
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

226

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

Diagnosis Support of Embedded Systems based on Virtualization

Lei Sun
†
 and Tatsuo Nakajima

††
,

Department of Computer Science, Waseda University, Tokyo, Japan

Summary

In this paper, a runtime diagnosis infrastructure is

presented for embedded systems. Different from existing

methods of tracing system logs offline, our research

focuses on analyzing system kernel data structures from

runtime memory against predefined constraints

periodically. The prototype system is developed based on a

system virtualization layer, above on which the guest

operating system and diagnosis services run

simultaneously. The infrastructure requires few

modifications to the source code of operating system

kernel, thus it can be easily adopted into existing

embedded systems for quick implementation. It is also

fully software-based without introducing any specific

hardware; therefore it is cost-efficient. The experiment

results indicate that it can correctly detect several real

world kernel-level security attacks with acceptable penalty

to system performance.

Key words:
Security, diagnosis, embedded system, kernel data structures

1. Introduction

Recently ubiquitous computing is gaining significant

interest in the field of embedded systems. More and more

embedded devices have been used inside the current

application-rich environment, with rapid development of

various services, e.g. GPS, traffic navigation services etc.

Mobile phone is a typical representative, also has become

the most important information carrier. A trusted, robust

and user-friendly mobile terminal is the fundamental of

ubiquitous computing; therefore those embedded devices

engaged in ubiquitous computing also require more

security and robustness.

Modern embedded systems are also changing increasingly

from specific-purpose to general-purpose. With their

functionality on demand is growing, their software

becomes more complicated as well. For instance, the lines

of source code of current mobile phone is around 5-7

million, and keep growing. Numerous applications

formerly developed for PC can be ported to embedded

platforms more easily. Thus a plenty of open-source

software have been introduced to mobile phones, e.g.

Linux kernel and its upper layer applications. The opening

of APIs and source code also bring security challenges to

the design of embedded systems.

It is well known that there are many potential security risks

in Internet. At the same time when embedded systems are

designed more general-purpose together with open APIs,

they are also more likely to suffer from security attacks.

When embedded systems are under attack, it is often very

difficult to diagnose. Moreover, in comparison with PC,

embedded systems typically lack diagnosis utilities and

administrative tools to pinpoint security problems.

Meanwhile, ordinary users usually do not have enough

technical knowledge to solve such problems. These

problems may result in a negative influence of user

experience with related products and manufactures.

Therefore, there are great needs for runtime system-level

diagnosis support for future advanced embedded systems.

However, existing research does not solve the problem

very well yet. Hardware-based solutions [19] increase

production costs of embedded systems, which are known

sensitive to prices. Some solutions implemented as system

kernel extensions or in application layers [1, 6, 11, 13-15]

can be easily compromised by kernel level security attacks.

Some offline solutions [13, 14, 20] seem effective, while

they cannot cover runtime problems, hence they cannot fix

them to help improve user experience.

To address above problems, we propose an innovative

runtime diagnosis infrastructure for embedded systems. Its

design is a balancing choice between security requirements

of system design and practical engineering solutions.

Current commodity operating systems like Windows, Mac

OS and Linux are all written in C or C++; hence they

cannot benefit from safe programming technique. Re-

writing systems using safe programming languages, such as

Java and C#, can remove almost 50% of existing related

attacks [21]. But from engineering cost point of view, it is

not practical at all; all legacy applications have to be

rebuilt in the new system. Even if all these applications are

open-source, developers also have to recompile and

integrate them into a completely new execution

environment. Therefore, we propose a diagnosis solution

based on system virtualization technique to keep balance

between system security and practice of innovative

embedded system design.

The main contribution of this paper is twofold:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

227

 We propose a diagnosis infrastructure to protect the

system from security attacks, whose attacking target

is system kernel.

 We developed a prototype system based on a system

virtualization layer to verify the feasibility of the

proposed infrastructure. The experiments demonstrate

that it can detect several known kernel-level security

attacks with acceptable performance overhead.

