
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

220

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

Performance Estimation of Karnaugh Map through UML

Summary

The digital circuits are mostly constructed through digital

gates. The minimization of the number of digital gates is

an important activity in designing the digital circuits. This

minimization reduces the size and cost of these systems

and the performance can be improved. There are some well

established methods for doing these simplifications. One

of the famous methods is known as Karnaugh map (K-

map) method. The digital circuits can be represented and

analyzed using the boolean functions. K-map is in fact a

visual diagram of representing all possible ways a boolean

function may be expressed.

In the present wok, a well known modeling language, the

Unified Modeling Language (UML) is used for designing

an Object-oriented model for Karnaugh map with the help

of digital gates. An Object-oriented algorithm is also

proposed for simplification of boolean functions through

K-map. The UML stereotypes and class diagrams are

presented and performance of UML model is analyzed

through a case study.

Key words:
Boolean functions, Digital Circuit, Karnaugh map, Minterm,

UML Class diagram, Object-oriented Model.

1. Related Work

The digital gates (Logic gates) are basic electronic

components of any digital circuit. A logic gate performs a

logical operation based on one or more inputs and

produces a single output voltage value (i.e. voltage levels

high and low). Logically these voltage values can be

referred to as 1s and 0s and are used in designing and

analyzing the operations of logic gates. A logic gate

represents a boolean function. A boolean function is an

algebraic expression formed with boolean variables

(having values true or 1 and false or 0) and the logical

operators (i.e. OR, AND, and NOT). There may be a large

number of boolean algebraic expressions that specify a

given boolean function. It is therefore important to find the

simplest one. A boolean function can be represented by a

truth table. A truth table is a tabular arrangement of

representing all the input-output relationships of a digital

circuit. It displays all possible input values combinations

with their respective output values. There is much

literature available on the concepts of digital circuits

design. The basic concepts of digital circuit design are

available in Mano [1], Rajaraman & Radhakrishnan [2],

Tanenbaum [3], Leach et al. [4], Wakerly [5], Crenshaw

[6] and Kuphaldt [7].

Normally a Boolean expression can be given using two

forms:

1. Sum-of-Products (SOP): This is the more common form

of Boolean expressions. The expressions are implemented

as AND gates (products) feeding a single OR gate (sum).

2. Product-of-Sums (POS): This is less commonly used

form of Boolean expressions. The expressions are

implemented as OR gates (sums) feeding into a single

AND gate (product).

SOP Boolean expressions may be generated from truth

tables quite easily by forming an OR of the ANDs of all

input variables (standard producst or minterms) for which

the output is 1. POS expressions are based on the 0s, in a

truth table and generated oppositely as SOP by taking an

AND of the ORs of all input variables (standard sums or

maxterms).

The Unified Modeling Language (UML) was created as a

result of unification of different Object-oriented design

methodologies. The standards and recent developments of

UML are available on [8]. The good descriptions of UML

diagrams and notations are available in [9] and [10].

Originally it is defined and has been successfully applied

in software systems design, but can also be applied in the

design of hardware systems as well. The Object-oriented

design using UML diagrams in hardware system modeling

and designing have been proposed in some research papers,

but there is very less work available on the applications of

UML in digital logic minimization. The use of UML in

real-time and embedded systems specification and design

has been explored by Gomaa [11] and Schattkowsky [12].

Recently Saxena et al. [13] proposed the UML model for

the Multiplex system for the processes which are executing

in distributed environment. Damasevicius and Stuikys [14]

Dr. Vipin Saxena
†
, Manish Shrivastava

††
 and Dr. Deepak Arora

†††

Department of Computer Science, B.B. Ambedkar University (A Central University), Vidya Vihar Rae Bareilly Road,

Lucknow, U.P. 226025, India

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

221

presented a design process model for adopting Object-

oriented design concepts in hardware design processes.

Al-Rababah [15] introduced a novel approach for the

synthesis of reconfigurable hardware from UML models.

