
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

233

Manuscript received June 5, 2009
Manuscript revised June 20, 2009

Development of Algorithm for Demodulator for Processing
Satellite Data Communication

K. R. Nataraj *, Dr S. Ramachandran** and Dr B. S. Nagabushan ***

* M. G..R. University, Chennai, India
** National Academy of Excellence, Bangalore, 560-060, India

*** Sanlab Technologies, Bangalore, 560-038, India

Summary
Quadrature Phase Shift Keying (QPSK) is the preferred
modulation scheme for satellite data communication. A
two stage estimation scheme for the demodulator for
processing satellite data is proposed in this paper, where
carrier frequency estimation is followed by timing
recovery under training. Frequency offset estimation is
performed by finding the slope of the best fit line through
the unwrapped phase. Since this carrier frequency
estimation technique gives an approximate estimate of the
frequency offset, there still remains some frequency offset
to be corrected. This is done in the second stage, where
least mean square algorithm is employed to track the
variations in frequency and estimating the symbols.
Estimation of the correct sampling instant is based upon
finding the minima of the absolute of the received training
pattern and then calculating the maximum energy instant
from it. An overview of the whole system architecture is
presented and its performance is evaluated. BER curves
for different frequency and timing offsets are also
presented. Some tasks in the system may serve as
bottlenecks to higher data rates owing to their
computationally intensive nature. These tasks are
identified and based upon that, the proposed algorithm is
partitioned into two parts. One part is to be implemented
on FPGA and consists of high computational complexity
modules and the other is to be coded on a DSP processor.
Keywords:
Algorithm, Demodulator, Quadrature Phase Shift Keying,
Transponder, Linear algebra, Architecture, Field Programmable
Gate Arrays.

1. Introduction

A communication satellite functions as an overhead
wireless repeater station that provides a microwave
communication link between two geographically remote
sites. Due to its high altitude, satellite transmissions can
cover a wide area over the surface of the earth. What
makes a communications satellite different from other
satellites is its payload, usually a radio repeater consisting

of a transmitter/receiver combination called a transponder.
A transponder is a communications repeater for radio
signals received on board the satellite, processed and then
retransmitted to an earth station. A transponder is
generally defined by its bandwidth capacity, its available
effective isotropic radiated power and its on-board
processing capabilities.

1.1 Advanced On-Board Processing (OBP) Satellite
Systems

A repeater satellite only changes frequency and power
parameters on a digitally modulated signal. It makes no
attempt to detect the digital data. That means that if there
is distortion on the uplink signal, this distortion will be
amplified and translated in frequency to the downlink, thus
lowering the quality of the signal even more. This has a
negative impact on the received downlink signal power
and results in inferior bit error rate (BER). Neither the user
nor the repeater satellite can improve that signal, although
coding may help to improve the bit error rate performance.
Due to these limiting factors, new types of transponders
were conceived, which allow a number of different
approaches to avoid these problems. None of them is
currently able to solve all the problems, since the
limitations are different for each application. These types
of transponders are used on “smart” satellites called On-
Board Processing (OBP) satellites, since they process in
various ways the up-linked signals before repeating them
on the downlink.
To increase the data processing rate without impairing the
performance is the main focus of the present work. This
problem can be solved in two ways. First, this is
accomplished by making the signal processing algorithms
computationally efficient, so that they need minimum
hardware for their implementation, without significant loss
in BER performance. Applying linear algebra techniques
such as iterative, sub-optimal schemes or exploiting the
structure of the algorithms achieves the algorithmic
modifications. These algorithms, typically working on
matrix data sets, have significant levels of parallelism.
This inherent parallelism and bit-level nature of the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

234

computations can be exploited to achieve high data
processing speeds by an efficient architectural design.
Modifying the algorithm for a computationally efficient
solution and exploiting its parallelism using a suitable
architectural design are needed to achieve high-speed data
processing. Second method to increase the data processing
speed is by employing high speed and low power
computational engines to implement these algorithms.
Most of the signal processing is done in digital domain
than in analog domain, due to the inherent limitations of
analog implementations, such as high temperature
sensitivity, sensitivity to DC offsets, DC voltage drifts,
amplifier/mixer non-linearity, susceptible to noise, etc.
DSP algorithms can be implemented in software or
hardware. In software implementation, a DSP processor
such as ADSP-21020 is used. In hardware implementation,
Application Specific Integrated Circuits (ASICs) or Field
Programmable Gate Arrays (FPGAs) are used. FPGA
devices provide nearly the throughput of custom ASICs
while maintaining full flexibility of a DSP processor. This
is because FPGAs can be reprogrammed to reconfigure the
entire DSP implementation on-the-fly. Some functions
work faster on Digital Signal Processors too. Therefore, a
proper implementation strategy is required to enhance the
overall processing speed of the onboard processing system.
Such a strategy is proposed in this work, which will be
elaborated in Section 3.

