 2*7*11*13*17 34034 

Ψt6 3*19*23 1311 

Ψt7 2*41 82 

Ψt8 2*7*13*17 3094 

Ψt9 2*5*11*17*19 35530 

Ψt10 5*11*41 2255 

Ψt11 2*5*11 110 

ψt12 2*3*5 30 
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Slave node 1 determines the support count of the 

candidate itemset of length = Maxlength i.e. 6. Since the 

support count of { C, D, E, F, G, H } is 1, Maxlength = 

Maxlength/2 

Maxlength = 6/2 = 3 

It generates the candidate itemsets of length three as 

{A,B,C}{B,C,D} {C,D,E} {D,E,F}{E,F,G}{F,G,H} 

{A,C,F} {C,F,H} {A,F,H} {D,G,H} and determines their 

support count.  If no candidate itemset has a support count 

greater than 2, Maxlength = round (Maxlength / 2), else 

Maxlength = round (Maxlength +Maxlength /2). 

All the nodes proceed in this manner till the maximum 

frequent itemset is found. Master finally receives all 

frequent itemset from nodes and displays them. 

6. Conclusion 

In this paper, a new Algorithm for Mining Frequent 

Itemsets using Cluster Based Partition Approach was 

proposed. The innovative Prime number representation 

stores only one number for each transaction, it may need 

less memory. The computational complexity is reduced as 

the product of their assigned prime numbers represents 

each candidate itemset. The support count of any set is 

found without any additional scan of the database. The 

pruning of infrequent items in the first scan reduces the 

size of the dataset in the main memory. Present algorithm 

also provide support for the incremental generation of 

association rules i.e. it exhibits scalability and can be 

efficiently used to find low support itemsets within the 

large database. 
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