The presented approach enables the synthesis of Object-

oriented specifications into hardware circuits. Kohut et al.

[16] suggested a new approach for modeling of boolean

neural networks on field programmable gate arrays

(FPGAs) using UML. Sun et al. [17] outlined a design

flow to develop clocked hardware circuits using UML

notations. The UML Class, Statechart and Component

diagrams are used to model system specifications.

2. Background

2.1 Simplification of Logic Designs

The simplification or minimization of any digital circuit is

an important activity in digital circuit design. To simplify

the circuit, the designer tries to find another circuit that

produces the same output as the original one but with less

number of gates. The main objective of this process is to

keep the number of digital gates as minimum as possible

and thus get a minimal cost solution. There are various

methods of simplification such as boolean algebra,

Karnaugh maps, Tabulation method, Computer Aided

Design etc. All these methods use the simplification of

boolean function that represents the digital logic.

2.2 The Karnaugh map

Maurice Karnaugh developed the Karnaugh map in 1953

during designing of digital circuits for telephone switching

circuits. This technique is quite easy and fast in

comparison with boolean algebra. Karnaugh maps work

well for up to six input variables. A Karnaugh map consists

of an array of rectangles or boxes arranged in rows and

columns. The size of the Karnaugh map with n boolean

variables is equal to 2
n
. The size for maps of 2 variables is

a 2×2 map (four boxes), for 3 variables it is a 2×4 map,

and for 4 variables it is a 4×4 map and so on. The boolean

variables are arranged in an order according to the

principles of gray code where only one variable changes in

adjacent squares. Each square represents a minterm

(sometimes a maxterm) corresponding to the truth table. A

minterm is a boolean expression consisting of a product

term of those variables (or their complimented form). The

minterms are identified by associating numbers to them

like m0, m1, ….mn etc.

For simplifying an input expression, the adjacent minterms

are identified and a group of 2 (Pair), 4 (Quad) or 8 (Octet)

adjacent minterms are formed. The minterms can only

form a group if they are adjacent horizontally and

vertically and not diagonally. The groups should be as

large as possible and overlapping of any minterm on two

or more groups is allowed. Similarly the wrap around of

minterms is also allowed for forming a group. If a term and

its compliment both appear in a group, delete both from

the resultant product term. Finally write the boolean

expression of the remaining terms. For example, A K-map

of three input variables can be expressed as E =

A'B'C'+A'BC+AB'C (=m0+m3+m5) is represented in the

figure 1 below:

BC 00 01 11 10

A

0
m0 000

A’B’C’

m1 001

A’B’C

m2 011

ABC

m3 010

A’BC’

1
m4 100

AB’C’

m5 101

AB’C

m6 111

ABC

m7 110

ABC’

Fig. 1 An Example of a K-map for Three variables

3. UML Modeling and Minimization of K-

map

3.1 UML Representation of Digital Gates

The UML provides the facility of defining profiles and

stereotypes that can be used to define a relevant domain-

specific model element. The UML modelling of digital

gates is shown in figure 2. In this design, a stereotype

“Digital_Gate” is defined.

Fig. 2 Stereotype of Digital Gate

Figure 3 shows the class definition of all the digital gates.

Here the class “Gate” is defined, which is derived from the

stereotype “Digital_Gate”. The three basic gates are

defined as the subclasses of this class. The classes namely

“AND”, “NOT” and “OR” are inherited from the class

“Gate”. The other gates are defined as the classes which

are the composition of these basic gates. The class

“NAND” is a composition of the classes “AND’ and

“NOT”. The class “NOR” is a composition of the classes

<< stereotype >>
Digital_Gate

Base Class

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

222

“OR” and “NOT” where as the class “XOR” is a

composition of the classes “AND”, “OR” and “NOT”.

