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Summary 

We have proposed a graphics floating-point processing unit 

(G-FPU) with 48% reduction of hardware for a conventional 

processing unit that has both functions of a SIMD-type execution 

unit dedicated for multiply-accumulate operations and a 

general-purpose execution unit. The hardware reduction is 

obtained by realizing a dual-structured general-purpose 

execution unit that can handle both repeated operations of 

multiply-accumulate for geometry transformations and irregular 

operations such as ray-tracing in graphics processing with 9% 

increase in the hardware for a SIMD-type execution unit. To 

utilize multiple execution units that can operate in parallel, the 

high performance of data transfer is indispensable. Therefore, we 

have proposed a multi-word load mechanism and a selective 

result store mechanism to load and store data in parallel with 

executions. These mechanisms reduce the number of load/store 

instructions and achieve the high performance of data transfer 

required for parallel operations. Moreover, they remove a buffer 

memory of 7.9 K gates that temporarily stores data for 

executions. The effective data transfer reduces the processing 

cycles for intersection calculation by 26% and geometry 

transformation by 39%, compared with the case that 

conventional load/store instructions are used. 
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1. Introduction 

High performance for high quality and fast processing of 

computer graphics and small hardware for portable 

devices have been required for a floating-point processing 

unit. Generally, in a performance-oriented floating-point 

processing unit for graphics a single-instruction 

multiple-data (SIMD) architecture is adopted for the 

high-speed execution of multiply-accumulate operations 

such as geometry transformation [1][2]. The SIMD-type 

execution unit that performs the same instruction for 

multiple data in parallel is suitable for a geometry 

transformation, requiring four multiply-accumulate 

operations for input data repeatedly in parallel. However, 

since the SIMD-type execution unit cannot execute 

different operations in parallel, a general-purpose 

execution unit is added for irregular operations such as 

ray-tracing and shading processing. 

Recently, high-performance general-purpose graphics 

processing units with many processor cores have been 

developed for workstations and personal computers that 

focus on programmability, flexibility, and high 

performance. These processing units achieve high 

performance by executing operations of multiple threads 

or multiple data with many processor cores in parallel 

[3][4]. 

The targets of our processing unit are low-cost consumer 

electric products, such as mobile products and personal 

audio-visual products. Consequently, it is difficult for our 

unit to implement many processor cores because of cost 

and power consumption constraints. Therefore, we have 

considered a general-purpose processing unit that can 

efficiently perform not only regular operations, such as 

multiply-accumulate, but also other irregular operations. 

By this, eliminating the SIMD-type execution unit, it can 

be widely applied to cost sensitive systems. 

In graphics processing, it is necessary to implement plural 

execution units by taking account of the number of 

operations that can be executed simultaneously [5][6]. 

Moreover, to realize high performance and versatility, the 

following two mechanisms are necessary: 

(1) A flexible parallel execution mechanism. It is 

necessary to have a mechanism to execute both repetition 

of multiply-accumulate operations and irregular operations 

efficiently by changing the structure of the execution units 

flexibly. 

(2) A highly efficient data transfer mechanism. To 

achieve a high performance of data processing with plural 

execution units, a mechanism for the high performance of 

data transfer is indispensable to supply data for operations 

and to store execution results without delay. 

In this paper, we describe a graphics floating-point 

processing unit (G-FPU) that can efficiently perform 

pipeline operations for repetition of multiply-accumulate 

operations, such as geometry transformation, keeping 

versatility for irregular operations, such as ray-tracing and 

shading processing. We propose new multi-word load and 

selective result store mechanisms that achieve a high 
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performance of data transfer, reducing data transfer 

instructions. 

We show examples of applying G-FPU in which data 

transfer for both repeated multiply-accumulate operations 

and irregular operations are performed efficiently. 

