
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

200

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

Architecture of a Graphics Floating-Point Processing Unit

with Multi-Word Load and Selective Result Store

Mechanisms

Jiro Miyake†, Shigeo Kuninobu††, and Takaaki Baba†

†Graduate School of Information, Production and Systems, Waseda University, Kitakyushu-shi, 808-0135 Japan
††Information, Production and Systems Research Center, Waseda University, Kitakyushu-shi, 808-0135 Japan

Summary

We have proposed a graphics floating-point processing unit

(G-FPU) with 48% reduction of hardware for a conventional

processing unit that has both functions of a SIMD-type execution

unit dedicated for multiply-accumulate operations and a

general-purpose execution unit. The hardware reduction is

obtained by realizing a dual-structured general-purpose

execution unit that can handle both repeated operations of

multiply-accumulate for geometry transformations and irregular

operations such as ray-tracing in graphics processing with 9%

increase in the hardware for a SIMD-type execution unit. To

utilize multiple execution units that can operate in parallel, the

high performance of data transfer is indispensable. Therefore, we

have proposed a multi-word load mechanism and a selective

result store mechanism to load and store data in parallel with

executions. These mechanisms reduce the number of load/store

instructions and achieve the high performance of data transfer

required for parallel operations. Moreover, they remove a buffer

memory of 7.9 K gates that temporarily stores data for

executions. The effective data transfer reduces the processing

cycles for intersection calculation by 26% and geometry

transformation by 39%, compared with the case that

conventional load/store instructions are used.

Key words:

Floating-point processor, Parallel operation, Data transfer,

Graphics processing

1. Introduction

High performance for high quality and fast processing of

computer graphics and small hardware for portable

devices have been required for a floating-point processing

unit. Generally, in a performance-oriented floating-point

processing unit for graphics a single-instruction

multiple-data (SIMD) architecture is adopted for the

high-speed execution of multiply-accumulate operations

such as geometry transformation [1][2]. The SIMD-type

execution unit that performs the same instruction for

multiple data in parallel is suitable for a geometry

transformation, requiring four multiply-accumulate

operations for input data repeatedly in parallel. However,

since the SIMD-type execution unit cannot execute

different operations in parallel, a general-purpose

execution unit is added for irregular operations such as

ray-tracing and shading processing.

Recently, high-performance general-purpose graphics

processing units with many processor cores have been

developed for workstations and personal computers that

focus on programmability, flexibility, and high

performance. These processing units achieve high

performance by executing operations of multiple threads

or multiple data with many processor cores in parallel

[3][4].

The targets of our processing unit are low-cost consumer

electric products, such as mobile products and personal

audio-visual products. Consequently, it is difficult for our

unit to implement many processor cores because of cost

and power consumption constraints. Therefore, we have

considered a general-purpose processing unit that can

efficiently perform not only regular operations, such as

multiply-accumulate, but also other irregular operations.

By this, eliminating the SIMD-type execution unit, it can

be widely applied to cost sensitive systems.

In graphics processing, it is necessary to implement plural

execution units by taking account of the number of

operations that can be executed simultaneously [5][6].

Moreover, to realize high performance and versatility, the

following two mechanisms are necessary:

(1) A flexible parallel execution mechanism. It is

necessary to have a mechanism to execute both repetition

of multiply-accumulate operations and irregular operations

efficiently by changing the structure of the execution units

flexibly.

(2) A highly efficient data transfer mechanism. To

achieve a high performance of data processing with plural

execution units, a mechanism for the high performance of

data transfer is indispensable to supply data for operations

and to store execution results without delay.

In this paper, we describe a graphics floating-point

processing unit (G-FPU) that can efficiently perform

pipeline operations for repetition of multiply-accumulate

operations, such as geometry transformation, keeping

versatility for irregular operations, such as ray-tracing and

shading processing. We propose new multi-word load and

selective result store mechanisms that achieve a high

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

201

performance of data transfer, reducing data transfer

instructions.

We show examples of applying G-FPU in which data

transfer for both repeated multiply-accumulate operations

and irregular operations are performed efficiently.

2. Graphics Floating-point processing unit

(G-FPU)

2.1 Concept of G-FPU

Generally, a performance-oriented graphics processing

unit has plural multiply-accumulate execution units

controlled by SIMD-type instructions to execute

operations, such as geometry transformation, at high speed.

A geometry transformation is a product of a matrix and a

coordinate vector and is calculated by repeating four

multiply-accumulate operations. Therefore, a SIMD-type

multiply-accumulate execution unit that can execute four

multiply-accumulate operations in parallel by one

instruction is suitable for a geometry transformation.

