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Summary 

In this paper, a runtime diagnosis infrastructure is 

presented for embedded systems. Different from existing 

methods of tracing system logs offline, our research 

focuses on analyzing system kernel data structures from 

runtime memory against predefined constraints 

periodically. The prototype system is developed based on a 

system virtualization layer, above on which the guest 

operating system and diagnosis services run 

simultaneously. The infrastructure requires few 

modifications to the source code of operating system 

kernel, thus it can be easily adopted into existing 

embedded systems for quick implementation. It is also 

fully software-based without introducing any specific 

hardware; therefore it is cost-efficient. The experiment 

results indicate that it can correctly detect several real 

world kernel-level security attacks with acceptable penalty 

to system performance. 

Key words: 
Security, diagnosis, embedded system, kernel data structures 

1. Introduction 

Recently ubiquitous computing is gaining significant 

interest in the field of embedded systems. More and more 

embedded devices have been used inside the current 

application-rich environment, with rapid development of 

various services, e.g. GPS, traffic navigation services etc. 

Mobile phone is a typical representative, also has become 

the most important information carrier. A trusted, robust 

and user-friendly mobile terminal is the fundamental of 

ubiquitous computing; therefore those embedded devices 

engaged in ubiquitous computing also require more 

security and robustness. 

Modern embedded systems are also changing increasingly 

from specific-purpose to general-purpose. With their 

functionality on demand is growing, their software 

becomes more complicated as well. For instance, the lines 

of source code of current mobile phone is around 5-7 

million, and keep growing. Numerous applications 

formerly developed for PC can be ported to embedded 

platforms more easily. Thus a plenty of open-source 

software have been introduced to mobile phones, e.g. 

Linux kernel and its upper layer applications. The opening  

 

 

of APIs and source code also bring security challenges to 

the design of embedded systems.  

It is well known that there are many potential security risks 

in Internet. At the same time when embedded systems are 

designed more general-purpose together with open APIs, 

they are also more likely to suffer from security attacks. 

When embedded systems are under attack, it is often very 

difficult to diagnose. Moreover, in comparison with PC, 

embedded systems typically lack diagnosis utilities and 

administrative tools to pinpoint security problems. 

Meanwhile, ordinary users usually do not have enough 

technical knowledge to solve such problems. These 

problems may result in a negative influence of user 

experience with related products and manufactures. 

Therefore, there are great needs for runtime system-level 

diagnosis support for future advanced embedded systems. 

However, existing research does not solve the problem 

very well yet. Hardware-based solutions [19] increase 

production costs of embedded systems, which are known 

sensitive to prices. Some solutions implemented as system 

kernel extensions or in application layers [1, 6, 11, 13-15] 

can be easily compromised by kernel level security attacks. 

Some offline solutions [13, 14, 20] seem effective, while 

they cannot cover runtime problems, hence they cannot fix 

them to help improve user experience. 

To address above problems, we propose an innovative 

runtime diagnosis infrastructure for embedded systems. Its 

design is a balancing choice between security requirements 

of system design and practical engineering solutions. 

Current commodity operating systems like Windows, Mac 

OS and Linux are all written in C or C++; hence they 

cannot benefit from safe programming technique. Re-

writing systems using safe programming languages, such as 

Java and C#, can remove almost 50% of existing related 

attacks [21]. But from engineering cost point of view, it is 

not practical at all; all legacy applications have to be 

rebuilt in the new system. Even if all these applications are 

open-source, developers also have to recompile and 

integrate them into a completely new execution 

environment. Therefore, we propose a diagnosis solution 

based on system virtualization technique to keep balance 

between system security and practice of innovative 

embedded system design. 

The main contribution of this paper is twofold: 
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 We propose a diagnosis infrastructure to protect the 

system from security attacks, whose attacking target 

is system kernel. 

 We developed a prototype system based on a system 

virtualization layer to verify the feasibility of the 

proposed infrastructure. The experiments demonstrate 

that it can detect several known kernel-level security 

attacks with acceptable performance overhead. 

The remainder of the paper is structured as follows: 

Section 2 describes related work, Section 3 contains the 

explanation of design issues and Section 4 presents system 

architecture and implementation. Section 5 is about 

evaluation, Section 6 discusses limitations and future work 

and Section 7 concludes the paper. 

2. Related Work 

In recent literature of system detection, some work has 

been done at different layers by using various methods. By 

connecting a specific hardware to the target system, 

Copilot [19] can detect kernel-level attacks by periodically 

checking kernel memory. Its monitoring task is deployed 

on an independent external PCI card. In its latest work, a 

constraint specification infrastructure [12] is proposed, 

which can be used to detect the inconsistency of kernel 

dynamic data. Gibraltar [7] compares values of kernel data 

structures in training and enforcement modes to detect 

kernel attacks using PCI network card. 