The remainder of the paper is structured as follows:

Section 2 describes related work, Section 3 contains the

explanation of design issues and Section 4 presents system

architecture and implementation. Section 5 is about

evaluation, Section 6 discusses limitations and future work

and Section 7 concludes the paper.

2. Related Work

In recent literature of system detection, some work has

been done at different layers by using various methods. By

connecting a specific hardware to the target system,

Copilot [19] can detect kernel-level attacks by periodically

checking kernel memory. Its monitoring task is deployed

on an independent external PCI card. In its latest work, a

constraint specification infrastructure [12] is proposed,

which can be used to detect the inconsistency of kernel

dynamic data. Gibraltar [7] compares values of kernel data

structures in training and enforcement modes to detect

kernel attacks using PCI network card.

With the virtualization technique has become popular,

there are some virtual machine monitor (VMM) based

solutions [10]. At kernel level, in certain signature-based

intrusion detection systems [13], by hooking system calls,

a large amount of log data is generated for the purpose of

analysis, its volume of the offline log per day is about 1.2

GB [15]. Certain monitoring functions also have been

implemented as kernel modules [11] which can be loaded

into the monitored system. In the application layer, there

are also some existing solutions to detect inconsistency of

Linux kernel such as Chkrootkit [1], Rkthunter [6] and

Tripwire [14]. They can check integrity of file systems or

other critical system administrative binaries. But they can

be easily cheated by kernel-level attacks by directly

compromising the related kernel data, thus its monitoring

cannot be trusted. Strider Ghostbuster [20] can detect all

hidden files and processes for Windows by offline

monitoring. It uses a cross diff-view based approach,

which compares the view from user level with kernel level.

3. Design Issues

There are several general issues related with the design of

diagnosis infrastructure. First is how to provide security

isolation between the diagnosis service and the monitored

target. Second is how to control the flexible granularity of

isolation partition.

Security isolation can be provided by either hardware or

software solutions. Recently virtual machine monitor

(VMM) has become a popular alternative among software

solutions. But virtual machine monitor-based systems are

also facing security problems when their code size

increases, which are mentioned in [16]. When virtual

machine monitor suffers security attacks, the security

isolation cannot be trusted; hence the services may also

become unavailable. Our proposed diagnosis service is

implemented based on microkernel architecture. These

services are implemented as programs running on

microkernel, separated from the guest operating system.

The isolation is provided by several small code-size trusted

computing bases (TCB), which can be trusted and believed

bug-free. The microkernel can still restart them hence

recover the whole system as its final solution, even when

diagnosis service has crashed. Therefore, the microkernel-

based system can still control the system when system

services scale.

Furthermore, virtual machine only allows developers to

divide the system at the level that includes both operating

systems and their applications within each partition.

Microkernel-based virtualization allows decomposing

software systems at an arbitrarily fine level of granularity,

allowing greater flexibility in optimizing that

decomposition for the specific requirements of your

application. The control of flexible granularity of partition

is essential to fit various customized requirements for

embedded products.

4. Implementation

Hardware

L4 Microkernel

Diagnosis

Services
Time

server

Shared Memory

IPC

File

server

Serial

server

...

Proprietary Servers

Guest Kernel
Apps

Fig. 1 System architecture.

In this section, we explain more details about system

implementation. Our prototype system is developed based

on system virtualization layer (also known as hypervisor)

named L4 microkernel [17], whose purpose is to provide

hardware abstraction and basic system services, including

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

228

process scheduling and inter-process communication (IPC).

Linux and diagnosis service are running on the system

virtualization layer simultaneously. Fig. 1 shows the whole

system architecture. The diagnosis service program can

access Linux kernel memory to analyze kernel data

structures at runtime.