Because repeated multiply-accumulate operations are

executed in a pipeline manner with this execution unit, a

high throughput can be achieved.

Graphics Processing Unit

F
M

A
C

F
M

A
C

F
M

A
C

F
M

A
C

F
M

A
C

FREG

Buffer Memory

F
D

IV

L
D

S
T

A
L

U

IREG

Main Memory

DMA

4way-SIMD
(geometry trans.) general-purpose

F
M

U
L

FREG

F
A

U

F
D

IV

F
S

R
T

general-purpose
CPU

(IU)

Data

RAM

Data

RAM

F
A

U

F
M

U
L

Graphics Processing Unit

Main Memory

Main Memory

(a) Outline of a conventional graphics processing unit

(b) Outline of the proposed graphics processing unit

CPU

(IU)

Fig. 1 Outline of a graphics processing unit..

The SIMD-type execution unit is suited for regular

repeated operations. However, it cannot execute different

operations in parallel. Because of this inflexibility, a

general-purpose execution unit is added for irregular

operations. Besides, a local buffer memory is often added

to supply data for operations, and this data is transferred in

parallel with execution using direct memory access

(DMA). Fig.1(a) outlines a conventional graphics

processing unit consisting of a SIMD-type execution unit

and a general-purpose execution unit. A conventional

processing unit like this one can achieve high execution

performance, but its hardware is large.

To realize a graphics processing unit with small circuits,

we eliminate the SIMD-type execution unit and adopt a

structure that executes both regular repeated

multiply-accumulate operations and irregular operations

efficiently within the same execution unit. Furthermore,

we remove the buffer memory that temporarily stores data

for execution. Fig.1(b) outlines the proposed G-FPU.

2.2 Structure of the G-FPU

Fig.2 shows a SIMD-type execution unit and a

general-purpose execution unit for parallel execution of

three operations used in a conventional graphics

processing unit.

F
A

U

F
A

U

F
M

U
L

F
M

U
L

F
A

U

F
M

U
L

data-path

A

data-path

B

A
C

C

F
A

U

F
M

U
L

A
C

C

2-way SIMD (2-MAC)

General-Purpose (3-datapath)

data-path

C

data-path

B

data-path

A

Fig. 2 SIMD-type and ge neral-purpose execution units

used in a conventional graphics processing unit.

To use multiply-accumulate execution units for

general-purpose processing, the structure shown in

Fig.3(a) can be considered [7]. In this structure, there are

two multiply-accumulate execution units that form two

data-paths. The multiplier (FMUL) and adder (FAU) that

compose each multiply-accumulate execution unit can be

separated. To execute multiply-accumulate operations

repeatedly, FMUL and FAU are connected serially and

work in a pipelining manner. The results of

multiply-accumulate are stored in the accumulation

register (ACC). To make FMULs and FAUs versatile, two

operations are selected arbitrarily from a group of two

additions and two multiplications and then executed in

parallel by separating FMULs and FAUs.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

202

To execute more operations in parallel and remove the

ACC, the structure shown in Fig.3(b) can be considered.

Because each of two FMULs and two FAUs is used as an

independent data-path, all of them can work in parallel.

However, the ports for the register file increase to supply

data to four data-paths from the register file and to store

results to it.

F
A

U

F
A

U

F
M

U
L

F
M

U
L

F
A

U

F
M

U
L

A
C

C

F
A

U

F
M

U
L

A
C

C

(a) 2-datapath, 2-MAC

(c) 3-datapath, 2-MAC (proposed)

F
A

U

F
M

U
L

F
A

U

F
M

U
L

(b) 4-datapath, 2-MAC

data-
path D

data-
path C

data-
path B

data-
path A

data-
path C

data-
path A

data-
path B

data-
path A

data-
path B

Fig. 3 Structure of execution unit for both multiply-accumulate and
general-purpose operations.

We think that the degree of execution parallelism is not so

high, about 2 or 3 in irregular processing such as

ray-tracing and shading. Therefore, we propose the

general-purpose execution unit with a dual-structure

shown in Fig.3(c). In this structure, the execution units

form three data-paths to execute, in parallel, three

operations selected from a group of two additions and two

multiplications. By connecting FMULs with FAUs and

supplying each of two input data for the data-path A to

each of two FAUs as accumulated data, two

multiply-accumulates can be executed repeatedly in

parallel.