Fig. 3 UML Class Definition of Digital Gates

3.2 UML Representation and Minimization of

Karnaugh Map

The Karnaugh map is also defined using the UML

stereotype mechanism. The stereotype “Map” is defined

and is shown in figure 4. The class definition of Karnaugh

map is shown in figure 5. In this design, a class “K-map” is

defined which is derived from the stereotype “Map”. This

class contains multiple instances (1 to 2
n
) of a class

“minterms” which is also defined as a stereotype. In the

definition of a Karnaugh map, an attribute “n” is more

significant. This attribute identifies the number of input

variables. Based on the number of inputs, the minterms are

generated. The generalized instance and class instances

diagram of “minterms” for 3 variables are shown in figure

6(a) and 6(b) respectively. Each minterm represents a term

which is a standard product of the values of input variables.

According to the K-map simplification process, these

minterms are arranged in an order and they form a logical

adjacency to each other. The adjacency is initialized as an

attribute “adjacency” vector. The input string contains only

those minterms for which the output is 1. According to the

minterms specified in the input string, the objects of the

class “minterms” are generated and all the attributes are

initialized. For example, for input expression

E=x'y'z'+x'yz+xy'z'+xy'z, the minterms inputs will be

equal to m0+m3+m4+m5. The corresponding digit values

will be 000+011+100+101. This arrangement is shown in

figure 6. The annotation mechanism of the UML is used to

indicate the participating Octet, Quad or Pair. The

simplification is obtained by using an algorithm described

below and it is based upon the Object-oriented

methodology.

Fig. 4 Stereotype of Map

Fig. 5 UML Class Definition of Karnaugh map

XOR

x: Boolean
y: Boolean

output()

<<Digital_Gate>>
Gate

AND

x: Boolean
y: Boolean

output()

OR

x: Boolean
y: Boolean

output()

NOT

x: Boolean

output()

NAND

x: Boolean
y: Boolean

output()

NOR

x: Boolean
y: Boolean

output()

<< stereotype >>
Map

Base Class

2
n

1

<<Map>>
K_map

n: integer

input() : string

output() : string

<<minterms>>

term: string
value [n]: integer

adjacency [n]: string

grouping() : string

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

223

Fig. 7 UML Class Instances for the Expression E=m0+m3+m4+m5

3.3. Minimization of K-map

1. Enter the input string containing the minterms for

which the output is 1 (e.g. E=m0+m3+m4+m5).

2. The maximum number of minterms = 2
n
where n=

number of inputs (x,y,z etc.).

3. If there is only one input minterm, then the output

will be equal to that minterm only.

4. Create the objects of those minterm classes which

are present in the input string and initialize the

value vector correspondingly with the values 0

and 1. Also initialize the adjacency matrix for

indicating the adjacency minterms to that minterm.

The maximum number of adjacent minterms to

any minterm will be equal to n only.

5. Check if the adjacency minterm exists or not. If

there is no adjacency minterm exists then that

minterm will be marked as isolated and its value

will be a part of the output.

6. If adjacency minterms exist then check for the

possibilities of Octet, Quad or Pair. This can be

done using a method “grouping()”.

7. Select first minterms which are the part of an

Octet and apply minimization and get the

corresponding values as a part of the output.

Repeat this for Quad and then for Pair.

8. Check overlapping of any minterm with the Octet,

Quad and Pair and apply minimization.

9. The final output will be the combination of all

minimized values that can be mapped or

converted in the form of sum of products in terms

of variables x,y,z etc.

4. Results and Discussions

For a Pair: take the value vector of both the minterms. Find

out the common bits positions (unchanged bits) and

neglect (or mark as ) those which are changing from 0 to

1 or 1 to 0. Minimizing pairs will eliminate only one

variable at a time. The resultant values will be converted in

terms of variables x,y,z etc.