2. Graphics Floating-point processing unit 

(G-FPU) 

2.1 Concept of G-FPU 

Generally, a performance-oriented graphics processing 

unit has plural multiply-accumulate execution units 

controlled by SIMD-type instructions to execute 

operations, such as geometry transformation, at high speed. 

A geometry transformation is a product of a matrix and a 

coordinate vector and is calculated by repeating four 

multiply-accumulate operations. Therefore, a SIMD-type 

multiply-accumulate execution unit that can execute four 

multiply-accumulate operations in parallel by one 

instruction is suitable for a geometry transformation. 

Because repeated multiply-accumulate operations are 

executed in a pipeline manner with this execution unit, a 

high throughput can be achieved. 
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Fig. 1  Outline of a graphics processing unit.. 

The SIMD-type execution unit is suited for regular 

repeated operations. However, it cannot execute different 

operations in parallel. Because of this inflexibility, a 

general-purpose execution unit is added for irregular 

operations. Besides, a local buffer memory is often added 

to supply data for operations, and this data is transferred in 

parallel with execution using direct memory access 

(DMA). Fig.1(a) outlines a conventional graphics 

processing unit consisting of a SIMD-type execution unit 

and a general-purpose execution unit. A conventional 

processing unit like this one can achieve high execution 

performance, but its hardware is large. 

To realize a graphics processing unit with small circuits, 

we eliminate the SIMD-type execution unit and adopt a 

structure that executes both regular repeated 

multiply-accumulate operations and irregular operations 

efficiently within the same execution unit. Furthermore, 

we remove the buffer memory that temporarily stores data 

for execution. Fig.1(b) outlines the proposed G-FPU. 

2.2 Structure of the G-FPU 

Fig.2 shows a SIMD-type execution unit and a 

general-purpose execution unit for parallel execution of 

three operations used in a conventional graphics 

processing unit. 
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Fig. 2  SIMD-type and ge neral-purpose execution units 

used in a conventional graphics processing unit. 

To use multiply-accumulate execution units for 

general-purpose processing, the structure shown in 

Fig.3(a) can be considered [7]. In this structure, there are 

two multiply-accumulate execution units that form two 

data-paths. The multiplier (FMUL) and adder (FAU) that 

compose each multiply-accumulate execution unit can be 

separated. To execute multiply-accumulate operations 

repeatedly, FMUL and FAU are connected serially and 

work in a pipelining manner. The results of 

multiply-accumulate are stored in the accumulation 

register (ACC). To make FMULs and FAUs versatile, two 

operations are selected arbitrarily from a group of two 

additions and two multiplications and then executed in 

parallel by separating FMULs and FAUs. 
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To execute more operations in parallel and remove the 

ACC, the structure shown in Fig.3(b) can be considered. 

Because each of two FMULs and two FAUs is used as an 

independent data-path, all of them can work in parallel. 

However, the ports for the register file increase to supply 

data to four data-paths from the register file and to store 

results to it. 
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Fig. 3  Structure of execution unit for both multiply-accumulate and 
general-purpose operations. 

We think that the degree of execution parallelism is not so 

high, about 2 or 3 in irregular processing such as 

ray-tracing and shading. Therefore, we propose the 

general-purpose execution unit with a dual-structure 

shown in Fig.3(c). In this structure, the execution units 

form three data-paths to execute, in parallel, three 

operations selected from a group of two additions and two 

multiplications. By connecting FMULs with FAUs and 

supplying each of two input data for the data-path A to 

each of two FAUs as accumulated data, two 

multiply-accumulates can be executed repeatedly in 

parallel. 

Table 1 shows estimates of hardware size for each 

data-path structure. Estimates were obtained by result of 

logic synthesis and some consideration. The conventional 

structure in Table 1 refers to the structure that has both the 

multiply-accumulate execution unit and the 

general-purpose execution unit shown in Fig.2. The 

structures (a), (b), and (c) in Table 1 correspond to the 

structures (a), (b), and (c) in Fig.3, respectively, and are 

general-purpose execution units for both 

multiply-accumulate operations and irregular operations. 