1.2 Conventional Satellite Demodulator Receiver

A conventional digital demodulator employs a DSP
processor such as ADSP-21020. The received signal from
the antenna is conditioned in the RF front end before the
ADC. The input to the ADC is a modulated signal at a
standard intermediate frequency of 455 KHz and the ADC
samples it at a rate of 1.536 MHz. This sampled signal is
then processed in ADSP-21020 to recover the data bits.
The main drawback of this system is its low throughput
(64 K bits/second). Algorithmic and architectural
techniques mentioned earlier need to be applied in order to
increase the throughput as has been done in the present
work.
Quadrature Phase Shift Keying (QPSK) is the preferred
modulation scheme for satellite data communication. A
two-stage estimation scheme is presented, where carrier
frequency estimation is followed by timing recovery under
training. Frequency offset estimation is performed by
finding the slope of the best-fit line through the unwrapped
phase. Since this carrier frequency estimation technique
gives an approximate estimate of the frequency offset,
there still remains some frequency offset to be corrected.
This is done in the second stage, where least mean square
algorithm is employed to track the variations in frequency
and estimating the symbols. Some tasks in the system may
serve as bottlenecks to higher data rates, due to their

compute intensive nature. These tasks are identified and,
based on these tasks; the algorithm is partitioned into two
parts. One part, that is computationally intensive, is to be
implemented on FPGA and the other part is to be coded on
a DSP processor. A number of DSP techniques can be
applied to reduce the computational complexity of the
selected tasks, thus easing their hardware implementation.
In the next section, a novel development of algorithm is
presented for a demodulator used in satellite data
communication. Receiver architecture and task
partitioning is presented towards its end. In section 3 is
presented the proposed architecture of the demodulator so
that it may be implemented on an FPGA. The complete
receiver was simulated in C and the BER curves are
presented in the section on Results. Finally, conclusion is
presented.

2. Development of the Demodulator
Algorithm

Satellite receiver processes signals that bear information as
well as disturbances caused by the transmitter/receiver
circuits and channel impairments such as fading and
additive white Gaussian noise. The receiver makes the
decision on the received data using locally generated
carrier oscillator and symbol clock, both of which are not
referenced to the actual versions used to generate the data
at the transmitter. The receiver has to estimate the offset
between locally generated carrier and symbol clock to
those used at the transmitter.
Carrier frequency offset recovery is the process of
estimating the offset between the frequency drift/change of
the local oscillator and the actual carrier frequency
transmitted. Symbol timing synchronization is the process
in which the receiver estimates the offset between the
locally generated symbol clock at the receiver and the
actual symbol clock used at the transmitter. This offset
estimate is used to sample the matched filter output at the
correct timing instant that maximizes the signal to noise
ratio. The receiver clock, when not matched to the
transmitter clock, will cause the receiver symbol decision
circuitry to sample the symbols at the wrong instance,
resulting in detection errors. The problem of
synchronization, thus, reduces to estimating the timing and
frequency offsets in the carrier, using noisy samples of the
received signal, under training.

2.1 Carrier Frequency Offset Estimation

Consider a general case of a pass band signal, which has
been subjected to frequency offset. It can be expressed as
follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

235

{ }
[]{ }))((

))((

)()(Re

)(~Re)(
ttj

QI

ttj

c

c

etjxtx

etxtx
θω

θω

+

+

+=

=

where)t(x~ is called the complex pre-envelope of the
signal,)t(x I and)t(xQ are the in-phase and
quadrature-phase components, cω is the carrier
frequency in radians/second and)t(θ models the
frequency offset and/or phase jitter. If there is a constant
frequency offset, then)t(θ will have a linear term,

toω . At the receiver end, we demodulate this signal

with the locally generated carrier))t(t(j ce φω +− , where
)t(φ is the receiver’s estimate of the carrier phase. If,

now, we sample this demodulated signal at the symbol
rate, we get

{ })(j
k

kke)k(x~Req φθ −=

where kθ and kφ are samples of)t(θ and)t(φ
respectively. For constant value of (kk φθ −), the
received constellation will be a tilted version of the
transmitted constellation. If the receiver demodulates with
the wrong frequency, kTokk ωφθ =−)(, where T is
the symbol period, the received constellation rotates with
an angular velocity of oω radian /sec. If left uncorrected,
the rotating constellation will make errors every time a
received symbol rotates past the boundary of a decision
region. To correct this, a carrier offset estimation and a
subsequent compensation is needed. Two commonly used
methods of frequency-offset estimation at the receiver are
data aided and non-data aided. We use data aided
technique to recover the carrier offset.

2.1.1 Signal Model

The base band equivalent of the received pass band signal
is given by

where τ is the unknown timing offset,)t(θ models
unknown frequency offset, p(t) is the Root Raised Cosine
(RRC) pulse and)t(n~ p is the baseband equivalent of
Additive White Gaussian Noise. We demodulate)t(x~

with a local carrier)t(je φ− , where)t(φ is the
receiver’s estimate of the carrier phase, resulting in

)(~)()()(~)('

tnenTtgjbath m
tj

n
nn ++−+= ∑

∞

−∞=

θτ

where)t()t()t(' φθθ −= .

Since the transmitter uses an RRC pulse with 40% excess
bandwidth as the shaping filter, the matched filter (MF) is
also an RRC pulse with 40% excess bandwidth. The
output of the matched filter is given by

)t(n~e)nTt(g)jba(

)t(p)t(h~)t(r

n

)t(j
nn

'
++−+=

⊗=

∑
∞

−∞=

θτ

where)t(g is the Raised Cosine (RC) pulse.

