
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

191

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

Cluster Based Partition Approach for Mining Frequent Itemsets

1
Akhilesh Tiwari,

1
Rajendra K. Gupta, and

2
Dev Prakash Agrawal

1Madhav Institute of Technology & Science, Gwalior, India

2Union Public Service Commission, New Delhi, India

Summary
Data Mining is the process of extracting interesting and

previously unknown patterns and correlations form huge data

stored in databases. Association rule mining- a descriptive

mining technique of data mining, is the process of discovering

items or literals which tend to occur together in transactions. As

the data to be mined is large, the time taken for accessing data is

considerable. This paper describes a new approach for

association mining, based on Master-Slave architecture. It uses

hybrid approach – a combination of bottom up and top down

approaches for searching frequent itemsets. The Apriori

algorithm performs well only when the frequent itemsets are

short. Algorithms with top down approach are suitable for long

frequent itemsets. This new master slave architecture based

algorithm combines both bottom-up and top-down approach.

The Prime number based representation consumes less memory

as each transaction is replaced with the product of the assigned

prime numbers of their items. It reduces the time taken to

determine the support count of the itemsets. The Prime number

based representation offers the flexibility for testing the validity

of metarules and provides reduction in the data complexity.

Key words:
Frequent patterns, Candidate distribution, Hybrid approach,

KDD

1. Introduction

Due to widespread computerization and affordable storage

facilities, an enormous wealth of information is embedded

in huge databases belonging to different enterprises. Such

databases, whether their origin is the business enterprise

or scientific experiment, have spurred a tremendous

interest in the areas of Knowledge Discovery and Data

Mining [1]-[2]. These areas have motivated allowed

statisticians and data miners to develop faster analysis

tools that can help sift and analyze the stockpiles of data,

turning up valuable and often surprising information.

Data mining is the act of drilling through huge volumes of

data to discover relationships, or answer queries too

generalized for traditional query tools. Data mining is part

of the process known as Knowledge Discovery in

Databases (KDD) [1]-[3], which is the automated

approach of the extraction of implicit, understandable,

previously unknown and potentially useful information

from large databases. For extraction of such valuable

information, the KDD process follows an iterative

sequence of steps that include data selection and

integration, data cleaning and preprocessing, data mining

and algorithm selection, and, finally, post processing and

knowledge presentation.

2. Association Rule Problem

The problem of mining association rules is to generate all

rules that have support and confidence greater than or

equal to some user specified minimum support and

minimum confidence threshold respectively.

Association rule mining involves detecting items, which

tend to occur together in transactions, and the association

rules that relate them [4]-[5]. Mining frequent itemsets is

a fundamental and essential operation in data mining

applications including discovery of association rule,

strong rules, correlations, sequential rules and episodes.

Due to the huge size of data and amount of computation

involved in data mining, high-performance computing is

an essential component for any successful large-scale data

mining applications.

Association rule mining finds the set of all subsets of

items that frequently occur in many database records or

transactions, and additionally extracts rule on how a

subset of items influences the presence of another subset.

Consider I= {i1, i2,………im} as a set of items. Let D, the

task relevant data, is a set of database transactions where

each transaction T is a set of items such that T is a subset

of I. Each transaction is associated with an identifier,

called TID. Let A be a set of items. A transaction T is said

to contain A if and only if A is a subset of T.

 An association rule is an implication of the form A =>

B, where A and B are subsets of I and A∩B is also a

subset of I. The rule A => B holds in the transaction set D

with support S, where S is the percentage of transactions

in D that contain AUB (i.e., both A and B). This is the

probability, P (AUB). The rule A => B has confidence C

in the transaction set D if C is the percentage of

transactions in D containing A that also contain B. This is

taken to be the conditional probability, P (B/A). That is,

 Support (AUB) = P (AUB)

 Confidence (AUB) = P (B/A)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

192

The definition of a frequent pattern relies on the following

considerations. A set of items is referred to as an itemset

(pattern). An itemset that contains K items is a K-itemset.

The set {X,Y} is a 2-itemset. The occurrence frequency of

an itemset is the number of transaction that contain the

itemset. This is also known as the frequency or the

support count of an itemset. An itemset satisfies minimum

support if the occurrence frequency of the itemset is

greater than or equal to the minimal support threshold

value defined by the user [7]. The number of transaction

required for the itemset to satisfy minimum support is

therefore referred to as the minimum support count. If an

itemset satisfies minimum support, then it is a frequent

itemset.