Fig. 6 (b) UML Class Instances of Minterms for n=3 Variables

<<minterms>>
m0

value[3]=000
term=x'y'z'

<<minterms>>
m1

value[3]=001
term=x'y'z

<<minterms>>
m3

value[3]=011
term=x'yz

<<minterms>>
m2

value[3]=010
term=x'yz'

<<minterms>>
m4

value[3]=100
term=xy'z'

<<minterms>>
m5

value[3]=101
term=xy'z

<<minterms>>
m7

value[3]=111
term=xyz

<<minterms>>
m6

value[3]=110
term=xyz'

Fig. 6 (a) UML Instance Diagram for minterms

Pair with

1

0..n

_:minterms

{pair}

{pair}

<<minterms>>
m0

value[3]=000

<<minterms>>
m4

value[3]=100

<<minterms>>
m5

value[3]=101

<<minterms>>
m3

value[3]=011

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

224

For a Quad and Octet: For a Quad and Octet, take 4 or 8

minterms and find the common bits positions among all

participating minterms. The output will be the

corresponding bit positions of all common bits

(unchanged). In case of a Quad only two variables will be

reduced at a time and in case of an Octet, three variables

will be reduced at a time.

4.1 A Case Study

As a case study we consider an input string (sum of

product) as E=x'y'z'+x'yz+xy'z'+xy'z this will be equal to

minterms m0+m3+m4+m5

The corresponding digit values are 000+011+100+101

As indicated in the figure 7 above, the four objects are

created and there adjacency relationship is formed. Here

the minterms m0 and m4 forms a pair and similarly the

minterms m4 and m5. The minterm m3 is not adjacent to

any of these minterms so it will be treated as isolated and

can be further minimized. The value for this will be x'yz.

Take first pair containing (m0, m4)

The value vector m0.value [3] = 000

The value vector m4.value [3] = 100

The most significant bits are changing from 0 to 1, the last

two bits are common. By taking these common bits the

value= 00, which corresponds to y'z'

Take first pair containing (m4, m5)

The value vector m0.value [3] = 100

The value vector m4.value [3] = 101

The least significant bits are changing from 0 to 1, the first

two bits are common. By taking these common bits the

value= 10, which corresponds to xy'

The simplified expression will be = x'yz+y'z'+xy'

This reduces the number of AND, OR and NOT gates and

the number objects required to instantiate for implementing

this digital circuit according to the object oriented design.

The equivalent Karnaugh map can be drawn as follows:

5. Concluding Remarks

The minimization of digital gates in any digital circuit

design is an important aspect for performance

improvement. In the present paper, an Object-oriented

design procedure of the well known Karnaugh map

minimization is presented. The UML modeling is done for

the digital gates and the K-map. The UML stereotypes and

class diagrams are presented. The relationship between the

digital gates and the minterms are described.

Simplification of boolean expression through UML model

is also done through a case study.

Acknowledgements

The authors are very thankful to Prof. B. Hanumaiah,

Vice-Chancellor, Babasaheb Bhimrao Ambedkar

University (A Central University), Vidya Vihar, Rae

Bareilly Road, Lucknow, India, for providing excellent

computation facilities in the University campus. Thanks

are also due to the University Grant Commission, India, for

providing financial assistance to the Central University for

research work.

References

[1] Mano, Morris M. (1991), Digital Design, Second

Edition, Prentice-Hall of India Private Limited.

[2] Rajaraman, V., Radhakrishnan, T. (2001), An

Introduction to Digital Computer Design, Fourth

Edition, Prentice-Hall of India Private Limited.

[3] Tanenbaum, A. S. (2004), Structured Computer

Organization, Fourth Edition, Prentice-Hall of

India Private Limited.

[4] Leach, D. P, Malvino, A. P. and Saha, G. (2006),

Digital Principles and Applications, Second

Edition, Tata McGraw-Hill.

[5] Wakerly, John F. (2005), Digital Design,

Principles and Practices, Third Edition Updated,

Ninth Indian Reprint, Pearson Education Inc.