4.1 Overview

The proposed infrastructure is based on the underlying

system virtualization layer, which is in charge of

scheduling among processes and inter-process

communication (IPC). L4 microkernel virtualization layer

provides strong isolation among the guest operating system

kernel and upper layer service programs, which is highly

reliable and believed bug-free. Linux applications provide

main utilities to users, such as GUI, media file player, web

browsing. Linux kernel is extended with diagnosis service

programs above microkernel due to it are monolithic and

lacks of security isolation mechanisms. The diagnosis

services are to enhance the reliability of Linux kernel at

runtime. Moreover, in the application domain, all Linux

legacy applications can be reused in this infrastructure

without any modification.

4.2 Diagnosis

In this section, we talk about how diagnosis is

implemented. We choose Linux kernel data structures as

our research objects, because of their close connection

with system runtime states. We also explain how to select

runtime monitored Linux kernel data structures among

numerous candidates and how to write related constraint

scripts used at system runtime.

4.2.1 Kernel data structures selection

Kernel data structures are used by operating systems to

keep information about current system states. When

changes happen within the system, related data structures

are updated to reflect the current reality. For example, a

task struct which represents a Linux task is created inside

Linux kernel when a user launches a new application. The

kernel scheduler also uses its related data fields to decide

which the next process to dispatch is. Linux kernel data

structures contain data, pointers and the addresses of

kernel functions. Every Linux kernel data structure has

close relation with a specific kernel sub-system such as

process scheduling, memory management, file system etc.

Kernel data structures refer to certain specific data

structures related with system resources not abstract data

types in our research context. We focus on certain critical

kernel data structures, which are related with runtime

system resources, mainly CPU and memory resources.

Moreover, there is a close relation between the granularity

in the selection of these objects and the impact on the

introduced system overhead. Currently we only choose

mandatory kernel data structures related with system

resources as our research objects as Table 1 shows.

Table 1: Selected kernel data structures

Name Category Description

task struct CPU processes

runqueue CPU process queue for scheduling

mm_struct MEM virtual memory of a process

vm_area_struct MEM an area of virtual memory

files struct FILE opened file descriptors

module KMOD loadable kernel module

We have also made a survey of kernel-level attacks to

explore which data structures are more likely to be

attacked. For example, in Table 1 the data structure of

module is related with loadable kernel modules. Although

kernel modules may not concern much with system

resources, it is a very popular target to attack. Thus we also

include it as a monitored object. Based on such supplement,

the selected kernel data structures are expected to be

system-critical and cover vulnerable security holes as many

as possible.

4.2.2 Accessing kernel data structures

Hardware

L4 Microkernel

Guest

Kernel

A
p
p
lic

a
tio

n
 1

Diagnosis

Service

File

Server

Serial

Server

cap
no_cap

Timer

Server

cap

A
p
p
lic

a
tio

n
 2

no_cap

Fig. 2 A capability-based access control policy among memory sections

L4 microkernel virtualization layer manages a single

address space shared among Linux kernel and other service

programs, consist of several memory sections. Fig. 2

shows a capability-based privilege mechanism is

introduced to manage the access control among individual

memory sections. Linux kernel is executed as a normal

program without any privilege. In our system, we assign

the capability to the diagnosis service program, so that it

can directly access the memory section of Linux kernel.

We use the file System.map, generated when building

Linux kernel to get runtime addresses of specific kernel

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

229

data structures. Thus we can directly access the address at

runtime, dereference the pointer to get correct values of the

corresponding data structure. For example, in the file

System.map we can find the runtime address of init_task

and per_cpu_runqueues respectively. By using them we

can get system information about process scheduling and

process management.

Type definitions of kernel data structures are used to

describe their layouts inside runtime memory. We extract

related type definitions by processing kernel source code

using CIL (C Intermediate Language) [18] scripts

automatically, which is a high-level representation along

with a set of tools that permit analysis and source-to-source

transformation of C programs. By using extracted type

definitions, the diagnosis service can get correct runtime

kernel information outside Linux kernel.

4.2.3 Diagnosis using dependency tree

The diagnosis service uses a dependency tree to maintain

the relationships among system resources at runtime, such

as parent-child relationships between processes, memory,

owners. The dependency tree is updated by periodically

reading the values of related kernel data fields explicitly.