Table 1 shows estimates of hardware size for each

data-path structure. Estimates were obtained by result of

logic synthesis and some consideration. The conventional

structure in Table 1 refers to the structure that has both the

multiply-accumulate execution unit and the

general-purpose execution unit shown in Fig.2. The

structures (a), (b), and (c) in Table 1 correspond to the

structures (a), (b), and (c) in Fig.3, respectively, and are

general-purpose execution units for both

multiply-accumulate operations and irregular operations.

Our proposed dual-structured general-purpose execution

unit (c) can handle both repetition of two

multiply-accumulates and three flexible parallel operations

with hardware increase of 7%, compared with the structure

(a), by adding ports to the register file for one data-path

and four selectors and eliminating the ACC. Moreover, the

structure (c) is 9% larger than the SIMD-type execution

unit, but reduces the hardware size of the conventional

structure with both units from 48.1 K to 25.2 K gates,

eliminating the SIMD-type execution unit.

Table 1: Estimation of the hardware size for each data-path structure

including the register file. One gate is equivalent to one 2-input NAND.
Structure Num. of gates

Conventional (Fig.2)

2-way SIMD (2-MAC)

General-purpose (3-datapath)

48.1 K

23.1 K

25.0 K

For general-purpose and MAC (Fig.3)

(a) 2-datapath / 2-MAC 23.5 K

(b) 4-datapath / 2-MAC 26.7 K

(c) 3-datapath / 2-MAC 25.2 K

Furthermore, divider and square-root execution units,

which are often used in graphics processing, are added to

the structure above in G-FPU. Fig.4 shows a block

diagram of G-FPU, which works as a coprocessor of the

integer unit (IU). Floating-point instructions read out from

the instruction memory are sent to G-FPU and executed.

IU executes integer operations, load/store, and branch

instructions.

G-FPU consists of two FAUs, two FMULs, a divider

(FDIV), a square-root execution unit (FSRT), a

floating-point register file (FREG), and an instruction

decoder (DEC). For fast processing, FMUL, FDIV, and

FSRT use a redundant binary expression in the

intermediate execution of a mantissa part. Since there is no

propagation of a carry in the addition of the redundant

binary, the addition can complete within a constant time

regardless of data length [8][9][10][11]. FAU1 is assigned

to data-path A, FAU2 and FMUL1 to data-path B, and

FMUL2, FDIV, and FSRT to data-path C. FREG consists

of 32 32-bit registers (FR0-FR31) and has two read ports

and one write port for each of three data-paths. FR0 is a

special register from which zero is always read out.

Furthermore, FREG has one 64-bit write port for data load

from memory.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

203

FREG

Ra1

FAU
1

FMUL
1

FAU
2

FDIV FSRT

RTRegDivReg

Ra2 Wa Rb1 Rb2 Wb Rc1 Rc2 Wc Wld

64

data memory

inst.

DEC

Ctrl

IU

64

FAU:adder FMUL:multiplier

FDIV:divider FSRT:square root unit

FREG:floating-point register file

G-FPU

FMUL
2

Fig. 4 Block diagram of G-FPU.

3. Data transfer mechanism

A maximum of four operations for the repetition of

multiply-accumulate or a maximum of three for other

operations can be executed in parallel. However,

insufficient capability to supply data for operations and to

transfer results could bring a large degradation of

performance. To obtain a sufficient data transfer capability,

there is a scheme to have a buffer memory and to transfer

data needed for the next processing from a main memory

to the buffer memory in parallel with data processing. For

geometry transformation, sixteen words of matrix

coefficients, four words of input coordinates, and four

words of output coordinates are needed. Thus, a total of 24

words are needed and two banks of 24-word memory are

required that consist of two read ports and one write port

to transfer data during data processing. The buffer memory

would be approximately 7.9 K gates, about 32% of

structure (c) in Table 1.

For hardware reduction, FREG is used instead of buffer

memory to supply data from the data memory to G-FPU.

Since the capacity of FREG is small, a fine control for

data transfer is necessary according to the flow of

processing. Usually load/store instructions are used to

transfer data between the register file and memory, but

taking this approach could reduce performance because of

increase of instructions. Therefore, we propose the

multi-word load mechanism and the selective result store

mechanism to achieve a high performance of data transfer.

These new mechanisms make it possible to control data

transfer finely with instructions and to reduce performance

degradation caused by an increase of instructions.