With the virtualization technique has become popular, 

there are some virtual machine monitor (VMM) based 

solutions [10]. At kernel level, in certain signature-based 

intrusion detection systems [13], by hooking system calls, 

a large amount of log data is generated for the purpose of 

analysis, its volume of the offline log per day is about 1.2 

GB [15]. Certain monitoring functions also have been 

implemented as kernel modules [11] which can be loaded 

into the monitored system. In the application layer, there 

are also some existing solutions to detect inconsistency of 

Linux kernel such as Chkrootkit [1], Rkthunter [6] and 

Tripwire [14]. They can check integrity of file systems or 

other critical system administrative binaries. But they can 

be easily cheated by kernel-level attacks by directly 

compromising the related kernel data, thus its monitoring 

cannot be trusted. Strider Ghostbuster [20] can detect all 

hidden files and processes for Windows by offline 

monitoring. It uses a cross diff-view based approach, 

which compares the view from user level with kernel level.  

3. Design Issues 

There are several general issues related with the design of 

diagnosis infrastructure. First is how to provide security 

isolation between the diagnosis service and the monitored 

target. Second is how to control the flexible granularity of 

isolation partition. 

Security isolation can be provided by either hardware or 

software solutions. Recently virtual machine monitor 

(VMM) has become a popular alternative among software 

solutions. But virtual machine monitor-based systems are 

also facing security problems when their code size 

increases, which are mentioned in [16]. When virtual 

machine monitor suffers security attacks, the security 

isolation cannot be trusted; hence the services may also 

become unavailable. Our proposed diagnosis service is 

implemented based on microkernel architecture. These 

services are implemented as programs running on 

microkernel, separated from the guest operating system. 

The isolation is provided by several small code-size trusted 

computing bases (TCB), which can be trusted and believed 

bug-free. The microkernel can still restart them hence 

recover the whole system as its final solution, even when 

diagnosis service has crashed. Therefore, the microkernel-

based system can still control the system when system 

services scale. 

Furthermore, virtual machine only allows developers to 

divide the system at the level that includes both operating 

systems and their applications within each partition. 

Microkernel-based virtualization allows decomposing 

software systems at an arbitrarily fine level of granularity, 

allowing greater flexibility in optimizing that 

decomposition for the specific requirements of your 

application. The control of flexible granularity of partition 

is essential to fit various customized requirements for 

embedded products. 

4. Implementation 

Hardware
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Guest Kernel
Apps

Fig. 1 System architecture. 

 

In this section, we explain more details about system 

implementation. Our prototype system is developed based 

on system virtualization layer (also known as hypervisor) 

named L4 microkernel [17], whose purpose is to provide 

hardware abstraction and basic system services, including 
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process scheduling and inter-process communication (IPC). 

Linux and diagnosis service are running on the system 

virtualization layer simultaneously. Fig. 1 shows the whole 

system architecture. The diagnosis service program can 

access Linux kernel memory to analyze kernel data 

structures at runtime. 

4.1 Overview 

The proposed infrastructure is based on the underlying 

system virtualization layer, which is in charge of 

scheduling among processes and inter-process 

communication (IPC). L4 microkernel virtualization layer 

provides strong isolation among the guest operating system 

kernel and upper layer service programs, which is highly 

reliable and believed bug-free. Linux applications provide 

main utilities to users, such as GUI, media file player, web 

browsing. Linux kernel is extended with diagnosis service 

programs above microkernel due to it are monolithic and 

lacks of security isolation mechanisms. The diagnosis 

services are to enhance the reliability of Linux kernel at 

runtime. Moreover, in the application domain, all Linux 

legacy applications can be reused in this infrastructure 

without any modification.  

4.2 Diagnosis 

In this section, we talk about how diagnosis is 

implemented. We choose Linux kernel data structures as 

our research objects, because of their close connection 

with system runtime states. We also explain how to select 

runtime monitored Linux kernel data structures among 

numerous candidates and how to write related constraint 

scripts used at system runtime. 

4.2.1 Kernel data structures selection 

Kernel data structures are used by operating systems to 

keep information about current system states. When 

changes happen within the system, related data structures 

are updated to reflect the current reality. For example, a 

task struct which represents a Linux task is created inside 

Linux kernel when a user launches a new application. The 

kernel scheduler also uses its related data fields to decide 

which the next process to dispatch is. Linux kernel data 

structures contain data, pointers and the addresses of 

kernel functions. Every Linux kernel data structure has 

close relation with a specific kernel sub-system such as 

process scheduling, memory management, file system etc.  