Satellite signal impairments are mostly due to the
propagation channel effects and the transmitter/receiver
circuitry of both the ground stations and the satellite
transponder. The timing recovery scheme that we will
discuss later requires a relatively cross-talk free baseband
signal. Hence we need to estimate the large frequency
offset signal, compensate for it, then proceed for timing
recovery and finally perform carrier phase tracking.
At the beginning of each packet, sixty-four (1, 1) symbols
are used to estimate the carrier offset. In discrete time
domain, the received signal for this training sequence is
given by

)k(n~e)}k(jb)k(a{)k(r)k(j
nn

'
++= θ

It may be noted that the phase of)k(r , i.e.,
)k(/ 'θπ +4 contains information about the frequency

offset, but corrupted by noise. For constant phase offset,

c
')k(θθ = (a constant) and, for fixed frequency offset

oω , k)k(o
' ωθ = . In both cases,)k('θ is a linear

function of k. The problem, thus, reduces to fitting a
straight line through the phase trajectory and finding its
slope using Recursive Least Square Algorithm (RLS) [1].

2.1.2 Unwrapping the angles

If the frequency offset)k('θ is large, then the phase of
)k(r may exceed 2π . Usually, any angle greater than

2π is represented as 'θ mod 2π . This poses a problem
during RLS implementation, since RLS works on
unwrapped phase. If this sequence is input to the RLS
block, then erroneous results will be generated. One
approach to implement unwrapping is explained in Ref.
[2]. In this method, we need to compute the phase
derivative and the principal value of phase at equally

)t(n~e)nTt(p)jba()t(x~ p
)t(j

n
nn +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+= ∑

∞

−∞=

θτ (3)

(1)

(2)

(5)

(6)

{ }

{ } termdependent noise some)(4/)(arg
)(~ 2

)(~ 11)(

 ,1)()(With

'

))(4/(

)(

'

'

++=

+=

++=

==

+

kkr
kne

knejkr

kbka

kj

k

nn

θπ

θπ

θ

(4)

(7)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

236

spaced frequencies. At each kω , one-step trapezoidal
integration performs a phase estimate 1−kω . If the
difference between the estimate and the principal value is
not within a given threshold (which can be specified), the
step size is halved to get a new estimate. Another way is to
use discrete time approach to solve the wrap around
problem, as explained in Ref. [3]. The basic task in
unwrapping is to distinguish a genuine transition of 2π
radians and the spike introduced due to noise. To
distinguish between the two, two absolute differences, a
backward difference b(n) = |)n()n('' 1−− θθ | and a
forward difference f(n) = |)n()n('' 1+− θθ | are
maintained. While the second technique
gives

Figure 1 Structure to Calculate the Phase Angle Between Two Adjacent
Samples

satisfactory results in the absence of noise and in the
presence of low noise, it fails to unwrap the phase
satisfactorily, when signal to noise ratio (SNR) is small.
We propose a technique that works well even at lower
SNR. We correlate the current sample with the conjugate
of the previous one, as shown in Fig. 1. The probability of

)k(r)k(r 1−∗ exceeding 2π is very small. Therefore,
accumulating these phases and then using RLS algorithm
over it can solve phase unwrapping problem. It is seen that
the above mentioned technique works with higher noise
values as compared to the previously mentioned two
unwrapping methods.

2.1.3 Timing Recovery

Once we have estimated the bulk carrier offset and
compensated the incoming signal for this offset, the next
step is timing recovery. The sequence is processed in the
timing recovery module. We use a peak average energy
criterion algorithm proposed in Ref. [3] to estimate the
timing offsetτ . If τ is unknown but deterministic, it has
to be estimated in the receiver. We maximize the
likelihood function ()τ|rf with respect toτ , where r
is the signal space vector representation of the received
noisy waveform r(t), given by

)t(n);t(s)t(r += τ

where)t(r is the received signal with a unknown
timing offset τ , ∑ −−=

n
n)nTt(ga);t(s ττ is

the baseband signal, { }na are binary ± 1 symbols with
equal probability and)t(n is the zero mean Gaussian
noise. It has been shown mathematically in Ref. [3] that
the value of τ that maximizes the energy is the estimate
of timing offset. Finding τ that minimizes the energy is
more reliable than finding τ that maximizes the energy.
Thus, we will use the technique that finds the value of

minτ , which minimizes the energy and then correcting it
to find that τ which maximizes the energy. Since we
have 12 samples per symbol, the worst case of inter-
symbol interference (ISI) can occur midway between two
samples, resulting in maximum timing error (also called
timing jitter) of

where T is the symbol period.

We maintain Modulo N sums (SUM0 to SUM11) of
absolute values of the samples under a training sequence
of 32 alternate symbols of (1,1) and (0,0). These sums are
averaged over M (=32) symbol duration. The timing
estimation algorithm is given by

1- ..., ,2,1,0 and 12 where,)()(
31

0
NNNixsum

i
==+= ∑

=

τττ

{ })(min)(:
)1,0(min ττττ

τ
sumsum

N −∈
==

Once the value of τ that minimizes the energy, minτ , is
found, the τ corresponding to maximum energy can be
calculated as follows:
If (τmin – 6) ≥ 0, then

Timing Estimate = τmin – 6;

(12)

elseif (τmin – 6) < 0 , then

 Timing Estimate = τmin + 6;

After we have corrected the incoming signal with the
estimate of the frequency offset θ̂ , the input to the timing
recovery block can be expressed as:

12),()/()()(/)ˆ('

=++−+=′ ∑ − PwhereknenTPkTgjbakr
n

PkTj
nn

θθτ

24

122
1

T

Tt jit

±=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛±=

(9)

(10)

(11)

(13)

 (14)

(8)

r(k)*r(k-1)

Re{r(k)

Im{r(k)

z-1

Re{r(k)