Our proposed dual-structured general-purpose execution 

unit (c) can handle both repetition of two 

multiply-accumulates and three flexible parallel operations 

with hardware increase of 7%, compared with the structure 

(a), by adding ports to the register file for one data-path 

and four selectors and eliminating the ACC. Moreover, the 

structure (c) is 9% larger than the SIMD-type execution 

unit, but reduces the hardware size of the conventional 

structure with both units from 48.1 K to 25.2 K gates, 

eliminating the SIMD-type execution unit. 

Table 1: Estimation of the hardware size for each data-path structure 

including the register file. One gate is equivalent to one 2-input NAND. 
Structure Num. of gates 

Conventional (Fig.2) 

2-way SIMD (2-MAC) 

General-purpose (3-datapath) 

48.1 K 

23.1 K 

25.0 K 

For general-purpose and MAC (Fig.3) 

(a) 2-datapath / 2-MAC 23.5 K 

(b) 4-datapath / 2-MAC 26.7 K 

(c) 3-datapath / 2-MAC 25.2 K 

 

Furthermore, divider and square-root execution units, 

which are often used in graphics processing, are added to 

the structure above in G-FPU. Fig.4 shows a block 

diagram of G-FPU, which works as a coprocessor of the 

integer unit (IU). Floating-point instructions read out from 

the instruction memory are sent to G-FPU and executed. 

IU executes integer operations, load/store, and branch 

instructions. 

G-FPU consists of two FAUs, two FMULs, a divider 

(FDIV), a square-root execution unit (FSRT), a 

floating-point register file (FREG), and an instruction 

decoder (DEC). For fast processing, FMUL, FDIV, and 

FSRT use a redundant binary expression in the 

intermediate execution of a mantissa part. Since there is no 

propagation of a carry in the addition of the redundant 

binary, the addition can complete within a constant time 

regardless of data length [8][9][10][11]. FAU1 is assigned 

to data-path A, FAU2 and FMUL1 to data-path B, and 

FMUL2, FDIV, and FSRT to data-path C. FREG consists 

of 32 32-bit registers (FR0-FR31) and has two read ports 

and one write port for each of three data-paths. FR0 is a 

special register from which zero is always read out. 

Furthermore, FREG has one 64-bit write port for data load 

from memory. 
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Fig. 4  Block diagram of G-FPU. 

3. Data transfer mechanism 

A maximum of four operations for the repetition of 

multiply-accumulate or a maximum of three for other 

operations can be executed in parallel. However, 

insufficient capability to supply data for operations and to 

transfer results could bring a large degradation of 

performance. To obtain a sufficient data transfer capability, 

there is a scheme to have a buffer memory and to transfer 

data needed for the next processing from a main memory 

to the buffer memory in parallel with data processing. For 

geometry transformation, sixteen words of matrix 

coefficients, four words of input coordinates, and four 

words of output coordinates are needed. Thus, a total of 24 

words are needed and two banks of 24-word memory are 

required that consist of two read ports and one write port 

to transfer data during data processing. The buffer memory 

would be approximately 7.9 K gates, about 32% of 

structure (c) in Table 1. 

For hardware reduction, FREG is used instead of buffer 

memory to supply data from the data memory to G-FPU. 

Since the capacity of FREG is small, a fine control for 

data transfer is necessary according to the flow of 

processing. Usually load/store instructions are used to 

transfer data between the register file and memory, but 

taking this approach could reduce performance because of 

increase of instructions. Therefore, we propose the 

multi-word load mechanism and the selective result store 

mechanism to achieve a high performance of data transfer. 

These new mechanisms make it possible to control data 

transfer finely with instructions and to reduce performance 

degradation caused by an increase of instructions. 