3.1 Multi-word transfer mechanism

The multi-word transfer mechanism transfers multiple

words from the memory to FREG in parallel with

executions of floating-point operations by G-FPU. Fig.5

shows the mechanism that performs load and store for

FREG through IU.

inst. memory

G-FPUIU
IFU

IREG

ALU

DEC

control

LDSTU

data memory

inst.

data

AREG

ack

inst.address

address

data

data

DEC

Load-multi

write ctrl.

1st Reg

of Regs FREG

6432

64
32data

EXEC.

Fig. 5 Data transfer mechanism.

Data memory for load/store is accessed by the load/store

unit (LDSTU) in IU. A new load-multi instruction

(FLDM) is added for the multi-word load mechanism to

transfer plural words.

The FLDM instruction specifies the IU register that stores

the start address for data load, the number of words to be

loaded, and the G-FPU register to which the first word is

stored. According to this information, LDSTU reads the

specified number of words from the data memory

consecutively and supplies them to G-FPU. Then, G-FPU

writes them to FREG sequentially, incrementing the

register number specified by IU.

The read bus of the data memory is 64-bit wide, and two

words are written to the two registers of FREG at one

access.

The execution of floating-point operation instructions

(FPU instructions) after FLDM can begin without waiting

for the completion of the data load by FLDM. However, if

an FPU instruction needs data which have not been loaded

yet, the instruction must wait for the data to be loaded.

Fig.6 shows the mechanism to detect the register

dependency at the multi-word load. When an FLDM

instruction is executed, FREG write-reservation bits that

correspond to the registers to be loaded are set to "1".

When data is loaded into the register, the corresponding

write-reservation bit is cleared. If the FPU instruction after

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

204

FLDM uses the register with the corresponding

write-reservation bit set to "1", then the register

dependency is detected and the pipeline operation is

locked.

FLDM inst.
decode

31

0 0 0 … 0 1 1 …. 1 1 0 0 … 0

1st FREG #, the number of words

FREG write
reserve bit

0

set to “1”

clear bit on each FREG write

register
dependency
detect

FPU inst.
decode

source FREG #

pipeline control

Fig. 6 Detection of Register Dependency on Multi-word Load

3.2 Selective result store mechanism

The selective result store mechanism stores the execution

result to the memory at the same time that it is stored to

FREG. By using this mechanism, a maximum of two

data-paths out of three can be specified, and results of the

specified data-paths are sent to LDSTU and stored to

memory. The memory address of write is the value written

in the address register by IU beforehand and is

incremented after each memory write. This mechanism

eliminates both extra store instructions needed to store

data and a read port of FREG that is equivalent to about

0.8K gates.

4. Instruction format

Fig.7 shows the instruction format of G-FPU.

FMT is the field used to specify the type of instruction.

The value "0xf" of FMT means that it is an FPU

instruction that is 64-bit in length. Values other than "0xf"

mean that an instruction with a 32-bit length is executed in

the IU. FA, FM, FD, and RT fields are control fields for

addition, multiplication, division, and square-root

operation, respectively. They specify the presence of the

operation and the register port to be used. The ports A, B,

and C correspond to the data-paths A, B, and C

respectively. For division and square-root operations, there

is an execution start command and a result transfer

command.

A function to double the result of addition is added to

FAU1. DB field controls the double operation.

If FA specifies two additions for multiply-accumulate and

FM specifies two multiplications, then each of the two

adders adds the data of register port A and the result

obtained by the multiplier at the previous cycle, and the

two multipliers operate in parallel with the adders. Thus,

two multiply-accumulate operations are executed.

63 60 59

FMT FA

57

FM

56 5554

FD RT

5252 51 49

ST

4746

Ra1 Ra2 Wa

42 41 37 36 32

FMT(inst. format) : 1111 = FPU inst.

FA(FAU ctrl.) : 100=fadd, 101=fadd + fadd, 010=fsub,

011=fsub + fsub, 110=fadd + fsub,

111=fadd(MAC) + fadd(MAC)

FM(FMUL ctrl.) : 1x=fmul(port B), x1=fmul(port C)

FD(FDIV ctrl.) :

010=fdiv start(port B), 011=fdiv start(port C),

100=fdiv result(port B), 101=fdiv result(port C)

RT(FSRT ctrl.) :

01=square root start, 10=square root result

DB(double ctrl.) : 1=double

ST(memory store) : result store port

xx1=port A, x1x=port B, 1xx=port C

Ra1, Ra2 : port A read register number

Wa : port A write register number

Rb1, Rb2 : port B read register number

Wb : port B write register number

Rc1, Rc2 : port C read register number

Wc : port C write register number

DB

50

Rb1 Rb2

31 2726

Wb

22 21

Rc1 Rc2 Wc

17 16 12 11 7 6 2 0

-

1

Fig. 7 Instruction format.