Kernel data structures refer to certain specific data 

structures related with system resources not abstract data 

types in our research context. We focus on certain critical 

kernel data structures, which are related with runtime 

system resources, mainly CPU and memory resources. 

Moreover, there is a close relation between the granularity 

in the selection of these objects and the impact on the 

introduced system overhead. Currently we only choose 

mandatory kernel data structures related with system 

resources as our research objects as Table 1 shows. 
 

Table 1: Selected kernel data structures 

Name Category Description 

task struct CPU processes 

runqueue CPU process queue for scheduling 

mm_struct MEM virtual memory of a process 

vm_area_struct MEM an area of virtual memory 

files struct FILE opened file descriptors 

module KMOD loadable kernel module 

 

We have also made a survey of kernel-level attacks to 

explore which data structures are more likely to be 

attacked. For example, in Table 1 the data structure of 

module is related with loadable kernel modules. Although 

kernel modules may not concern much with system 

resources, it is a very popular target to attack. Thus we also 

include it as a monitored object. Based on such supplement, 

the selected kernel data structures are expected to be 

system-critical and cover vulnerable security holes as many 

as possible. 

4.2.2 Accessing kernel data structures 
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Fig. 2 A capability-based access control policy among memory sections 

 

L4 microkernel virtualization layer manages a single 

address space shared among Linux kernel and other service 

programs, consist of several memory sections. Fig. 2 

shows a capability-based privilege mechanism is 

introduced to manage the access control among individual 

memory sections. Linux kernel is executed as a normal 

program without any privilege. In our system, we assign 

the capability to the diagnosis service program, so that it 

can directly access the memory section of Linux kernel. 

We use the file System.map, generated when building 

Linux kernel to get runtime addresses of specific kernel 
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data structures. Thus we can directly access the address at 

runtime, dereference the pointer to get correct values of the 

corresponding data structure. For example, in the file 

System.map we can find the runtime address of init_task 

and per_cpu_runqueues respectively. By using them we 

can get system information about process scheduling and 

process management. 

Type definitions of kernel data structures are used to 

describe their layouts inside runtime memory. We extract 

related type definitions by processing kernel source code 

using CIL (C Intermediate Language) [18] scripts 

automatically, which is a high-level representation along 

with a set of tools that permit analysis and source-to-source 

transformation of C programs. By using extracted type 

definitions, the diagnosis service can get correct runtime 

kernel information outside Linux kernel. 

4.2.3 Diagnosis using dependency tree 

The diagnosis service uses a dependency tree to maintain 

the relationships among system resources at runtime, such 

as parent-child relationships between processes, memory, 

owners. The dependency tree is updated by periodically 

reading the values of related kernel data fields explicitly. 

For example, we can know parent-child relationships 

between processes, by reading the data field of children in 

task struct without hooking fork system call. Comparing 

with the conventional method of hooking system calls, the 

kernel data structure-based method helps decrease the 

system overhead greatly. The dependency tree is used by 

the containment algorithm to identify possible malicious 

attacks. Table 2 shows the related kernel data structures 

and data fields used to maintain the system dependency 

tree. 
 

Table 2: Correlation of kernel data structures 

Dependency rule Data structures Data field 

process/process task_struct, runqueue children 

process/file task struct, file struct files, fs 

process/user task struct uid, gid 

process/memory task struct, mm struct mm, vma 

 

Our research focuses on runtime diagnosis; hence the 

kernel data structures inside runtime memory are our main 

research objects. The dependency tree of kernel data 

structures contains rich runtime system information, 

including processes, their used memory, privilege and 

opened file descriptors. Hence diagnosis can be performed. 

5. Evaluation 

To evaluate the system, we set up experiments which are 

performed on a machine running the prototype system 

developed based on a L4 microkernel implementation 

L4Ka::Pistachio [3] and Iguana [2] from NICTA. It is a 

Dell Dimension 2400 machine, with 512MB RAM, 

equipped with a single 2.4GHz Pentium 4 processor 

running Linux kernel 2.6.13 as its guest operating system. 

Iguana [2] is designed for embedded systems, which 

supports various platforms, including ARM and IA32. For 

more convenience, we use the IA32 platform to evaluate it. 

Because the experiments focus mainly on overhead 

introduced by the diagnosis functions, there should not be 

much gap among different platforms.  