A frequent itemset is called closed if it does not have any

superset with the same support [5]. A frequent itemset is

said to be maximal if it has no supersets that are frequent.

The collection of maximal frequent itemsets is a subset of

the collection of closed frequent itemsets, which is a

subset of the collection of all frequent itemsets. Maximal

frequent itemsets are necessary for generating association

rules.

The problem of mining association rules could be

decomposed into two sub problems:

1. Find out all large itemsets and their support

counts. A large itemset is a set of items which are

contained in a sufficiently large number of

transactions, with respect to a support threshold

minimum support.

2. From the set of large itemsets found, find out all

the association rules that have a confidence value

exceeding a confidence threshold minimum

confidence.

Since the solution of the second subproblem is

straightforward, here we are concentrating only on

the first subproblem.

3. Basic Association Rule Mining Algorithms

3.1 Apriori algorithm

The Apriori algorithm[4]-[5]-[6]

 is also called the level-

wise algorithm and was proposed by Agrawal and

Srikanth in 1994. It is the most popular algorithm to find

all of the frequent sets which uses the downward closure

property. The advantage of the algorithm is that before

reading the database at every level, it prunes many of the

sets which are unlikely to be frequent sets by using the

Apriori property, which states that all nonempty subsets

of frequent sets must also be frequent. This property

belongs to a special category of properties called anti-

monotone in the sense that if a set cannot pass a test, all of

its supersets will fail the same test as well.

Using the downward closure property and the Apriori

property, this algorithm works as follows. The first pass

of the algorithm counts the number of single item

occurrences to determine the L1 or single member frequent

itemsets. Each subsequent pass, K, consists of two phases.

First, the frequent itemsets Lk-1 found in the (k-1)th pass

are used to generate the candidate itemsets Ck, using the

Apriori candidate generation algorithm. Next, the

database is scanned and the support of the candidates in

Ck is determined to ensure that Ck itemsets are frequent

itemsets.

Candidate Generation Algorithm

The candidate generation procedure works as follows.

Suppose that the set of frequent 3-itemsets, L3, are {1,2,3},

{1,2,5},{1,3,5},{2,3,5},{2,3,4}. The 4-itemsets that are

generated as candidate itemsets are the supersets of these

3-itemsets and are {1,2,3,5}, {2,3,4,5}, which satisfy the

downward closure property. More formally, if k is the

pass number, Lk-1 is the set of all frequent (k-1)-itemsets,

Ck is the set of candidate sets of pass k, the candidate

generation procedure is as follows:

gen_candidate_itemsets with the given L k-1 as follows:

Ck = Φ

for all itemsets l1 є L k-1 do

for all itemsets l2 є L k-1 do

if l1[1] = l2 [1] ^ l1 [2] = l2 [2] ^ … ^ l1 [k-1] < l2 [k-1]

then c = l1 [1], l1 [2] … l1 [k-1], l2 [k-1]

Ck = Ck {c}

So once candidate sets are generated those sets are subject

to pruning process to ensure that all the subsets of the

candidate set are already known to be frequent itemsets.

Pruning Algorithm

The pruning step eliminates some candidate sets which

are not found to be frequent, and is:

Prune(Ck)

for all c Є Ck

for all (k-1)-subsets d of c do

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

193

 ifd Є L k-1

then Ck = Ck – {c}

3.2 Apriori algorithm description

The Apriori frequent itemset discovery algorithm uses the

above algorithms (candidate generation and pruning) at

every iteration. It goes from level 1 to level k or until no

candidate set remains after pruning. The Apriori algorithm

is as follows.

Initialize: K: = 1, C1 = all the 1 – itemsets;

Read the database to count the support of C1 to determine

L1.