Im{r(k)

z-1

z-1

z-1

r(k)

r(k)

r(k)

r(k)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

237

Substituting εθθ =− ˆ' ,)k(r ′ can be expressed as

)()/()()(/ knenTPkTgjbakr
n

PkTj
nn ++−+=′ ∑ ετ

where the in-phase term is given by

∑ ++−−=′
n

InnI knnTPkTgPkTbPkTakr)()/())/sin()/cos(()(τεε

The quadrature-phase term is given by

∑ ++−+=′
n

QnnQ)k(n)nTP/kT(g))P/kTsin(a)P/kTcos(b()k(r τεε

We see that the in-phase and quadrature components have
cross talk terms)P/kTsin(b n ε and

)P/kTsin(a n ε respectively. As ε becomes large,
the cross talk terms begin to affect the timing recovery
estimation scheme. When ,0=ε there will be no cross
talk and hence the estimate that we obtain is the best in the
presence of noise. We get, at the output of the timing
recovery scheme, a number between 0 and 11 (since we
have 12 samples per symbol), which indicates the sample
closest to the ideal sampling instant. Now, as we
increase ε , then due to the presence of the term

P/kTje ε , the received constellation starts rotating at a
rate depending upon the magnitude of ε . The incoming
symbols trace out a circle as they rotate because of
uncompensated frequency offset. A least mean square
algorithm based tracking loop is used to track and correct
this residual frequency offset continually, which if left
uncorrected, can accumulate and cause errors in the
decision every time the symbols cross over the decision
boundary.

2.1.4 Tracking and Symbol Detection

Frequency offset estimation and timing recovery is
performed only at the start of burst and then continuous
tracking and detection are done using the Least Mean
Square (LMS) Algorithm [4-7].

Least Mean Square Algorithm

The LMS algorithm is a stochastic gradient algorithm. An
important feature of the LMS algorithm is its
computational simplicity. Consider the arrangement shown
in Fig. 2. The error)n(e is the difference in the filtered
output)n(y and the desired response)n(d as
shown.

)n(y)n(d)n(e −=

The purpose of the filter is to produce an estimate of the
desired response by adaptively changing the filter

coefficients. The filter coefficients are updated using the
LMS algorithm with the criterion that the cost function

[]2)n(eEJ = is minimized. The desired responses in
this case are the constellation points. The error signal

)n(e is the difference between the symbol decisions and
slice input, i.e.,

[] []kkkkk b~ja~b̂jâe +−+=

Here, the filter has only one coefficient, which is updated
using the standard LMS algorithm adaptation,

[]'
k

'
kkkk jbaeww ++= ∗

+ μ21

where μ is the step size whose value needs to be chosen
carefully to ensure rapid convergence of the LMS
algorithm. 1+kw is the correction that needs to be
applied to the incoming signal.
Carrier frequency offset estimation algorithm estimates the
slope of the best-fit line through the unwrapped phase of
the received training sequence. Timing
recovery algorithm is based upon finding the instant
corresponding to the minima of the absolute of the
received training sequence and then correcting it to get an
estimate of the ideal sampling instant.

Figure 2 LMS Structure

2.1.5 Receiver Structure and Task Partitioning

In the previous section, we discussed as to how the
synchronization is achieved and data is detected so as to
get minimum error at the output. Carrier and Timing
synchronization are the two major tasks that are performed
at the receiving end. These schemes vary from receiver to
receiver depending upon various factors such as tolerable
bit error rate, training sequence, modulation technique in
use, etc. All these techniques are employed on the signal

(15)

(16)

(17)

(18)

(19)

(20)

kb̂
From
Matched
Filter

kb~

μ

Find Difference:

[] []kkkkk bjabjae ~~ˆˆ +−+=

[]'
k

'
kkk1k jbae2ww ++=+ μ

'
kb

kw

ka~
kâ

Decision

'
ka

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

238

that is either at base band or near base band. Also, the
incoming signal at the input of ADC is at the intermediate
frequency (IF). Thus, IF to base band conversion must be
performed before proceeding for synchronization and
detection.
In the first part of this section, we will discuss IF to base
band conversion scheme and the techniques involved for
its simplification from the hardware implementation point
of view. Then we will see an overview of the complete
receiver. Finally, the entire computational load of the
receiver system is partitioned between FPGA and DSP for
the proposed efficient implementation.

IF to Baseband Conversion

Conversion from IF to baseband is a method to obtain a
complex baseband representation of a real bandpass signal.
It has a wide variety of applications in areas such as radar
and sonar signal processing, digital communications and
biological signal analysis. The real signal obtained from a
transducer such as an antenna, a hydrophone or a
biological probe, is amplified, filtered and shifted to an
appropriate IF before quadrature demodulation. Once this
process is done, the resulting complex signal
representation contains the information present in the
original signal and, its format facilitates subsequent
processing such as spectral analysis or extraction of
modulation information, as in the present scenario.
The input signal to a QPSK demodulator can be described
by the expression:

)tsin()t(Q)tcos()t(I
))t(tcos()t(A)t(x

cc

c

ωω
φω

−=
+=

where A(t) is the signal amplitude, cω its carrier
frequency in radians/second, φ (t) its time varying
unknown phase angle and I(t), Q(t) are the in-phase and
quadrature-phase signals respectively.
The traditional analog approach to quadrature
demodulation is shown in Fig. 3. The signal to be
demodulated (in this case the output of the IF amplifier) is
multiplied by two sinusoids with a 90 degree phase angle
difference. This effectively creates quadrature versions of
the signal nominally centered around zero frequency and
at twice the carrier frequency. The signal component
centered about 2ωc is then removed by low-pass filtering,
leaving complex baseband signal [8]. If a digital
representation of the in-phase and quadrature components
is desired, analog-to-digital conversion (ADC) is
performed. In Fig. 3, the modulating signals cos and sin
are shown with amplitude of 2 in order to match the input
and output power levels. In practice, however, this factor
is taken care of while deciding the response of the low
pass filter (LPF). The traditional analog implementation of
quadrature demodulation shown in Fig. 3 suffers from

many problems, especially the gain and phase mismatches
between I and Q channels and the presence of DC offsets.
In such an implementation, with the exception of the
Analog-to-Digital Converters (ADC) used to digitize I and
Q signals, all processing are carried out by analog circuits.
The first processing step after conversion of the input
analog signal to a digital format is frequency shifting to
baseband. It involves multiplying the input data by cosine
and sine sequences at the center frequency of the input
signal. This step can be quite complex, first requiring the
generation of the two sinusoids, then their multiplication
with the stream of input data. However, a careful
selection of the sampling frequency can greatly
simplify this problem [9]. If it is selected such that fs = 4 ×
fc, then the two sequences are represented by cos(πn/2) and
–sin(πn/2), which reduce to:

cos: 1, 0, -1, 0, 1, 0, -1, 0, ...
-sin: 0, -1, 0, 1, 0, -1, 0, 1, ...

Figure 3 Analog Quadrature Demodulator Block Diagram

Multiplication by 0 and 1 are trivial. For multiplication
by -1, the only processing required is sign inversion, an
operation whose complexity depends on the precision of
the data.

In-Phase and Quadrature Digital Filters

The second step after multiplication of the input data by
quadrature sinusoids is low-pass filtering, where unwanted
high-frequency mixing products are removed to obtain the
I and Q channel signals. Digital filters are used for this
purpose in a digital implementation of quadrature
demodulation.
Phase linearity of filters used in the quadrature
demodulator is an issue to be sorted out. It is essential to
preserve the information contained in the original signals.
A non-linear phase filter is, therefore, unsuitable for the
quadrature demodulator designs considered here. While
Infinite Impulse Response (IIR) filters usually have
sharper transition bands than Finite Impulse Response
(FIR) filters for a given filter order, they cannot have a
linear phase characteristic and, thus, they are not
considered further. Therefore, the quadrature demodulator

(21)

π /

2 cos ω c t

-2

LPF
I (t)

LPF
Q (t)

x(t)

ADC

ADC

I(n)

Q
ω ct

X

X

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

239

designs considered here will be restricted to linear-phase
FIR filters. Fig. 4 shows a digital quadrature demodulator.
The output y(n) from an FIR filter with impulse response
h(n), filter length N, and input sequence x(n) is given by
the convolution of the input sequence and the filter
impulse response:

∑
−

=
−=⊗=⊗=

1N

0m
)mn(x)m(h)n(x)n(h)n(h)n(x)n(y

In the basic quadrature demodulation approach, the two
low-pass filters are identical, and the filter they reproduce
is called the prototype filter. The impulse response of the
low pass prototype filter will hereafter be denoted by
hLP(n). Its cutoff frequency, transition bandwidth and stop-
band attenuation are selected according to the
characteristics of the signal to be demodulated,
especially the signal bandwidth. The passband of the filter
should be at least equal to B/2, where B is the bandwidth
of the signal prior to demodulation. From equation 22,
assuming that the system sampling frequency is selected as
fs = 4 × fc, and

Figure 4 Digital Quadrature Demodulator

that the prototype low pass filter has an impulse response
hLP(n), the outputs of the in-phase channel and the
quadrature channel can be expressed as:

∑
−

=
−⋅−⋅=

⎥⎦
⎤

⎢⎣
⎡ ⋅⊗=

1N

0m
LP

LP

))mn(
2

cos()mn(x)m(h

)n
2

cos()n(x)n(h)n(I

π

π

∑
−

=

−−⋅−⋅=

⎥⎦
⎤

⎢⎣
⎡ −⋅⊗=

1

0

))(
2

sin()()(

))
2

sin(()()()(

N

m
LP

LP

mnmnxmh

nnxnhnQ

π

π

Down-conversion of Frequency
If we use the criterion of sampling frequency selection for
selecting the intermediate frequency and to ease the
sinusoidal wave generation and filter implementation, we

need an IF of 384 K H z
4

sf
= for an ADC sampling

frequency of 1.536 MHz. We will assume that the user
specification for an IF is 455 KHz at the input of ADC.
However, the intermediate frequency of 455 KHz
complicates the implementation. Thus, it has to be first
down-converted to 384 KHz before applying it to the input
of sampling rate converter. To achieve this goal, we must
generate a 71 KHz sinusoidal signal in digital domain and
mix it with the 455 KHz signal so as to get signals of
frequencies (455 + 71) KHz = 526 KHz and (455-71) KHz
= 384 KHz at the output of the mixer. 526 KHz signal is
unwanted and, therefore, it is removed by filtering. The
structure of the receiver, IF to Base-band Converter, is
shown in Fig. 5 and described mathematically as presented
next. Signal received at the
input of ADC is given by the following expression:

]t)10*455(2sin[)t(x]t)10*455(2cos[)t(x)t(x 3
q

3
i ππ −=

Sampling at 1536 KHz, we get

)n
1536
4552sin()n(x)n

1536
4552cos()n(x)n(x qi ππ −=

Figure 5 IF to Base-band Converter

Mixing it with ⎟
⎠
⎞

⎜
⎝
⎛ n

1536
712 cos π and, multiplying by

cos (2π (384/1536)n), we get

)n
1536
7682sin()n(x

4
1

)n
1536
1422sin()n(x

4
1)n

1536
9102sin()n(x

4
1

)n(x
4
1)n

1536
7682cos()n(x

4
1

)n
1536
1422(x

4
1)n

1536
9102cos()n(x

4
1)n

1536
3842cos()*n(y

q

qq

ii

ii

π

ππ

π

πππ

-

-

−

++

+=

Finally, passing it through low-pass filter so as to remove
passband signals, we have:

)n(x
4
1)]n

1536
3842cos()*n(y[LPF i=π

Similarly, the quadrature component is

Q(n)

Oscillator for Cos

ADC
x (n)

Low Pass
Filter

x (t)

Oscillator for Sin

Low Pass
Filter

X

X
I (n)

(22)

(28)

(27)

(26)

Q-Channel

(23)

(24)

)n(x
4
1

i

A

LP

LP

Digital
Frequency
Synthesizer

)n
1536
712(Cos π

.......0,1,0,1,0,1 −

,.......1,0,1,0,1,0 −−

IF = 455 KHz

MHzfs 536.1=

I-Channel

For Baseband
Processing

)t(x)n(x)n(y

)n(x
4
1

q

X

X

X

(25)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

240

)(
4
1))]

1536
3842sin((*)([nxnnyLPF q=− π

3. Proposed System Architecture for
Demodulator

Combining all the parts of the system that we have
discussed so far, we can present the overview of the whole
system as shown in Fig. 6. The main point to note in this
structure is the cascading of filters, which serves no
purpose. Thus, replacing the cascade of filters by a single
filter and redrawing the system structure, we get the
system shown in Fig.7. In this new structure, it may be
noted that the Root Raised Cosine filters serve two
purposes:
1) As pulse shaping filters that have minimum ISI.
2) As low pass filters to remove unwanted out of band
components.

3.1 Task Partitioning

Traditionally, DSP algorithms are implemented using
general-purpose DSP chips for low throughput
applications, or special-purpose DSP chips and ASICs for
higher throughputs. The FPGA maintains the advantages
of custom functionality like an ASIC while avoiding the
high development costs and the inability to make design
modifications after production. The SRAM-based FPGA is
well suited for arithmetic, including multiply and
accumulate (MAC) intensive DSP functions. The FPGA
can also be reconfigured on-the-fly to perform one of
many system level functions. When building a DSP system
in an FPGA, the designer can take advantage of parallel
structures and arithmetic algorithms to minimize resources
and exceed the performance of single or multiple general-
purpose DSP devices. Distributed Arithmetic for array
multiplication in an FPGA is one way to increase data
bandwidth and throughput by several orders.

Figure 6 Overview of Architecture for Demodulator

Figure 7 Modified System Structure

3.2 FPGA-Based DSP Accelerator

The engine in the DSP system is typically a specialized
time multiplexed sequential computer system that
performs continuous mathematical processes, attempted in
real time. While the DSP processor may perform multiple
instructions per clock cycle (Harvard Architecture), the
overall process is performed in a three-step series of 1)
Memory-Read, 2) Process and 3) Memory-Write
instructions. This process is adequate for independent
sequential algorithms. The processor becomes less
efficient when an algorithm is dependent upon two or
more of the past, present and future state conditions. This
is primarily due to the feedback or parallel structure of the
data flow being processed sequentially with additional
wait states in a DSP.
A typical DSP algorithm may contain several feedback
loops or parallel structures. The software code for DSP
algorithm of this type is not efficiently implemented on
general purpose DSP [10]. Typically, about 10-30 % of the
DSP code utilizes 60-80 % of the processors power.
Analyzing the DSP algorithm and breaking out any
parallel structures or repetitive loops into multiple data-
paths, one can enhance the overall performance of the
algorithm. The multi-path parallel data structures can be
processed either through parallel DSP devices or in a
single FPGA-based DSP hardware accelerator with or
without the assistance of a DSP device. The primary
concepts in our approach are to load the computationally
intense functions requiring multiple DSP clock cycles into
the FPGA and allow the DSP processor to concentrate on
the optimized single clock functions. In order to use the
FPGA in a DSP design, we need to identify the parallel

(29)

DFS

LMS

O/p

s/s : samples/symbol

......0,1,0,1,0,1 −
,.....1,0,1,0,1,0 −−

RRC 2 2
Freq.
Offset
Esti-

mation
ss/24

ADCFrom

ss/12 ss/6

)n(θ̂

Timing Estimation Sample
τ̂

2 2
RRC

D

.....0,1,0,1,0,1 −

,.....1,0,1,0,1,0 −−

L

L

2

2 2

2

RR

RR

C

Freq
.

Offs
et

Esti-

RR

Sample

LM

ss/24

ADCFrom

ss/12 ss/6

o/p

)n(̂θ

τ̂

s/s :

Timing

RR

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

241

data paths and the operations requiring multiple clock
cycles in the DSP.