Field ST specifies whether an execution result is stored to

the memory and to FREG simultaneously. This field can

specify a maximum of two data-paths out of data-path A,

B, and C.

Fields Ra, Ra2, and Wa specify two read and one write

register numbers, respectively, for data-path A. Likewise,

fields Rb1, Rb2, and Wb are for data-path B, and fields

Rc1, Rc2, and Wc are for data-path C.

5. Pipeline operation

IU performs a pipeline operation consisting of five stages -

F, D, E, M, and W. An instruction is fetched at stage F,

decoded at D, and executed at E, and the result is stored to

IREG at stage W. For load/store instructions, the memory

is accessed at stage M, and data is written to IREG or the

memory at W.

G-FPU performs a four-stage (F, D, X1, X2) pipeline

operation for division and square-root instruction and a

four-stage (F, D, X1, W) operation for other FPU

instructions. Stages F and D are the same as those for IU.

At stages X1 and X2, floating-point operation is executed.

The cycle time of each of X1 and X2 is double the cycle

time of IU. The execution result is stored to FREG at stage

W. For a division and square-root operation, the result is

stored to its own register and then transferred to FREG by

another instruction.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

205

Fig.8 shows the pipeline processing of a repetition of two

multiply-accumulate operations in parallel with data

transfer by FLDM instruction.

FLDM

F D X1 WF D X1 W

FR2
FR3

IU inst.

IU inst.

FMUL

FMUL

F D X1 WF D X1 WFADD
FADD
FMUL
FMUL

FR4
FR5

FR6
FR7

FR8
FR9

F D E M WF D E M W

IU inst.

FR20 <= FR2 x FR3

FR21 <= FR4 x FR5

F D E M WF D E M W

FR20 <= FR20+FMUL1.out

FR0 <= FR10 x FR11
FR0 <= FR12 x FR13

F D X1 WF D X1 WFMUL
FMUL

IU inst.

FR0 <= FR6 x FR7
FR0 <= FR8 x FR9

F D E M WF D E M W

FR21 <= FR21+FMUL2.out

FR10
FR11

FR12
FR13

addr. calc. memory read

inst.

(1)

(3)

(5)

(2)

(4)

(8)

(6)

(7)

221100 XAXAXAX 

221100 YBYBYBY 

F D E M WF D E M W

F D X1 WF D X1 W

IU inst.(9)

FADD
FADD

(10)

FR20 <= FR20+FMUL1.out
FR21<= FR21+FMUL2.out

F D E M WF D E M W

F D E M WF D E M W

Fig. 8 Pipeline operation.

Instruction (1) is FLDM and transfers 12 word data to

FREG that are necessary for multiply-accumulate

operations. The data transfer is performed in parallel with

execution of successive instructions. Two multiplications

of instruction (4),



A0  X0 and



B0 Y0, need four word

data and wait until they are loaded. Meanwhile, IU

instructions (2) and (3) are executed.

Two multiplications of instruction (6),



A1  X1 and



B1 Y1, are executed after completion of stage X1 of

instruction (4). The destination register, FR0, is a zero

register to which the result is not written.

Instruction (8) executes two additions and two

multiplications. Each of two additions adds the data from

FREG, that is, the multiplication result of instruction (4)

and the multiplication result of the previous cycle.

Simultaneously, two multiplications,



A2  X2 and



B2 Y2, are executed, meaning that four execution units

work in parallel and execute two multiply-accumulate

operations. Thus, two multiply-accumulate operations are

executed at every X1 stage without the ACC.

Data-path A is not used in instructions (4) and (6), and

therefore, the adder can be used for another operation.

Besides, as the cycle time of G-FPU execution is double

the cycle time of IU, an IU instruction can be inserted and

executed between FPU instructions.

6. Application of graphics processing to

G-FPU

Examples are shown that calculation of intersection in

ray-tracing algorithm as irregular processing and geometry

transformation as regular processing are applied to

G-FPU.

6.1 Intersection calculation

A plane with a normal vector



(a,b,c) is expressed in the

following equation.



ax by cz  d 1

In this equation,



x,y,z  Pray  t VrayPeye is

given and



t is calculated as follows,



t  
aPeye.x bPeye.y cPeye.z  d

aVray.x bVray.y cVray.z

and the intersection



(x, y,z) is obtained from



t [12].