L1 := {Frequent 1- itemsets};

K:= 2; // K represents the pass number //

While (K-1 ≠ Null set) do

begin

Ck := gen_candidate_itemsets with the given Lk-1

Prune (Ck)

for all transactions t Є T do

Calculate the support values;

Lk := All candidates in Ck with a minimum support;

K:= K+1;

End

Answer := k Lk;

For an example of the Apriori algorithm, suppose the

following transaction database is given below:

Table1: Transaction Database

 A1 A2 A3 A4 A5

Ψ t1 1 0 0 0 1

Ψ t2 0 1 0 1 0

Ψ t3 0 0 0 1 1

Ψ t4 0 1 1 0 0

Ψ t5 0 0 0 0 1

Suppose σ min = 20 %, which means that an itemset must

supported by at least one transaction to be frequent

because T only has five records.

In the first pass, where k=1, T is read to find the support

of 1- itemsets given below.

{1}→ 1, {2}→2, {3} →1, {4} → 2, {5} → 3

L1 := { {1}→ 1, {2}→2, {3} →1, {4} → 2, {5} → 3}

In the second pass where k=2 , the candidate set C2

becomes

C2 := { {1,2}, {1,3}, {1,4}, {1,5}, {2,3},

{2,4},{2,5},{3,4},{3,5},{4,5} }

The pruning step does not change C2 as all subsets are

present in C1.

Read the database to count the support of elements in C2

to get:

{ {1,2}→ 0, {1,3}→0, {1,4} →0, {1,5}→1, {2,3}→ 1,

{2,4} →1, {2,5}→0, {3,4}→0, {3,5}→0, {4,5}→1} and

reduces to

L2 = { {1,5}→1, {2,3}→1, {2,4}→1, {4,5}→1}

In the third pass where k=3, the candidate generation step

proceeds by:

In the candidate generation step,

 Using {1,5} and {4,5} it generates {1,4,5}

 Using {2,3} and {2,4} it generates {2,3,4}

 Using {2,4} and {4,5} it generates {2,4,5}

So C3 := { {1,4,5}, {2,3,4}, {2,4,5}}

The pruning step prunes {1,4,5}, {2,3,4},{2,4,5} as not all

subsets of size 2, i.e., {1,4}, {3,4}, {2,5} are not present

in L3.

So C3 := Φ

The total frequent sets become L:= L1 L2.

4. Partition Algorithm

The partition algorithm [1]-[2]-[3] is based in the

observation that the frequent sets are normally very few in

number compared to the set of all itemsets. As the result,

if the set of transactions are partitioned in to smaller

segments such that each segment can be accommodated in

the main memory, then the set of frequent sets of each of

these partitions can be computed. Therefore this way of

finding the frequent sets by partitioning the database may

improve the performance of finding large itemsets in

several ways:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

194

 By taking advantage of the large itemset property,

this is that a large itemset must be large in at least one

of the partitions. This idea can help to design

algorithms more efficiently than those based on

looking at the entire database.

 Partitioning algorithms may be able to adapt better to

limited main memory. Each partition can be created

such that it fits in to main memory. In addition it

would be expected that the number of itemsets to be

counted per partition would be smaller than those

needed for the entire database.

 By using partitioning, cluster based and/or distributed

algorithms can be easily created, where each

partitioning could be handled by a separate machine.

 Incremental generation of association rules may be

easier to perform by treating the current state of the

database as one partition and treating the new entries

as a second partition.

In order to achieve all the above advantages of

partitioning the transaction database, the partition

algorithm works as follows:

The partition algorithm uses two scans of the database to

discover all frequent sets. In one scan, it generates a set

of all potential frequent itemsets by scanning the

database. This set is a superset of all frequent itemsets,

i.e. it may contain false positives, but no false negatives

are reported. During the second scan, counters for each

of these itemsets are setup and their actual support is

measured in one scan of the database.

The partition approach of generating frequent itemsets is

given below:

P = partition_database (T); N = Number of partitions;

// Phase 1

 for i = 1 to n do begin

 read _in_partition(Ti in P)

Li = generate all frequent itemsets of Ti using apriori

method in main memory.

End

// Merge Phase

 For (k=2 ; Li
k
 ≠Φ, i= 1,2,………,n; k++) do begin

Ck
G

= Y i-1
n
L i

k

End

// Phase II

 For i= 1 to n do begin

Read _ in _ partition(Ti in P)

For all candidates c Є C
G

 compute s(c)Ti

End

 L
G
 = { c Є C

G
 / s(c)Ti ≥ σ }

Answer = L
G

As given the partition algorithm above, here is the

example of implementing it:

Table2: Transaction Database

 A1 A2 A3 A4 A5

Ψ t1 1 0 0 0 1

Ψ t2 0 1 0 1 0

Ψ t3 0 0 0 1 1

Ψ t4 0 1 1 0 0

Ψ t5 0 0 0 0 1

Ψ t6 0 1 1 1 0

Here is the transaction database, A = {A1, A2, A3, A4,

A5}, assume σ = 20 %.