3.1 Multi-word transfer mechanism 

The multi-word transfer mechanism transfers multiple 

words from the memory to FREG in parallel with 

executions of floating-point operations by G-FPU. Fig.5 

shows the mechanism that performs load and store for 

FREG through IU. 
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Fig. 5  Data transfer mechanism. 

Data memory for load/store is accessed by the load/store 

unit (LDSTU) in IU. A new load-multi instruction 

(FLDM) is added for the multi-word load mechanism to 

transfer plural words. 

The FLDM instruction specifies the IU register that stores 

the start address for data load, the number of words to be 

loaded, and the G-FPU register to which the first word is 

stored. According to this information, LDSTU reads the 

specified number of words from the data memory 

consecutively and supplies them to G-FPU. Then, G-FPU 

writes them to FREG sequentially, incrementing the 

register number specified by IU. 

The read bus of the data memory is 64-bit wide, and two 

words are written to the two registers of FREG at one 

access. 

The execution of floating-point operation instructions 

(FPU instructions) after FLDM can begin without waiting 

for the completion of the data load by FLDM. However, if 

an FPU instruction needs data which have not been loaded 

yet, the instruction must wait for the data to be loaded. 

Fig.6 shows the mechanism to detect the register 

dependency at the multi-word load. When an FLDM 

instruction is executed, FREG write-reservation bits that 

correspond to the registers to be loaded are set to "1". 

When data is loaded into the register, the corresponding 

write-reservation bit is cleared. If the FPU instruction after 
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FLDM uses the register with the corresponding 

write-reservation bit set to "1", then the register 

dependency is detected and the pipeline operation is 

locked. 
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Fig. 6  Detection of Register Dependency on Multi-word Load 

3.2 Selective result store mechanism 

The selective result store mechanism stores the execution 

result to the memory at the same time that it is stored to 

FREG. By using this mechanism, a maximum of two 

data-paths out of three can be specified, and results of the 

specified data-paths are sent to LDSTU and stored to 

memory. The memory address of write is the value written 

in the address register by IU beforehand and is 

incremented after each memory write. This mechanism 

eliminates both extra store instructions needed to store 

data and a read port of FREG that is equivalent to about 

0.8K gates. 

4. Instruction format 

Fig.7 shows the instruction format of G-FPU. 

FMT is the field used to specify the type of instruction. 

The value "0xf" of FMT means that it is an FPU 

instruction that is 64-bit in length. Values other than "0xf" 

mean that an instruction with a 32-bit length is executed in 

the IU. FA, FM, FD, and RT fields are control fields for 

addition, multiplication, division, and square-root 

operation, respectively. They specify the presence of the 

operation and the register port to be used. The ports A, B, 

and C correspond to the data-paths A, B, and C 

respectively. For division and square-root operations, there 

is an execution start command and a result transfer 

command. 

A function to double the result of addition is added to 

FAU1. DB field controls the double operation. 

If FA specifies two additions for multiply-accumulate and 

FM specifies two multiplications, then each of the two 

adders adds the data of register port A and the result 

obtained by the multiplier at the previous cycle, and the 

two multipliers operate in parallel with the adders. Thus, 

two multiply-accumulate operations are executed. 
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Wa : port A write register number

Rb1, Rb2 : port B read register number
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Fig. 7  Instruction format. 

Field ST specifies whether an execution result is stored to 

the memory and to FREG simultaneously. This field can 

specify a maximum of two data-paths out of data-path A, 

B, and C. 

Fields Ra, Ra2, and Wa specify two read and one write 

register numbers, respectively, for data-path A. Likewise, 

fields Rb1, Rb2, and Wb are for data-path B, and fields 

Rc1, Rc2, and Wc are for data-path C. 

5. Pipeline operation 

IU performs a pipeline operation consisting of five stages - 

F, D, E, M, and W. An instruction is fetched at stage F, 

decoded at D, and executed at E, and the result is stored to 

IREG at stage W. For load/store instructions, the memory 

is accessed at stage M, and data is written to IREG or the 

memory at W. 