For example, we can know parent-child relationships

between processes, by reading the data field of children in

task struct without hooking fork system call. Comparing

with the conventional method of hooking system calls, the

kernel data structure-based method helps decrease the

system overhead greatly. The dependency tree is used by

the containment algorithm to identify possible malicious

attacks. Table 2 shows the related kernel data structures

and data fields used to maintain the system dependency

tree.

Table 2: Correlation of kernel data structures

Dependency rule Data structures Data field

process/process task_struct, runqueue children

process/file task struct, file struct files, fs

process/user task struct uid, gid

process/memory task struct, mm struct mm, vma

Our research focuses on runtime diagnosis; hence the

kernel data structures inside runtime memory are our main

research objects. The dependency tree of kernel data

structures contains rich runtime system information,

including processes, their used memory, privilege and

opened file descriptors. Hence diagnosis can be performed.

5. Evaluation

To evaluate the system, we set up experiments which are

performed on a machine running the prototype system

developed based on a L4 microkernel implementation

L4Ka::Pistachio [3] and Iguana [2] from NICTA. It is a

Dell Dimension 2400 machine, with 512MB RAM,

equipped with a single 2.4GHz Pentium 4 processor

running Linux kernel 2.6.13 as its guest operating system.

Iguana [2] is designed for embedded systems, which

supports various platforms, including ARM and IA32. For

more convenience, we use the IA32 platform to evaluate it.

Because the experiments focus mainly on overhead

introduced by the diagnosis functions, there should not be

much gap among different platforms.

5.1 Functional evaluation

We have implemented several runtime constraint scripts

designed to protect kernel data structures of Linux kernel

2.6.13 using our system. We have tested them against

implementations of existing Linux kernel attacks published

in Packet Storm [4], which offers an abundant resource of

security tools, exploits, and advisories. The tested security

attacks are summarized in Table 3. There are mainly two

methods of Linux kernel attacks, one is loadable kernel

module (LKM) and the other is direct kernel memory

exploit (KMEM).

Table 3: Linux kernel attacks survey

Name
Attack

method
Affected kernel data

Knark-2.4.3 LKM System call table

Adore-0.42 LKM System call table

Modhide KMEM System call table

Adore-ng KMEM Kernel memory exploit

SuckIt-1.3 KMEM Kernel memory exploit

Backdoor-caca LKM Interrupt descriptor table

According to the different attacking objects, they can be

further summarized to two categories.

 I: Redirecting system control data, such as system

calls, interrupt handlers or virtual file system

functions to their own malicious routines, the

representatives are Knark [8], Adore [5] and

Backdoor-caca.

 II: Compromising system non-control data, such as

direct kernel memory exploit, control of /proc file

system, the example is SuckIt.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

230

5.2 Analysis based on attacking model

False positives and false negatives are two common

metrics to evaluate the accuracy of detection. False

positives refer to those are legitimate operations that are

marked tainted and reverted to a previous state, and false

negatives refer to operations of attackers that are not

caught.

S1S1 S2 S3 S4

(2)

(1)

C CU HU HUA

Fig. 3 A flow char for kernel attacks

Fig. 3 shows a flow chart for kernel attacks which consist

of four states. S1: The system kernel is in a consistent state

with several security holes. S2: Security holes have been

found by attackers, are used to get root privilege. S3:

Attackers have installed malicious kernel modules or

compromised kernel memory directly to hide their own

utilities, the system kernel has become inconsistent. S4:

System is already comprised and used to attack other

vulnerable hosts. And there are four symbols defined to

illustrate states of the system kernel.

C: the system kernel is consistent

U: the system kernel is under attack

H: the system kernel is inconsistent due to hidden

malicious utilities

A: the system is already in a active state to attack other

vulnerable hosts

False positives. Fig. 3 shows that our system is designed to

detect from kernel inconsistency for S3 state marked as (1).