Here the database is partitioned in to 3 partitions say ξT1,

ξT2, ξT3, each containing 2 transactions. The first

partition ξT1 contains 1 to 2 transactions, ξT2 contains 3

to 4, and ξT3 contains 5 to 6 transactions. Here the local

support is equal to the given support, which is 20%. So

σ = σ1= σ2 = σ3 = 20%.

The working of partition algorithm is as follows:

L1 := the frequent sets from the partition in ξT1, which

are found using the apriori algorithm on ξT1 separately.

L2 := the frequent sets from the partition in ξT2, which

are found using the apriori algorithm on ξT2 separately.

L3 := the frequent sets from the partition in ξT3, which

are found using the apriori algorithm on ξT3 separately.

In phase II, the candidate set as

C := L1 L2 L3

Later read the database once again to compute the global

support of the sets in C and get the final set of frequent

sets.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

195

4.1 Problem specification

In recent years several fast algorithms including Apriori

[3] and Partition [2] for generating frequent itemsets have

been suggested in the literature[4]-[7]-[8]-[9]-[10]

. A

critical analysis of these has led the authors to identify the

following limitations/shortcomings in them.

 By using partitioning, cluster based parallel and/or

distributed algorithms can be easily created, where each

partitioning could be handled by a separate machine.

 Most of the algorithms[2]-[8]-[9] for discovering

Frequent Patterns require multiple passes over the

database resulting in a large number of disk reads and

placing a huge burden on the I/O subsystem.

 Algorithms are available for maintaining the

association rules[2]-[10] due to addition or deletion of

transactions in the database. However, algorithms are not

available for mining incremental rules due to addition of

more items.

 Currently available Algorithms [1]- [4]-[8] for

mining frequent itemsets do not offer flexibility and

reusability of computation during mining process.

5. Proposed Algorithm

To address the above-mentioned limitations/shortcomings,

a new Algorithm for Mining Frequent Itemsets using

cluster based partition approach (CBPA) is being

proposed. This algorithm integrates both the bottom up

search as well as the top-down search. This algorithm is

suitable for itemsets of any size. It uses the top down

approach to find the frequent subsets of itemsets. The

bottom up approach is used to find the supersets of the

frequent itemsets. Most of the algorithms for mining the

frequent items are based on bottom-up search approach.

In this approach, the search starts from 1 itemsets and

extends one level in each pass until all maximal frequent

itemsets are found. This approach performs well if the

length of the maximal itemset is short. If the maximal

itemset is longer, top down search is suitable. For a

transaction with a medium sized maximal frequent set, a

combination of both these approaches performs well. This

algorithm adopts Candidate distribution method to
distribute the candidates among all nodes. The support

count of the supersets and the subsets are found

effectively from the prime number representation method.

The Prime number representation reduces the memory

needed for storing the items of the transactions by

assigning a unique prime number for each item.

Proposed algorithm uses prime numbers to represent the

items in the transaction. Each item is assigned an unique

prime number. Each transaction is represented by the

product of the corresponding prime number of individual

items in the transaction. Since the product of the prime

number is unique, modulo division of a transaction’s

prime product by the prime product of the itemset can

assure the presence or absence of the itemset in any

transaction.

 If the remainder is zero, then the itemset is present

in the transaction.

 If the remainder is Non-zero, then the itemset is not

present in the transaction.

By checking the presence of itemset in any transaction using

the above discussed method / approach, support count can

be calculated very quickly. Each transaction in the database

can be represented in a single number by using prime

representation.

5.1 I llustration-I

Consider a sample database as shown in Table 3. In the

proposed approach, every item is assigned a unique prime

number as shown in Table 4. Table 5 shows the transaction

table with the itemset replaced by the product of the

equivalent prime numbers of the itemset.