Fig.9(a) shows an example where the algorithm above is

translated to the G-FPU program. FRn (N = 0 to 31) is the

register of FREG. FMUL, FADD, FSUB, and FDIV are

multiplication, addition, subtraction, and division,

respectively. A ".st" added to the operation name means

that the selective result store is performed at the operation,

that the result is sent to LDSTU of IU, and that the result

is stored to the data memory at the same time as it is

stored to FREG.

Fig.9(b) shows processing cycles corresponding to the

three structures in Fig.3. The CYC column shows the

number of execution cycles and the right-hand columns

indicate FPU operations which are to be executed at a

cycle. Although some IU instructions can be executed

between FPU instructions, they are not shown in Fig.9.

With the proposed structure (c), which flexibly assigns the

execution units to the three data-paths, nine FPU

instructions execute 19 operations, that is, two operations

are, on average, executed efficiently by a single FPU

instruction. This processing cycle is equivalent to the

4-datapath structure (b) and is one FPU clock cycle less

than the 2-datapath and 2-MAC structure (a).

By using FLDM, one instruction loads ten words from the

memory to FREG in parallel with the execution of the

following instructions.

Furthermore, by using the selective result store mechanism,

three stores



(x, y,z) to the memory need no store

instructions. Thus, seven instructions of loads and stores

are eliminated and the processing cycles are reduced by

26% from 27 to 20 cycles in the IU clock.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

206

(1) FLDM FR2, (IR2), 10

(2) FMUL FR12, FR2, FR3

(3) FMUL FR15, FR2, FR4

(4) FADD FR12, FR5, FR12

(5) FMUL FR13, FR6, FR7

(6) FMUL FR16, FR6, FR8

(7) FADD FR12, FR12, fmul1.out

(8) FADD FR15, FR15, fmul2.out

(9) FMUL FR0, FR9, FR10

(10) FMUL FR0, FR9, FR11

(11) FADD FR12, FR12, fmul1.out

(12) FADD FR15, FR15, fmul2.out

(13) FDIV.start FR12, FR15

(14) FDIV.get FR20

(15) FMUL FR21, FR20, FR4

(16) FMUL FR22, FR20, FR8

(17) FMUL FR23, FR20, FR11

(18) FSUB.st FR21, FR3, FR21

(19) FSUB.st FR22, FR7, FR22

(20) FSUB.st FR23, FR10, FR23

(20)

(17), (18), (19)

(15), (16)

(14)

(13)

(11), (12)

(7), (8), (9), (10)

(4), (5), (6)

(2), (3)

(1)

(c) 3-datapath/

2-MAC(proposed)

(19), (20)22

(20)(17), (18)20

(17), (18), (19)(15), (16)18

(15), (16)(14)16

(14)(13)14

(13)(4)12

(11), (12)10

(7), (8), (9), (10)MAC(9,11), MAC(10,12)8

(4), (5), (6)MAC(5,7), MAC(6,8)6

(2), (3)(2), (3)4

(1)(1)1

(b) 4-datapath/

2-MAC

(a) 2-datapath/

2-MAC
CYC

(20)

(17), (18), (19)

(15), (16)

(14)

(13)

(11), (12)

(7), (8), (9), (10)

(4), (5), (6)

(2), (3)

(1)

(c) 3-datapath/

2-MAC(proposed)

(19), (20)22

(20)(17), (18)20

(17), (18), (19)(15), (16)18

(15), (16)(14)16

(14)(13)14

(13)(4)12

(11), (12)10

(7), (8), (9), (10)MAC(9,11), MAC(10,12)8

(4), (5), (6)MAC(5,7), MAC(6,8)6

(2), (3)(2), (3)4

(1)(1)1

(b) 4-datapath/

2-MAC

(a) 2-datapath/

2-MAC
CYC



aPeye.x



aVray.x

FR5= d

(FR21=x, Store x to memory)

(FR22=y, Store y to memory)

(10 words are loaded into FR2 to FR11 from the address

specified by IR2 in parallel with the following instructions)



b  Peye.y



bVray .y



c Peye.z



c Vray.z

start FDIV



FR20 (t)



(t)Vray.x



(t)Vray.y



(t)Vray.z

(FR23=z, Store z to memory)

(a) List of G-FPU program for the intersection calculation

(b) Execution cycles of the above program for each datapath

structure

Fig.9 Processing of Intersection Calculation

6.2 Calculation of geometry transformation

We show the case that the matrix operation of



4  4 as

the geometry transformation is applied to G-FPU.



x

y

z

w





















a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33



















x

y

z

w



















The list in Fig.10 is an example where the above operation

is translated to the G-FPU program.