5.1 Functional evaluation 

We have implemented several runtime constraint scripts 

designed to protect kernel data structures of Linux kernel 

2.6.13 using our system. We have tested them against 

implementations of existing Linux kernel attacks published 

in Packet Storm [4], which offers an abundant resource of 

security tools, exploits, and advisories. The tested security 

attacks are summarized in Table 3. There are mainly two 

methods of Linux kernel attacks, one is loadable kernel 

module (LKM) and the other is direct kernel memory 

exploit (KMEM). 
 

Table 3: Linux kernel attacks survey 

Name 
Attack 

method 
Affected kernel data 

Knark-2.4.3 LKM System call table 

Adore-0.42 LKM System call table 

Modhide KMEM System call table 

Adore-ng KMEM Kernel memory exploit 

SuckIt-1.3 KMEM Kernel memory exploit 

Backdoor-caca LKM Interrupt descriptor table 

 

According to the different attacking objects, they can be 

further summarized to two categories. 

 I: Redirecting system control data, such as system 

calls, interrupt handlers or virtual file system 

functions to their own malicious routines, the 

representatives are Knark [8], Adore [5] and 

Backdoor-caca. 

 II: Compromising system non-control data, such as 

direct kernel memory exploit, control of /proc file 

system, the example is SuckIt. 
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5.2 Analysis based on attacking model 

False positives and false negatives are two common 

metrics to evaluate the accuracy of detection. False 

positives refer to those are legitimate operations that are 

marked tainted and reverted to a previous state, and false 

negatives refer to operations of attackers that are not 

caught. 

S1S1 S2 S3 S4

(2)

(1)

C CU HU HUA

 
Fig. 3 A flow char for kernel attacks 

 

Fig. 3 shows a flow chart for kernel attacks which consist 

of four states. S1: The system kernel is in a consistent state 

with several security holes. S2: Security holes have been 

found by attackers, are used to get root privilege. S3: 

Attackers have installed malicious kernel modules or 

compromised kernel memory directly to hide their own 

utilities, the system kernel has become inconsistent. S4: 

System is already comprised and used to attack other 

vulnerable hosts. And there are four symbols defined to 

illustrate states of the system kernel. 

C: the system kernel is consistent 

U: the system kernel is under attack 

H: the system kernel is inconsistent due to hidden 

malicious utilities 

A: the system is already in a active state to attack other 

vulnerable hosts 

False positives. Fig. 3 shows that our system is designed to 

detect from kernel inconsistency for S3 state marked as (1). 

While most of the previous application-level detection 

system focuses on S2 state by hooking system calls or 

logging system events marked as (2). It is also the main 

difference between our research and previous research. In 

our system, if any kernel inconsistency has been detected, 

the kernel attacks can be concluded. Thus the false positive 

of our system is zero. In Fig. 3, suppose that the 

probability of each transition from Si to Sj is pij (1 <= j < i 

<= 4). The detection probability of kernel detection using 

our system is p31; the detection probability of application-

level detection systems is p21. By using our kernel 

detection, the whole system detection accuracy will 

increase from p21 to p21 + (1 − p21) * p31. 

False negatives. Because our detection is based on 

periodical checking the update of kernel data structures, 

false negatives depend on the detection time interval. 

There is a trade-off between false negatives and system 

performance, especially to some transient attacks. If we 

shorten the detection time interval, the false negatives will 

decrease and result in the increase of system overhead. 

More details of performance analysis will be discussed in 

Section 5.3. 

5.3 Performance analysis 

In Section 5.1 we demonstrate the effectiveness of the 

diagnosis service, we measure the CPU overhead 

introduced by the diagnosis service in this section. We use 

runtime tracing mechanism provided by L4 microkernel to 

trace switch_to event hence evaluate the system overhead. 

The timestamps are filled with rdtsc instruction on IA32 

platform. 
 

Table 4: CPU consumption of main processes 

Overhead 

(%) 
Name Description 

66.668 L_timer Linux interrupt handler 

27.092 Kdbpoll system kernel debugger 

4.845 L syscall Linux system call handler 

0.559 monitor runtime diagnosis services 

0.33 serial serial services 

0.178 L1 application(bash) 

0.0468 irq00 system irq handler 

0.031 L17 application 

0.0261 trace trace buffer service 

0.0237 timer timer service 

0.023 L18 application 

0.0215 naming naming service 

0.0138 roottask page fault handler 

 

Table 4 shows the results of CPU consumption in system 

when diagnosis time interval is set to 800 milliseconds. It 

shows that the diagnosis service only consumes about 

0.503% CPU resource, which is pretty lightweight. Linux 

kernel is implemented as two L4 processes: L timer acts as 

Linux interrupt irq handler, whose CPU consumption is 

about 66.67%; L_syscall is Linux system call handler, 

which consumes about 4.85%. The kdb poll task, which is 

in charge of kernel debug, consumes about 27%. We also 

change the time interval to check related CPU overhead 

introduced by the diagnosis service.  
 