G-FPU performs a four-stage (F, D, X1, X2) pipeline 

operation for division and square-root instruction and a 

four-stage (F, D, X1, W) operation for other FPU 

instructions. Stages F and D are the same as those for IU. 

At stages X1 and X2, floating-point operation is executed. 

The cycle time of each of X1 and X2 is double the cycle 

time of IU. The execution result is stored to FREG at stage 

W. For a division and square-root operation, the result is 

stored to its own register and then transferred to FREG by 

another instruction. 
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Fig.8 shows the pipeline processing of a repetition of two 

multiply-accumulate operations in parallel with data 

transfer by FLDM instruction. 
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Fig. 8  Pipeline operation. 

Instruction (1) is FLDM and transfers 12 word data to 

FREG that are necessary for multiply-accumulate 

operations. The data transfer is performed in parallel with 

execution of successive instructions. Two multiplications 

of instruction (4), 



A0  X0 and 



B0 Y0, need four word 

data and wait until they are loaded. Meanwhile, IU 

instructions (2) and (3) are executed. 

Two multiplications of instruction (6), 



A1  X1  and 



B1 Y1, are executed after completion of stage X1 of 

instruction (4). The destination register, FR0, is a zero 

register to which the result is not written. 

Instruction (8) executes two additions and two 

multiplications. Each of two additions adds the data from 

FREG, that is, the multiplication result of instruction (4) 

and the multiplication result of the previous cycle. 

Simultaneously, two multiplications, 



A2  X2  and 



B2 Y2, are executed, meaning that four execution units 

work in parallel and execute two multiply-accumulate 

operations. Thus, two multiply-accumulate operations are 

executed at every X1 stage without the ACC. 

Data-path A is not used in instructions (4) and (6), and 

therefore, the adder can be used for another operation. 

Besides, as the cycle time of G-FPU execution is double 

the cycle time of IU, an IU instruction can be inserted and 

executed between FPU instructions. 

6. Application of graphics processing to 

G-FPU 

Examples are shown that calculation of intersection in 

ray-tracing algorithm as irregular processing and geometry 

transformation as regular processing are applied to 

G-FPU. 

6.1 Intersection calculation 

A plane with a normal vector



(a,b,c)  is expressed in the 

following equation. 

 



ax by cz  d 1 

 

In this equation, 



x,y,z  Pray  t VrayPeye  is 

given and 



t  is calculated as follows, 

 



t  
aPeye.x bPeye.y cPeye.z  d

aVray.x bVray.y cVray.z
 

 

and the intersection



(x, y,z)  is obtained from 



t  [12]. 

Fig.9(a) shows an example where the algorithm above is 

translated to the G-FPU program. FRn (N = 0 to 31) is the 

register of FREG. FMUL, FADD, FSUB, and FDIV are 

multiplication, addition, subtraction, and division, 

respectively. A ".st" added to the operation name means 

that the selective result store is performed at the operation, 

that the result is sent to LDSTU of IU, and that the result 

is stored to the data memory at the same time as it is 

stored to FREG. 

Fig.9(b) shows processing cycles corresponding to the 

three structures in Fig.3. The CYC column shows the 

number of execution cycles and the right-hand columns 

indicate FPU operations which are to be executed at a 

cycle. Although some IU instructions can be executed 

between FPU instructions, they are not shown in Fig.9. 

With the proposed structure (c), which flexibly assigns the 

execution units to the three data-paths, nine FPU 

instructions execute 19 operations, that is, two operations 

are, on average, executed efficiently by a single FPU 

instruction. This processing cycle is equivalent to the 

4-datapath structure (b) and is one FPU clock cycle less 

than the 2-datapath and 2-MAC structure (a). 

By using FLDM, one instruction loads ten words from the 

memory to FREG in parallel with the execution of the 

following instructions. 