In this list, the number of execution cycles is given at the

left end of the line. In this example, the numbers of

processing cycles are the same for the three structures in

Fig.3. Two multiply-accumulates are executed at one cycle

by operating four execution units in parallel, and 30

operations are executed by 9 FPU instructions.

Furthermore, 20 words of data are loaded from the

memory to FREG in parallel with executions, and four

results are transferred to the memory without any store

instructions by using the selective result store mechanism.

Thus, by removing 13 instructions for 64-bit loads and

32-bit stores, the processing cycles are reduced by 39%

from 33 to 20 cycles in the IU clock.

CYC

1: FLDM FR2, (IR2), 20;

4: FMUL FR22, FR6, FR2;

FMUL FR23, FR7, FR2;

6: FMUL FR0, FR8, FR3;

FMUL FR0, FR9, FR3;

8: FADD FR22, FR22, FMUL1.out;

FADD FR23, FR23, FMUL2.out;

FMUL FR0, FR10, FR4;

FMUL FR0, FR11, FR4;

10: FADD FR22, FR22, FMUL1.out

FADD FR23, FR23, FMUL2.out;

FMUL FR0, FR12, FR5;

FMUL FR0, FR13, FR5;

12: FADD.st FR22, FR22, FMUL1.out;

FADD.st FR23, FR23, FMUL2.out;

FMUL FR0, FR14, FR2;

FMUL FR0, FR15, FR2;

14: FADD FR24, FR0, FMUL1.out;

FADD FR25, FR0, FMUL2.out;

FMUL FR0, FR16, FR3;

FMUL FR0, FR17, FR3;

16: FADD FR24, FR24, FMUL1.out;

FADD FR25, FR25, FMUL2.out;

FMUL FR0, FR18, FR4;

FMUL FR0, FR19, FR4;

18: FADD FR24, FR24, FMUL1.out;

FADD FR25, FR25, FMUL2.out;

FMUL FR0, FR20, FR5;

FMUL FR0, FR21, FR5;

20: FADD.st FR24, FR24, FMUL1.out;

FADD.st FR25, FR25, FMUL2.out;



a00  x

(20 words are loaded into FR2 to FR21 from the address

specified by IR2 in parallel with the following instructions)

(Store x’ to memory)



a10  x



a01  y



a11  y



a02  z



a12  z



a03  w



a13 w

(Store y’ to memory)



a20  x



a30  x



a21  y



a31  y



a22  z



a32  z



a23  w



a33  w

(Store z’ to memory)

(Store w’ to memory)

Fig.10 Processing of geometry transformation

As shown in the examples above, the proposed

dual-structured general-purpose processing unit can

perform both repeated multiply-accumulate operations and

irregular operations efficiently. Furthermore, with the

multi-word load and selective result store mechanisms,

instructions for data transfer are eliminated and data

needed for parallel executions are supplied without delay.

7. Conclusion

We have proposed a graphics floating-point processing

unit (G-FPU) with 48% reduction of hardware for a

conventional processing unit that has both functions of a

SIMD-type execution unit dedicated for

multiply-accumulate operations and a general-purpose

execution unit. The hardware reduction is obtained by

realizing a dual-structured execution unit that can handle

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

207

both repeated operations of multiply-accumulate for

geometry transformations and irregular operations such as

ray-tracing in graphics with 9% of hardware increase for a

SIMD-type execution unit.

For irregular processing, three execution units of three

data-paths are operated in parallel, and for repetition of

multiply-accumulate operations, two multiply-accumulates

are executed by connecting two adders and two multipliers.

Compared with a general-purpose execution unit with a

4-datapath structure, this dual-structure scheme reduces

hardware by 6% and achieves an equivalent performance

for irregular processing such as ray-tracing.

The proposed mechanisms of the multi-word load and the

selective result store eliminate a buffer memory of 7.9 K

gates for temporary data store and a read port of register

file for store equivalent to 0.8 K gates and remove

instructions to transfer data between the register file and

the memory. Processing cycles are reduced by 26% for the

intersection calculation by eliminating 7 load/store

instructions and 39% for the geometry transformation by

eliminating 13 load/store instructions.

References
[1] M. Suzuoki et al., ``A Microprocessor with a 128-Bit CPU,

Ten Floationg-Point MAC's, Four Floating-Point Dviders,

and an MPEG-2 Decoder'', IEEE J. Solid-State Circuits, Vol.