Table 3: Sample Database

Tid Transaction

Ψt1 A,B,C,D

Ψt2 A,B

Ψt3 C,D,E,F,G,H

Ψt4 A,C,F,H

Ψt5 A,D,E,F,G

Ψt6 B,H,I

Ψt7 A,J,K,L,M

Ψt8 A,D,F,G

Ψt9 A,C,E,G,H

Ψt10 C,E,M

Ψt11 A,C,E

ψt12 A,B,C

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

196

Table 4: Prime Assignments

Items Prime Number

Equivalent

A 2

B 3

C 5

D 7

E 11

F 13

G 17

H 19

I 23

J 29

K 31

L 37

M 41

Table 5: Novel Representation

Tid Transaction Transaction multiple

Ψt1 2*3*5*7 210

Ψt2 2*3 6

Ψt3 5*7*11*13*17*19 1616615

Ψt4 2*5*13*19 2470

Ψt5 2*7*11*13*17 34034

Ψt6 3*19*23 1311

Ψt7 2*29*31*37*41 2727566

Ψt8 2*7*13*17 3094

Ψt9 2*5*11*17*19 35530

Ψt10 5*11*41 2255

Ψt11 2*5*11 110

ψt12 2*3*5 30

Support count of an item or an itemset can be easily

determined by performing modulo division operation with

the transaction’s prime product and item’s prime or the

itemset’s prime product. If the modulo operation gives a

zero remainder, it indicates that the item or itemset is in

the transaction. If the remainder is non-zero, it indicates

that the item or itemset is not present in the transaction.

In the illustration, support count of itemset {B,C} can be

found by performing the modulo division of each

transaction’s prime product by the product ‘55’ of item

‘B’s corresponding prime number ‘5’ and item ‘C’s

corresponding prime number ‘11’ as shown in Table 6.

The support count of itemset {B,C} is found to be ‘4’ as

the modulo division operation of the four transactions

with 55 gives zero remainder and the modulo operation

with other transactions resulted in a Non-zero remainder.

This representation reduces the memory needed for

storing the items of the transactions by assigning an

equivalent prime number for each item.

Table 6: Support count determination for itemset {B,C}

Tid Modulo Division Remainder
Item’s

Presence

Ψt1 210 mod 55 Non-zero No

Ψt2 6 mod 55 Non-zero No

Ψt3 1616615 mod 55 0 Yes

Ψt4 2470 mod 55 Non-zero No

Ψt5 34034 mod 55 Non-zero No

Ψt6 1311 mod 55 Non-zero No

Ψt7 2727566 mod 55 Non-zero No

Ψt8 3094 mod 55 Non-zero No

Ψt9 35530 mod 55 0 Yes

Ψt10 2255 mod 55 0 Yes

Ψt11 110 mod 55 0 Yes

ψt12 30 mod 55 Non-zero No

In the first pass the algorithm scans the data set and

computes the support count of all 1-itemsets. The

infrequent 1-itemsets are removed from further evaluation.

Each item is represented by a unique assigned prime

number and each transaction is represented by the

multiple of the assigned prime number of the items in the

itemset. The maximal length itemset M is found and the

support count is found for all the transactions with the

same length. The support count is found using prime

number representation method. The two possibilities are

as follows:

 If the support count is greater than or equal to the

minimal support count, it is treated as the

maximal frequent set and the procedure ends.

 If the support count for the itemsets of length M

is less than the minimal support count, the

subsets of length equal to N=M/2 is generated

and their support count is determined

This again leads to the following possibilities

 If the support count of the sets of size N is

greater than the minimal support count, all

possible supersets of size N+N/2 are generated

and their support count is determined.

 If the support count is less than the minimal

support count, the subsets of length equal to N/2

is generated and their support count is

determined.

This procedure is repeated in the same manner until the

maximal frequent itemset is found. Support count is

determined using prime number representation method.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

197

5.2 Algorithm for master

This algorithm is based on Cluster based Master-Slave

architecture using candidate distribution technique.

Candidate distribution technique reduces the

communication overhead between master and slave nodes.

Candidate distribution technique assigns the candidate

itemsets generated from different parts of database to

different processors and each processor is assigned

disjoint candidates, independent of other processors. At

the same time, the database is shared among all processors,

so that each processor can generate global counts

independently.