Furthermore, by using the selective result store mechanism, 

three stores



(x, y,z)  to the memory need no store 

instructions. Thus, seven instructions of loads and stores 

are eliminated and the processing cycles are reduced by 

26% from 27 to 20 cycles in the IU clock. 
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(1) FLDM  FR2, (IR2), 10 

(2) FMUL FR12, FR2, FR3

(3) FMUL FR15, FR2, FR4

(4) FADD FR12, FR5, FR12

(5) FMUL FR13, FR6, FR7

(6) FMUL FR16, FR6, FR8

(7) FADD FR12, FR12, fmul1.out

(8) FADD FR15, FR15, fmul2.out

(9) FMUL FR0, FR9, FR10

(10) FMUL FR0, FR9, FR11

(11) FADD FR12, FR12, fmul1.out

(12) FADD FR15, FR15, fmul2.out

(13) FDIV.start FR12, FR15

(14) FDIV.get FR20

(15) FMUL FR21, FR20, FR4

(16) FMUL FR22, FR20, FR8

(17) FMUL FR23, FR20, FR11

(18) FSUB.st FR21, FR3, FR21

(19) FSUB.st FR22, FR7, FR22

(20) FSUB.st FR23, FR10, FR23

(20)

(17), (18), (19)

(15), (16)

(14)

(13)

(11), (12)

(7), (8), (9), (10)

(4), (5), (6)

(2), (3)

(1)

(c) 3-datapath/

2-MAC(proposed)

(19), (20)22

(20)(17), (18)20

(17), (18), (19)(15), (16)18

(15), (16)(14)16

(14)(13)14

(13)(4)12

(11), (12)10

(7), (8), (9), (10)MAC(9,11), MAC(10,12)8

(4), (5), (6)MAC(5,7), MAC(6,8)6

(2), (3)(2), (3)4

(1)(1)1

(b) 4-datapath/

2-MAC

(a) 2-datapath/

2-MAC
CYC

(20)

(17), (18), (19)

(15), (16)

(14)

(13)

(11), (12)

(7), (8), (9), (10)

(4), (5), (6)

(2), (3)

(1)

(c) 3-datapath/

2-MAC(proposed)

(19), (20)22

(20)(17), (18)20

(17), (18), (19)(15), (16)18

(15), (16)(14)16

(14)(13)14

(13)(4)12

(11), (12)10

(7), (8), (9), (10)MAC(9,11), MAC(10,12)8

(4), (5), (6)MAC(5,7), MAC(6,8)6

(2), (3)(2), (3)4

(1)(1)1

(b) 4-datapath/

2-MAC

(a) 2-datapath/

2-MAC
CYC



aPeye.x



aVray.x

FR5= d

(FR21=x, Store x to memory)

(FR22=y, Store y to memory)

(10 words are loaded into FR2 to FR11 from  the address 

specified by IR2 in parallel with the following instructions)



b  Peye.y



bVray .y



c Peye.z



c Vray.z

start FDIV



FR20 (t)



(t)Vray.x



(t)Vray.y



(t)Vray.z

(FR23=z, Store z to memory)

(a) List of G-FPU program for the intersection calculation

(b) Execution cycles of the above program for each datapath 

structure

 

Fig.9  Processing of Intersection Calculation 

6.2 Calculation of geometry transformation 

We show the case that the matrix operation of 



4  4  as 

the geometry transformation is applied to G-FPU. 

 



x 

y 

z 

w 





















a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33



















x

y

z

w



















 

 

The list in Fig.10 is an example where the above operation 

is translated to the G-FPU program. 

In this list, the number of execution cycles is given at the 

left end of the line. In this example, the numbers of 

processing cycles are the same for the three structures in 

Fig.3. Two multiply-accumulates are executed at one cycle 

by operating four execution units in parallel, and 30 

operations are executed by 9 FPU instructions. 

Furthermore, 20 words of data are loaded from the 

memory to FREG in parallel with executions, and four 

results are transferred to the memory without any store 

instructions by using the selective result store mechanism. 