Table 5: Overhead changes along with interval and priority 

Overhead 

(%) 

Timers 

(ms) 

Priority  

 
App priority 

0.5594384 800 100 99 

1.1141184 400 100 99 
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2.2252043 200 100 99 

4.4570269 100 100 99 

8.8431218 50 100 99 

0.5558166 800 200 99 

0.5554242 800 110 99 

 

Table 5 shows the overhead changes with detection 

intervals and the priority of diagnosis service. In the first 

five rows, the priority of diagnosis service keeps 

unchanged as 100, the priority of normal L4 application is 

99. When the diagnosis interval changes from 800 

milliseconds to 50 milliseconds, the introduced CPU 

overhead increases from 0.559% to 8.843%. It indicates 

the CPU consumption usage increases with the decrease of 

diagnosis interval time within the prototype system. It can 

be concluded that the maximum CPU overhead is 8.843% 

when the diagnosis interval is set to 50 milliseconds.  

The first, sixth and seventh rows are group of comparative 

experiment. In these three rows, the diagnosis interval 

keeps unchanged as 800 milliseconds; the priority of 

diagnosis service is 100, 200 and 110 respectively. It 

indicates the CPU consumption usage varies slightly as 
0.5594384%, 0.5558166% and 0.5554242%. 
 

Table 6: Cycles used by detection 

Category Detection (cycle) Hz 

I 132 2.4 G 

II 1409 2.4 G 

 

To measure more fine-grained performance, we design 

several fault injection experiments, including overwrite 

system calls, overwrite IDT tables, direct modify task list 

to hide process etc. These fault injection experiments will 

trigger the invoking of the related diagnosis routines. As 

Table 6 shows, we observe two kinds of cases to perform 

fine-grained overhead analysis for detection based on 

kernel data structures. I stand for detection of system 

control data, II stand for detection of system non-control 

data. In I, only function pointer is compared with known 

good value; while in II, we have to traverse along multiple 

kernel data structures to verify its values against security 

specifications, such as relation between run_queue and 

task_list. The result shows that almost 10 times of CPU 

cycles are consumed in case II than case I in our platform. 

6. Future Work and Discussion 

Currently our prototype system only supports single 

processor, for further research it is planned to be extended 

to support multiprocessor architecture. The main challenge 

rises from the synchronization between kernel processes 

and diagnosis services. Our solution is to let diagnosis 

service evaluate based on the current snapshot of specific 

kernel data structures, at the same time kernel processes 

can still execute without any interference. Once 

inconsistency of kernel data structure has been detected, 

the modules may even recover them to certain consistent 

values. Some side effect may be introduced; currently 

related evaluation tests are still in progress. 

Though our diagnosis service can detect several kernel-

level security attacks, it also suffers from some limitations. 

We discuss about them as follows. 

Our current research is based on the analysis of former 

known malicious attacks, suffers from arms race problems 

as well as other antivirus research work. Although the 

reverse engineering methods make our research effective 

to existing security case studies, they also limit our 

research to known problems, hard to find potential security 

holes. In our future work, we plan to combine static 

program analysis tools such as Daikon [9] to help us 

automatically explore potential system exploits inside 

Linux kernel. 

Inside the proposed infrastructure, Linux kernel data 

structures are accessed from the diagnosis service, which is 

separated from kernel space. To correctly dereference 

pointers to kernel data structures, the diagnosis service has 

to know their layout inside memory from their definitions. 

Meanwhile, the definitions of related kernel data structures 

probably change during kernel development. Therefore the 

definitions of related kernel data structures should be 

updated according to their latest change, when we use the 

latest kernel source code. 

7. Conclusion 

As embedded systems are used increasingly for daily 

applications, ensuring automatic diagnosis and preventing 

the system from security attacks becomes even more 

important. In this paper, we have presented a runtime 

diagnosis infrastructure for embedded systems. A 

prototype system also has been developed to verify its 

feasibility based on security isolation provided by a system 

virtualization layer. The evaluation has demonstrated its 

effect of detecting the inconsistency of kernel data 

structures with low overhead. Moreover, its diagnosis does 

not require any modifications to the interfaces of former 

guest operating system calls, therefore they are expected to 

be easily applied to existing systems and reuse all of upper 

layer legacy applications. 
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