While most of the previous application-level detection

system focuses on S2 state by hooking system calls or

logging system events marked as (2). It is also the main

difference between our research and previous research. In

our system, if any kernel inconsistency has been detected,

the kernel attacks can be concluded. Thus the false positive

of our system is zero. In Fig. 3, suppose that the

probability of each transition from Si to Sj is pij (1 <= j < i

<= 4). The detection probability of kernel detection using

our system is p31; the detection probability of application-

level detection systems is p21. By using our kernel

detection, the whole system detection accuracy will

increase from p21 to p21 + (1 − p21) * p31.

False negatives. Because our detection is based on

periodical checking the update of kernel data structures,

false negatives depend on the detection time interval.

There is a trade-off between false negatives and system

performance, especially to some transient attacks. If we

shorten the detection time interval, the false negatives will

decrease and result in the increase of system overhead.

More details of performance analysis will be discussed in

Section 5.3.

5.3 Performance analysis

In Section 5.1 we demonstrate the effectiveness of the

diagnosis service, we measure the CPU overhead

introduced by the diagnosis service in this section. We use

runtime tracing mechanism provided by L4 microkernel to

trace switch_to event hence evaluate the system overhead.

The timestamps are filled with rdtsc instruction on IA32

platform.

Table 4: CPU consumption of main processes

Overhead

(%)
Name Description

66.668 L_timer Linux interrupt handler

27.092 Kdbpoll system kernel debugger

4.845 L syscall Linux system call handler

0.559 monitor runtime diagnosis services

0.33 serial serial services

0.178 L1 application(bash)

0.0468 irq00 system irq handler

0.031 L17 application

0.0261 trace trace buffer service

0.0237 timer timer service

0.023 L18 application

0.0215 naming naming service

0.0138 roottask page fault handler

Table 4 shows the results of CPU consumption in system

when diagnosis time interval is set to 800 milliseconds. It

shows that the diagnosis service only consumes about

0.503% CPU resource, which is pretty lightweight. Linux

kernel is implemented as two L4 processes: L timer acts as

Linux interrupt irq handler, whose CPU consumption is

about 66.67%; L_syscall is Linux system call handler,

which consumes about 4.85%. The kdb poll task, which is

in charge of kernel debug, consumes about 27%. We also

change the time interval to check related CPU overhead

introduced by the diagnosis service.

Table 5: Overhead changes along with interval and priority

Overhead

(%)

Timers

(ms)

Priority

App priority

0.5594384 800 100 99

1.1141184 400 100 99

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

231

2.2252043 200 100 99

4.4570269 100 100 99

8.8431218 50 100 99

0.5558166 800 200 99

0.5554242 800 110 99

Table 5 shows the overhead changes with detection

intervals and the priority of diagnosis service. In the first

five rows, the priority of diagnosis service keeps

unchanged as 100, the priority of normal L4 application is

99. When the diagnosis interval changes from 800

milliseconds to 50 milliseconds, the introduced CPU

overhead increases from 0.559% to 8.843%. It indicates

the CPU consumption usage increases with the decrease of

diagnosis interval time within the prototype system. It can

be concluded that the maximum CPU overhead is 8.843%

when the diagnosis interval is set to 50 milliseconds.

The first, sixth and seventh rows are group of comparative

experiment. In these three rows, the diagnosis interval

keeps unchanged as 800 milliseconds; the priority of

diagnosis service is 100, 200 and 110 respectively. It

indicates the CPU consumption usage varies slightly as
0.5594384%, 0.5558166% and 0.5554242%.

Table 6: Cycles used by detection

Category Detection (cycle) Hz

I 132 2.4 G

II 1409 2.4 G

To measure more fine-grained performance, we design

several fault injection experiments, including overwrite

system calls, overwrite IDT tables, direct modify task list

to hide process etc. These fault injection experiments will

trigger the invoking of the related diagnosis routines. As

Table 6 shows, we observe two kinds of cases to perform

fine-grained overhead analysis for detection based on

kernel data structures. I stand for detection of system

control data, II stand for detection of system non-control

data. In I, only function pointer is compared with known

good value; while in II, we have to traverse along multiple

kernel data structures to verify its values against security

specifications, such as relation between run_queue and

task_list. The result shows that almost 10 times of CPU

cycles are consumed in case II than case I in our platform.