Thus, by removing 13 instructions for 64-bit loads and 

32-bit stores, the processing cycles are reduced by 39% 

from 33 to 20 cycles in the IU clock. 

 

CYC

1: FLDM  FR2, (IR2), 20;

4: FMUL FR22, FR6, FR2; 

FMUL FR23, FR7, FR2; 

6: FMUL FR0, FR8, FR3;

FMUL FR0, FR9, FR3; 

8: FADD FR22, FR22, FMUL1.out;

FADD FR23, FR23, FMUL2.out;

FMUL FR0, FR10, FR4;

FMUL FR0, FR11, FR4;

10: FADD FR22, FR22, FMUL1.out

FADD FR23, FR23, FMUL2.out;

FMUL FR0, FR12, FR5;

FMUL FR0, FR13, FR5;

12: FADD.st FR22, FR22, FMUL1.out;

FADD.st FR23, FR23, FMUL2.out;

FMUL FR0, FR14, FR2;

FMUL FR0, FR15, FR2;

14: FADD FR24, FR0, FMUL1.out;

FADD FR25, FR0, FMUL2.out;

FMUL FR0, FR16, FR3;

FMUL FR0, FR17, FR3;

16: FADD FR24, FR24, FMUL1.out;

FADD FR25, FR25, FMUL2.out;

FMUL FR0, FR18, FR4;

FMUL FR0, FR19, FR4;

18: FADD FR24, FR24, FMUL1.out;

FADD FR25, FR25, FMUL2.out;

FMUL FR0, FR20, FR5;

FMUL FR0, FR21, FR5;

20: FADD.st FR24, FR24, FMUL1.out;

FADD.st FR25, FR25, FMUL2.out;



a00  x

(20 words are loaded into FR2 to FR21 from  the address 

specified by IR2 in parallel with the following instructions)

(Store x’ to memory)



a10  x



a01  y



a11  y



a02  z



a12  z



a03  w



a13 w

(Store y’ to memory)



a20  x



a30  x



a21  y



a31  y



a22  z



a32  z



a23  w



a33  w

(Store z’ to memory)

(Store w’ to memory)
 

Fig.10  Processing of geometry transformation 

As shown in the examples above, the proposed 

dual-structured general-purpose processing unit can 

perform both repeated multiply-accumulate operations and 

irregular operations efficiently. Furthermore, with the 

multi-word load and selective result store mechanisms, 

instructions for data transfer are eliminated and data 

needed for parallel executions are supplied without delay. 

 

7. Conclusion 

We have proposed a graphics floating-point processing 

unit (G-FPU) with 48% reduction of hardware for a 

conventional processing unit that has both functions of a 

SIMD-type execution unit dedicated for 

multiply-accumulate operations and a general-purpose 

execution unit. The hardware reduction is obtained by 

realizing a dual-structured execution unit that can handle 
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both repeated operations of multiply-accumulate for 

geometry transformations and irregular operations such as 

ray-tracing in graphics with 9% of hardware increase for a 

SIMD-type execution unit. 

For irregular processing, three execution units of three 

data-paths are operated in parallel, and for repetition of 

multiply-accumulate operations, two multiply-accumulates 

are executed by connecting two adders and two multipliers. 

Compared with a general-purpose execution unit with a 

4-datapath structure, this dual-structure scheme reduces 

hardware by 6% and achieves an equivalent performance 

for irregular processing such as ray-tracing. 

The proposed mechanisms of the multi-word load and the 

selective result store eliminate a buffer memory of 7.9 K 

gates for temporary data store and a read port of register 

file for store equivalent to 0.8 K gates and remove 

instructions to transfer data between the register file and 

the memory. Processing cycles are reduced by 26% for the 

intersection calculation by eliminating 7 load/store 

instructions and 39% for the geometry transformation by 

eliminating 13 load/store instructions. 
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