 Steps of Algorithm for Master:

1. Find the infrequent itemsets of length 1 and store

them in IF 1

2. Remove the infrequent 1-items as denoted by IF1

in all transactions.

3. Assign separate Prime Number Pj to each unique

item ITj for n-items.

4. Represent the itemsets in Prime Number

Representation form as follows:

(a) Replace each Transaction’s item ITj by

Corresponding Prime Number Pj.

(b) Represent each Transaction Tj of Size

m by the multiple Mj of all the prime

number representation Pj of the items in

the transaction (P1 x P2 x P3

x…….xPm) and store them in shared

memory.

5. Find the size Maxlength of maximal size

transaction in Database and put it in shared

memory.

6. For each node j in the cluster

Divide the transactions equally based on

the number of nodes and assign to j-th

Node.

 Connect to j-th node’s server program to

initiate process.

 End loop

7. For each node j in the cluster

Wait until result comes from j-th node

Show the result from j-th node

End loop

5.3 Algorithm for slaves

 Steps of Algorithm for Slaves:

1. Wait until master initiates process.

2. Read Transactions Tj from shared memory.

3. Read Prime number multiple Mj of Transactions

from shared memory.

4. Read the size Maxlength of Maximal size

transaction from shared memory.

 SG=empty

Where SG is the subset group

 FrequentItemset = empty

 Start = 1

 End = Maxlength

 j = Maxlength

 Exitflg = 0

5. Do While Exitflg = 0

 For each transaction Tj with size >= j do

 For each itemset S of Transaction Tj

with size j do

 If S is not in SG AND if IF1’s items are not a

subset of S then

 Find the Support count of itemset S

 Mj mod K and counting its presence

using the remainder and store it in SUPPORT

 If SUPPORT >= minsupport then

Add S to FrequentItemset

 End If

 Add S to SG;

 End If

 End loop

 End loop

 Clear the SG

 If FrequentItemset is not empty

 Start = j

 j = Round ((Start + End)/2)

 If j = End then

 Send all Itemset AllFrequentItemset to master

 Exitflg = 1

 Exit the Do loop

 End if

 Find the infrequent items in infrequent j-size

 Itemsets and add them to IF1

Add FrequentItemset to AllFrequentItemset

 Clear the FrequentItemset

 Else

 End= j

 j = Round (Start + End) /2

 If j= Start -1 then

 Send all

Itemset AllFrequentItemset to master

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

198

 Exit the Do

loop.

 End if

 End if

 End Do loop

The Master node prunes the transactions by removing 1-

infrequent itemsets and stores the Prime number multiple

for each transaction in shared memory. It finds the

maximal length transaction size Maxlength and puts in

shared memory. It divides the transactions equally to each

node for candidate generation. Though horizontal

partitioning, Vertical partitioning methods can be used to

divide and distribute the transactions, horizontal

partitioning method is adopted, as it demands minimum

communication.

If there are S number of slaves and T number of

transactions, then T/S number of transactions are assigned

to each slave if T is a integral multiple of S. Otherwise,

S-1 slaves will be assigned T/S transactions and S
th

slave

will be assigned (T/S + mod (T/S)) transactions. Master

connects to each slave node and initiates the process of

finding the frequent itemset. Finally, the master node

shows the global frequent itemsets after gathering the

local frequent itemsets. After the Master node initiates the

slave node, it reads the allotted number of transactions

and Maximal length transaction size Maxlength.

5.4 Illustration – II

For the set of transactions given in table 1, the master

removes the 1-infrequent items {J, K, L} since their

support count is less than the minimum support count of 2.

The transactions are then represented with their assigned

prime numbers and stored in common memory. The

transactions are divided equally sent to the slaves. In this

illustration,

Total number of transactions T = 12

Number of slaves S = 3

Number of transactions sent to each slave = 4

Slave node 1 will process candidates from 1-4

transactions

Slave node 2 will process candidates from 5-8

transactions

Slave node 3 will process candidates from 9-12

transactions

Maxlength = 6

The transactions after removing the 1-infrequent items are

shown in table 7. Table 8 illustrates the Prime number

representation of the transactions after pruning the 1-

infrequent items.