6. Future Work and Discussion

Currently our prototype system only supports single

processor, for further research it is planned to be extended

to support multiprocessor architecture. The main challenge

rises from the synchronization between kernel processes

and diagnosis services. Our solution is to let diagnosis

service evaluate based on the current snapshot of specific

kernel data structures, at the same time kernel processes

can still execute without any interference. Once

inconsistency of kernel data structure has been detected,

the modules may even recover them to certain consistent

values. Some side effect may be introduced; currently

related evaluation tests are still in progress.

Though our diagnosis service can detect several kernel-

level security attacks, it also suffers from some limitations.

We discuss about them as follows.

Our current research is based on the analysis of former

known malicious attacks, suffers from arms race problems

as well as other antivirus research work. Although the

reverse engineering methods make our research effective

to existing security case studies, they also limit our

research to known problems, hard to find potential security

holes. In our future work, we plan to combine static

program analysis tools such as Daikon [9] to help us

automatically explore potential system exploits inside

Linux kernel.

Inside the proposed infrastructure, Linux kernel data

structures are accessed from the diagnosis service, which is

separated from kernel space. To correctly dereference

pointers to kernel data structures, the diagnosis service has

to know their layout inside memory from their definitions.

Meanwhile, the definitions of related kernel data structures

probably change during kernel development. Therefore the

definitions of related kernel data structures should be

updated according to their latest change, when we use the

latest kernel source code.

7. Conclusion

As embedded systems are used increasingly for daily

applications, ensuring automatic diagnosis and preventing

the system from security attacks becomes even more

important. In this paper, we have presented a runtime

diagnosis infrastructure for embedded systems. A

prototype system also has been developed to verify its

feasibility based on security isolation provided by a system

virtualization layer. The evaluation has demonstrated its

effect of detecting the inconsistency of kernel data

structures with low overhead. Moreover, its diagnosis does

not require any modifications to the interfaces of former

guest operating system calls, therefore they are expected to

be easily applied to existing systems and reuse all of upper

layer legacy applications.

Acknowledgments

This work was supported by CREST from Japan Science

and Technology Agency (JST), through a grant of

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

232

Dependable Embedded Operating Systems for Practical

Use.

References
[1] Chkrootkit. http://www.chkrootkit.org/.

[2]Iguana.http://www.ertos.nicta.com.au/software/kenge/iguana/

project/latest/.

[3] L4Ka::Pistachio microkernel.

http://l4ka.org/projects/pistachio/.

[4] Packet storm.

http://packetstormsecurity.org/UNIX/penetration/rootkits/.

[5] The Adore rootkit. http://stealth.7350.org/rootkits/adore-ng-

0.41.tgz.

[6] The Rootkit Hunter project. http://rkhunter.sourceforge.net/.

[7] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference

and enforcement of kernel data structure invariants. In Proc.

of the 24th Computer Security Applications Conference

(ACSAC), pages 77–86, Anaheim, CA, US, Dec 2008.

[8] J. R. Collins. Knark: Linux kernel subversion. Sans Institute.

[9] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C.

Pacheco, M. S. Tschantz, and C. Xiao. The Daikon system

for dynamic detection of likely invariants. Science of

Computer Programming, 69(1–3):35–45, Dec 2007.

[10] T. Garfinkel and M. Rosenblum. A virtual machine

introspection based architecture for intrusion detection. In

Proc. of the 10th Annual Network and Distributed Systems

Security Symposium (NDSS), pages 191–206, San Diego, CA,

USA, Feb 2003.

[11] R. K. Iyer, Z. Kalbarczyk, K. Pattabiraman, W. Healey, W.-

M. W. Hwu, P. Klemperer, and R. Farivar. Toward

application-aware security and reliability. IEEE Security and

Privacy, 5(1):57–62, Jan 2007.