3.3 Digital Filter Design

The processing engine of most of the filter algorithms is a
multiply and accumulate (MAC) functions and involving
multi rate systems [11, 12]. Filter designs can vary over a
wide range in the number of MACs, from one to thousands.
As the number of MACs increase, the algorithm becomes
increasingly more complex in terms of CPU based
architecture. Hence the algorithm becomes more compute
intensive for any conventional DSP. The MAC function
can be implemented more efficiently with various
Distributed Arithmetic Techniques than with conventional
arithmetic methods. Distributed arithmetic can make
extensive use of look-up tables (LUTs), which makes it
ideal for implementing DSP functions in LUT-based
FPGAs.

3.4 FPGA Based Filters

While designing a digital filter in an FPGA, the designer
can take advantage of parallel structures and Distributed
Arithmetic Algorithms to exceed the performance of
multiple general-purpose DSP devices. The use of
Distributed Arithmetic for array multiplication in an FPGA
is one technique used to implement and increase the
function’s data bandwidth and throughput by several
orders of magnitudes over off-the-shelf DSP solutions.
The FPGA has the capability to implement an FIR filter
function using one of the several Distributed Arithmetic
Techniques, depending upon the performance required. It
may be noted that these techniques can be used to optimize
the implementation of many other types of data processing
or MAC-based algorithms. Parallel Distributed Arithmetic
based techniques are used to achieve the fastest sample
rates while lower rates can be sustained with a Serial
Distributed Arithmetic based Techniques that use lesser
resources.
The primary design concern is the performance or the
sample rate of the filter. The design must work at the
desired sample rate. A design which runs below the
sample rate is of no value, while any additional
performance, which uses more chip area, is also of no
added value.

3.5 A Re-look at the Proposed Demodulator System
Architecture

Observing keenly the present system structure, it can be
seen that the system front end contains two high order low
pass filters of size: 24 x 8 + 1 = 193 taps. Direct
implementation of these structures on a DSP is

computationally intensive and, therefore, time consuming.
As discussed earlier, we can make use of the inherent
parallelism in the FIR filter algorithm to enhance its speed
by implementing it on FPGA and using Distributed
Arithmetic. In addition to the FIR filter, the Digital
frequency synthesizer used to generate 71 KHz in digital
domain, is also one of the potential candidates for FPGA
implementation owing to its inherent parallel structure.
The other modules such as carrier frequency offset
estimation have a built-in serial data processing scheme.
Thus, they are ideally suited for DSP implementation.
Based on the above facts, we can divide the whole system
into two parts, one to be implemented on FPGA and the
other to be implemented on DSP as shown in Fig. 8.
To summarize, the complete receiver structure has been
presented. It is then partitioned into two parts, one to be
implemented on FPGA and the other on DSP, based upon
their best fit. The main idea is to off load the
computationally intensive functions requiring multiple
DSP clock cycles into the FPGA and allow the DSP to
concentrate on the optimized single clock cycle functions.
Work on FPGA implementation is currently under
progress. Several FPGA implementations of demodulators
following various other techniques have been reported in
the recent years [13-15].

Figure 8. Task Partitioning for Implementation of the Demodulator on
FPGA and DSP

4. Results
The complete receiver presented in previous sections was
simulated in C and the BER curves are presented in Fig. 9
for various values of frequency and timing offset. For
simulation purposes, known frequency and timing offsets
are introduced at the transmitter and estimated at the
receiver end. The variance of the noise introduced after the
transmitter is changed incrementally to get the range of

DSP

DFS

.......0,1,0,1,0,1 −

,.......1,0,1,0,1,0 −−

RRC

RRC

ss /24

2

2

2

2

Timing
EstimationSample

LMS

ss /12 ss /6

O/p

τ̂

Frequency
Offset

Estimation

)(ˆ nθ

FPGA

s/s: samples/symbol

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

242

Eb/No values. The system works well up to a carrier offset
of 17 KHz. It can be observed that the BER curves
obtained from simulation closely follow the theoretical
curves, which justifies the undertaking of FPGA-DSP
implementation work proposed in this paper. Currently,
the same is under development.

5. Conclusion

Complex applications such as demodulators, etc. have
involved algorithms at their core, which need to be
adapted or developed depending upon how we wish to
implement the system. This paper dealt with the
development of algorithms for the demodulator application
so that it is suitable for implementation on FPGA/DSP.
Before going for the architectural and hardware designs, it
is of paramount importance to code

Solid line–Theoretical C Dotted line–Practical Curve

Figure 9 BER curves for

(a) Timing offset = 0, Frequency offset = 16 KHz,
(b) Timing offset = T/6, Frequency offset = 0
(c) Timing offset = T/6, Frequency offset = 16 KHz and
(d) Timing offset = T/6 + T/24, Frequency offset = 16 KHz

them in a high level language such as C or Matlab and test
them to ascertain their feasibility. Accordingly, a novel
algorithm of a demodulator for satellite communication
was developed and presented along with its verification
using C. The treatment therein was to show the power of
DSP techniques to tame a complicated algorithm
efficiently and thereby make it feasible for FPGA/DSP
implementation. While developing algorithms for
hardware implementation, we need to keep the actual

hardware such as registers, counters, combination circuits,
etc. in mind and, subsequently design the architecture.
Only then, we will be in a position to meet stringent
specifications when the algorithm is converted into an
actual working product. The next in the chain of
developments is the architectural design, which was also
presented. It was shown that the BER results obtained
from simulation using C closely follow the theoretical
curves, which justifies the undertaking of time-consuming
FPGA-DSP implementation work proposed in this paper.
Currently, the FPGA part of the demodulator is under
development using a hardware design language, Verilog.