34, No.11, pp.1608-1618, 1999.

[2] N. Ide et al., ``2.44-GFLOPS 300-MHz Floating-Point

Vector-Processing Unit for High-Performance 3-D

Graphices Computing'', IEEE J. Solid-State Circuits, Vol. 35,

No.7, pp.1025-1033, 2000.

[3] E. Lindholm et al., ``NVIDIA Tesla: A Unified Graphics and

Computing Architecture'', IEEE Micro, Vol. 28, No.2,

pp.39-55, 2008.

[4] L. Seiler et al., ``Larrabee: A Many-Core x86 Architecture for

Visual Computing'', ACM T. Graphics, Vol. 27, No.3, pp.

18:1-18:15, 2008.

[5] K. Maeda et al., `` Floating Point Accelerator Design Using

Verilog HDL'', 2004 Shikoku-section Joint Convention of

the Institutes of Electrical and related Engineers, p.119,

2004. (in Japanese)

[6] M. Yokoyama et al., ``Design of Floating Point Unit For

Graphic Processing''. 2006 Shikoku-section Joint

Convention of the Institutes of Electrical and related

Engineers, p.84, 2006. (in Japanese)

[7] H. Kubosawa et al., ``A 2.5-GFLOPS, 6.5 Million Polygons

per Second, Four-Way VLIW Geometry Processor with

SIMD Instructions and a Software Bypass Mechanism'',

IEEE J. Solid-State Circuits, Vol. 34, No.11, pp.1619-1626,

1999.

[8] S. Kuninobu et al., ``Design of High Speed MOS Multiplier

and Divider using Redundant Binary Representation'', ISCA

87, pp.80-86, 1987.

[9] H. Edamatsu et al., ``A 33 MFLOPS Floating-Point Processor

using Redundant Binary Representation'', ISSCC 88,

pp.152-153, 1988.

[10] T. Taniguchi et al., ``A high-speed floating-point processor

using redundant binary representation'', IEICE technical

report. Computer systems, CPSY87-47, pp.43-48, 1988 (in

Japanese)

[11] T. Taniguchi et al., ``High-speed multiplier and divider using

redundant binary representation'', IEICE technical report.

Electron devices, ED88-48, pp.1-6, 1988 (in Japanese)

[12] S. Oishi and M. Makino, ``Information mathematics seminar

Graphics'', ISBN4-535-60816-4 Nippon-Hyoron-Sha

Co.,Ltd. (in Japanese)

Jiro Miyake received the B.S. degree in

electronic engineering from Kyushu

University, Fukuoka, Japan, in 1983. He

joined Matsushita Electric Industrial Co.,

Ltd., in 1983 where he has been working

on the design of VLSI and microprocessors.

Since 2008 he is a doctor student in

Graduate School of Information,

Production and System of Waseda

University. His current interests include

microprocessor architecture and digital signal processing. He is a

member of the IEEE Computer Society.

Shigeo Kuninobu received the B.S.

and M.S. degrees in Electrical

Engineering and Ph.D. degree in

Information Science from Kyoto

University in 1968, 1970 and 1993,

respectively. He joined the Central

Research Laboratories of Matsushita

Electric. in 1970. He was a visiting

researcher at the University of California,

Berkeley, from 1982 to 1984. His interests

cover the development of the area of advanced VLSI

Microsystems. He developed a computational algorithm for LSI,

microprocessors, and floating-point processors. He was a

professor at Information Science Division, Kochi University

from 2001 to 2007. He is now a visiting professor at Graduate

School of Information Science, Waseda University and an

honorary professor at Kochi University.

Takaaki Baba was born in Aichi Japan

on Jan. 1949. He received Ms. Degree

and Dr. of Engineering from Nagoya

University in 1973 and 1979, respectively.

He joined Matsushita Electric Industrial

Co., Ltd. in 1973. From 1983 to 2002 he

worked for Matsushita Electric Co., Ltd

of America, involving and conducting

several strategic projects such as System

LSI and ASIC application, wireless

communication system and electronic devices. From 1980 to

1982, he was a research fellow at UC Berkeley. From 2002 to

2003, he was a visiting scholar at Stanford University. Since

2003 he is a professor in the system LSI field at Graduate School

of Information, Production and System of Waseda University. He

is a member of IEEE and served as an Executive Committee

member of IEEE-ISSCC from 1995 to 2003.