[12] N. L. P. Jr., T. Fraser, A. Walters, and W. A. Arbaugh. An

architecture for specification-based detection of semantic

integrity violations in kernel dynamic data. In Proc. of the

15th USENIX Security Symposium, pages 289–304,

Vancouver, B.C., Canada, Aug 2006.

[13] R. A. Kemmerer and G. Vigna. Intrusion detection: A brief

history and overview. Computer, 35(4):27–30, 2002.

[14] G. H. Kim and E. H. Spafford. The design and

implementation of tripwire: a file system integrity checker. In

Proc. of the 2nd ACM Conference on Computer and

Communications Security (CCS), pages 18–29, Fairfax,

Virginia, US, Nov1994.

[15] S. T. King and P. M. Chen. Backtracking intrusions. In Proc.

of the 19th ACM Symposium on Operating Systems

Principles (SOSP), Bolton Landing, NY, USA, Oct 2003.

[16] S. T. King, P. M. Chen, C. V. Yi-MinWang, H. J.Wang, and

J. R. Lorch. Subvirt: Implementing malware with virtual

machines. In Proc. of the IEEE Symposium on Security and

Privacy, pages 314–327, Oakland, CA, US, Mar 2006.

[17] J. Liedtke. On μ-kernel construction. In Proc. of the 15th

ACM Symposium on Operating System Principles (SOSP),

pages 237–250, Copper Mountain Resort, CO, USA, Dec

1995.

[18] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:

Intermediate language and tools for analysis and

transformation of c programs. In Proc. of the 11th

International Conference on Compiler Construction, pages

213–228, London, UK, Mar 2002.

[19] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh.

Copilot-a coprocessor-based kernel runtime integrity monitor.

In Proc. of the 13th USENIX Security Symposium, pages

179–194, San Diego, CA, US, Aug 2004.

[20] Y.-M.Wang, D. Beck, B. Vo, R. Roussev, and C. Verbowski.

Detecting Stealth Software with Strider Ghostbuster. In Proc.

of the 35th IEEE International Conference on Dependable

Systems and Networks (DSN), pages 368–377, Yokohama,

Japan, Jun 2005.

[21] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A

taxonomy of computer worms. In Proc. of the ACM

workshop on Rapid Malcode (WORM), pages 11–

18,Washington DC, US, Oct 2003.

 Lei Sun received the B.E. and M.E.

degrees in Computer Science from

Tsinghua University, P.R. China in 2001

and 2004, respectively. Presently, he is a

doctoral candidate of the Graduate School

of Computer Science, Waseda University.

His research interests include operating

systems, embedded systems, and the

security and reliability of systems. He is a

student member of IEEE and ACM.

Tatsuo Nakajima is a professor in the

Department of Computer Science, Waseda

University. He was a researcher in School

of Computer Science, Carnegie Mellon

University in 1990-1993, a research

engineer in AT&T Laboratories,

Cambridge in 1998-1999 and a visiting

research fellow in Nokia Research Center,

Helsinki in 2005. He was also an associate

professor in School of Information Science, Japan Advanced

Institute of Science and Technology in 1993-1999. He was a

program co-chair of RTCSA 2002 and ISORC 2003, and a

general chair of RTCSA 2003 and ISORC 2005. His research

interests include distributed systems, operating systems,

ubiquitous computing, and information appliances.

http://www.chkrootkit.org/
http://www.ertos.nicta.com.au/software/kenge/iguana/project/latest/
http://www.ertos.nicta.com.au/software/kenge/iguana/project/latest/
http://l4ka.org/projects/pistachio/
http://packetstormsecurity.org/UNIX/penetration/rootkits/
http://stealth.7350.org/rootkits/adore-ng-0.41.tgz
http://stealth.7350.org/rootkits/adore-ng-0.41.tgz
http://rkhunter.sourceforge.net/