References

[1] G. Strang: Introduction to Applied Mathematics, Wellesly
Cambridge Press (1986).

[2] J. M. Tribolet: A New Unwrapping Algorithm, IEEE Trans.
on Acoustic, Speech and Signal Processing, Vol. ASSP-25
No-2, pp. 170-177 (1977).

[3] Mathew P. Joseph: DSP Algorithms for On-Board Satellite
Trans-multiplexer and Receiver, M.S Thesis, IIT
Madras, India (2000).

[4] S. Haykin: Adaptive Filter Theory, Prentice-Hall, 2nd
Edition (1991).

[5] M. E. Frerking: Digital Signal Processing in
Communication Systems, Van Nostrand Reinhold, NY
(1993).

[6] E. A. Lee and D. G. Messerschmitt, “Digital
Communication”, Second Edition, Allied Publishers
Limited, 1994.

[7] J. Proakis: Digital Communications, Third Edition,
International Edition, McGraw Hill (1995).

[8] J.M.P. Langlois, D. Al-Khalili, R.J. Inkol: A High
Performance, Wide bandwidth, Low cost FPGA based
Quadrature Demodulator, Proceedings of IEEE Canadian
Conference on Electrical and Computer Engineering
(1999).

[9] Henry Samueli, Bennet C. Wong: A VLSI Architecture for
a High Speed All Digital Quadrature Modulator and
Demodulator for Digital Radio Applications, IEEE Journal
on Selected Areas in Communication , Vol. 8,
No. 8 (1990).

[10] Sanjeev Dua: Algorithms and Architectural Design of an
Onboard Satellite QPSK Receiver. M.S Thesis, IIT Madras,
India (2003).

[11] P.P Vaidyanathan: Multirate Systems and Filter Banks.
Prentice Hall Inc., Eagle-woods Cliffs, N.J (1993).

[12] Keshab K. Parhi: VLSI Digital Signal Processing Systems,
John Wiley & Sons Inc., (1999).

[13] Fubing Yu: FPGA implementation of a fully digital FM
demodulator, Communications Systems (ICCS), The Ninth
International Conference, pp. 446-450 (2004).

[14] Charoensak, C.; Abeysekera, S. S.: FPGA
implementation of efficient Kalman band-pass sigma-delta
filter for application in FM demodulation, SOC
Conference Proceedings, IEEE International Volume,
pp. 137-138, 12-15 Sept. (2004).

[15] Zarifi, M.H.; Frounchi, J.; Asgarifar, S.; Baradaran
Nia, M, FPGA implementation of a fully digital

4 5 6 7 8 9 10
10-6

10-5

10-4

10-3

10-2

10-1
g q y

B
E

R

 4 5 6 7 8 9 10
10-6

10-5

10-4

10-3

10-2

10-1

B
E

R

B
ER

Eb/No Eb/No c

4 5 6 7 8 9 10
10-6

10-5

10-4

10-3

10-2

10-1

B
E

R

 4 5 6 7 8 9 10
10-6

10-5

10-4

10-3

10-2

10-1

B
E

R

Eb/No Eb/No

d

a b

B
ER

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

243

demodulation technique for biomedical application,
Proceedings of IEEE Canadian Conference on
Electrical and Computer Engineering, pp. 1265-1268, 4-
7 May (2008).

K. R. Nataraj obtained his ME
degree from Bangalore University, India
in 2000. He worked as Professor and
Head of the Department during 2000-
2008 and currently he is the Post
Graduate Coordinator in the Department
of Electronics and Communication in
SJB Institute of Technology, Bangalore.
Presently, he is pursuing his Ph. D.

degree in Dr MGR University, Chennai. His research interests
include Wireless communication, FPGA implementation,
Microcontroller and Embedded systems design. He is a
member of MIE, MISTE and IETE.

Dr S. Ramachandran obtained his M.
Tech. and Ph. D. degrees from the Indian
Institute of Technology, Kanpur and
Madras respectively. He has wide
academic as well as industrial experience
of over 30 years, having worked as
Professor in various engineering colleges
as well as design engineer in industries in

India and USA, designing systems and teaching/guiding students.
His research interests include developing algorithms,
architectures and implementations on FPGAs/ASICs for Video
Processing, DSP applications, reconfigurable computing, open
loop control systems, etc. He is the recipient of the Best Design
Award at VLSI Design 2000, International Conference held at
Calcutta, India and the Best Paper Award of the Session at
WMSCI 2006, Orlando, Florida, USA. He has completed a video
course on Digital VLSI System Design at the Indian Institute of
Technology Madras, India for broadcast on TV by National
Programme on Technology on Enhanced Learning (NPTEL) and
is being broadcast in You Tube as well. He has also written a
book on Digital VLSI Systems Design, published by Springer
Verlag, Netherlands (www.springer.com).

Dr B. S. Nagabushana obtained his M.
Tech. and Ph. D. degrees from Mysore
University and Indian Institute of
Science, Bangalore respectively. He
has wide academic as well as software
industrial experience for over 25 years.
He has worked as Professor in various
ngineering colleges as well as consultant
to software industries like OMED

(Software), Japan, BFL, CG-Smith Software Pvt. Ltd, KPIT
Cummins Infosystems (Bangalore), Pvt. Limited, San Lab
Technologies etc. His research interests include Wireless
Communication, Neural Network, Fuzzy Logic and Embedded
systems. He is the recipient of NRDC Independence Day award
for the year 1992, Best Project Execution award for the year 2000
from M/s BMC Software, USA.