[6] Crenshaw, Jack W. (2003), A primer on

Karnaugh maps, Embedded Systems Design,

Retrieved from

http://www.embedded.com/columns/programmers

toolbox/16100908?_requestid=264392

[7] Kuphaldt, Tony R. (2007), Lessons in Electric

Circuits, Volume IV – Digital, Fourth Edition,

Available as part of the Open Book Project

collection retrieved from:

www.ibiblio.org/obp/electricCircuits

m0 000

1

m1 001

0

1

m4 100

m5 101

1

1

m3 011

m2 010

0

0

m7 111

0

m6 110

1

1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

225

[8] OMG, UML Superstructure Specification, v2.0,

Retrieve from

http://www.omg.org/cgi-bindoc?formal/05-07-04.

[9] Booch, G., Rumbaugh, J., Jacobson, I. (2004),

The Unified Modeling Language User Guide,

Twelfth Indian Reprint, Pearson Education.

[10] Roff, T. (2006), UML: A Beginner’s Guide, Tata

McGraw-Hill Edition, Fifth Reprint.

[11] Gomaa, H. (2001), Designing Concurrent,

Distributed, and Real-Time Applications with

UML, Proceedings of the 23rd International

Conference on Software Engineering (ICSE’01),

IEEE Computer Society.

[12] Schattkowsky, Tim (2005), UML 2.0 - Overview

and Perspectives in SoC Design, IEEE.

[13] Saxena, V., Arora D. and Ahmad S. (2007),

Object Oriented Distributed Architecture System

through UML, IEEE International Conference on

Advanced in Computer Vision and Information

Technology, ACVIT-07, Nov. 28-30, ISBN 978-

81-89866-74-7, pp. 305-310.

[14] Kohut, R., Steinbach, B., and Fröhlich, D. (),

FPGA Implementation of Boolean Neural

Networks using UML.

[15] Damasevicius, R., Stuikys, V. (2004), Application

of UML for Hardware Design Based on Design

Process Model, IEEE.

[16] Al-Rababah Ahmad, A. (2009), UML - Models

Implementations in Software Engineering System

Equipments Representations, International

Journal of Soft Computing Applications, Issue 4 ,

pp.25-34, Euro Journals Publishing, Inc.,

Retrieved from:

http://www.eurojournals.com/IJSCA.htm

[17] Sun, Zhenxin, Wong, Weng-Fai, Zhu, Yongxin

and Pilakkat, Santhosh Kumar (2005), Design of

Clocked Circuits Using UML, IEEE ASP-DAC

2005 (901-904).

Dr. Vipin Saxena: He is a Reader,

Founder and Ex-Head, Dept. of

Computer Science, Babasaheb Bhimrao

Ambedkar University, Lucknow, India.

He got his M.Phil. Degree in Computer

Application in 1992 & Ph.D. Degree

work on Scientific Computing from

University of Roorkee (renamed as

Indian Institute of Technology, India) in

1997. He has more than 13 years and 08

months of teaching experience and 17 years research

experience in the field of Scientific Computing & Software

Engineering. Currently he is proposing software designs by the

use of Unified Modeling Language for the various research

problems related to the Software and Hardware Domains. He

has published more than 75 International and National

publications.

Manish Shrivastava: He is a

Research Scholar, Dept. of

Computer Science, Babasaheb

Bhimrao Ambedkar University,

Lucknow, India. He got his M.Phil.

Degree in Computer Applications in

1992. He has more than 12 years of

teaching experience. Currently he is

actively engaged in the research

work on the Unified Modeling

Language. He has produced several

outstanding research publications.

Dr. Deepak Arora received his

Masters in Computer Applications in

2003 and M.Phil. in Computer

Science in 2006. He obtained his

Ph.D. degree in Computer Science

from Babasaheb Bhimrao Ambedkar

University (A Central University),

Lucknow in 2009. His research

mainly focuses on Parallel and

Distributed Computing Applications.

His current research interests include

Mobile and Wireless Networking Architectures, Data Mining

and Data Warehousing. For his research efforts, Dr. Deepak

has published several peer-reviewed publications in various

journals and conferences. He is a senior member of IACSIT

and CSI.