Table 7: Transactions after pruning

Tid Transaction

Ψt1 A,B,C,D

Ψt2 A,B

Ψt3 C,D,E,F,G,H

Ψt4 A,C,F,H

Ψt5 A,D,E,F,G

Ψt6 B,H,I

Ψt7 A,M

Ψt8 A,D,F,G

Ψt9 A,C,E,G,H

Ψt10 C,E,M

Ψt11 A,C,E

ψt12 A,B,C

Table 8: Novel Representation after pruning

Tid Transaction Transaction multiple

Ψt1 2*3*5*7 210

Ψt2 2*3 6

Ψt3 5*7*11*13*17*19 1616615

Ψt4 2*5*13*19 2470

Ψt5 2*7*11*13*17 34034

Ψt6 3*19*23 1311

Ψt7 2*41 82

Ψt8 2*7*13*17 3094

Ψt9 2*5*11*17*19 35530

Ψt10 5*11*41 2255

Ψt11 2*5*11 110

ψt12 2*3*5 30

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

199

Slave node 1 determines the support count of the

candidate itemset of length = Maxlength i.e. 6. Since the

support count of { C, D, E, F, G, H } is 1, Maxlength =

Maxlength/2

Maxlength = 6/2 = 3

It generates the candidate itemsets of length three as

{A,B,C}{B,C,D} {C,D,E} {D,E,F}{E,F,G}{F,G,H}

{A,C,F} {C,F,H} {A,F,H} {D,G,H} and determines their

support count. If no candidate itemset has a support count

greater than 2, Maxlength = round (Maxlength / 2), else

Maxlength = round (Maxlength +Maxlength /2).

All the nodes proceed in this manner till the maximum

frequent itemset is found. Master finally receives all

frequent itemset from nodes and displays them.

6. Conclusion

In this paper, a new Algorithm for Mining Frequent

Itemsets using Cluster Based Partition Approach was

proposed. The innovative Prime number representation

stores only one number for each transaction, it may need

less memory. The computational complexity is reduced as

the product of their assigned prime numbers represents

each candidate itemset. The support count of any set is

found without any additional scan of the database. The

pruning of infrequent items in the first scan reduces the

size of the dataset in the main memory. Present algorithm

also provide support for the incremental generation of

association rules i.e. it exhibits scalability and can be

efficiently used to find low support itemsets within the

large database.

References
[1] Arun K Pujari. Data Mining Techniques (Edition

5):Hyderabad, India: Universities Press (India)

Private Limited, 2003.

[2] Margatet H. Dunham. Data Mining, Introductory and

Advanced Topics: Upper Saddle River, New Jersey:

Pearson Education Inc., 2003.

[3] Jiawei Han. Data Mining, concepts and Techniques:

San Francisco, CA: Morgan Kaufmann

Publishers.,2004.

[4] R.K. Gupta. Development of Algorithms for New

Association Rule Mining System, Ph.D. Thesis,

Submitted to ABV-Indian Institute of information

Technology & Management, Gwalior, India, 2004.

[5] A. T. Bjorvand. Object Mining: A Practical

Application of Data Mining for the Construction and

Maintenance of Software Components. Proceedings

of the Second European Symposium, PKDD-98,

Nantes, France, 1998, pp :121-129.

[6] Akhilesh Tiwari, R. K. Gupta, D.P. Agrawal,

Mining Frequent Itemsets Using Prime Number

Based Approach. In Proc. 3
rd

 International

Conference on Advanced Computing and

Communication Technologies (ICACCT), India,

November 08-09,2008, pp: 138-141.

[7] M. Houtsma and A. Swami. Set Oriented Mining for

Association Rules in Relational Databases. In

Proceedings of 11
th

 International conference on Data

Engineering, 1995, pp 25-33,.

[8] Agarwal R., Imielinski T., and Swami A. Mining

associations between sets of items in massive

databases. In Proceedings of the ACM SIGMOD

International Conference on Management of Data,

Washington D.C. , May 1993, pp. 207-216.

[9] M. Houtsma and A. Swami, Set Oriented Mining for

Association Rules in RelationalDatabases. In Proceedings of

11
th
 IEEE International Conference on Data Engineering,

1995, pp : 25-33.

[10] Rakesh Agrawal and R. Srikant . Fast Algorithm for

Mining Association Rules in Large Databases,

Proceedings of the 20
th

 International Conference on

Very Large Databases, Santigo, Chile, 1994, pp

487-499.

