
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009 

 

233

Manuscript received  June 5, 2009 
Manuscript revised  June 20, 2009 

Development of Algorithm for Demodulator for Processing 
Satellite Data Communication 

K. R. Nataraj *, Dr S. Ramachandran** and Dr B. S. Nagabushan *** 
  

* M. G..R. University, Chennai,  India 
** National Academy of Excellence, Bangalore, 560-060, India 

*** Sanlab Technologies, Bangalore, 560-038,  India 
  
 

Summary 
Quadrature Phase Shift Keying (QPSK) is the preferred 
modulation scheme for satellite data communication. A 
two stage estimation scheme for the demodulator for 
processing satellite data is proposed in this paper, where 
carrier frequency estimation is followed by timing 
recovery under training. Frequency offset estimation is 
performed by finding the slope of the best fit line through 
the unwrapped phase. Since this carrier frequency 
estimation technique gives an approximate estimate of the 
frequency offset, there still remains some frequency offset 
to be corrected. This is done in the second stage, where 
least mean square algorithm is employed to track the 
variations in frequency and estimating the symbols. 
Estimation of the correct sampling instant is based upon 
finding the minima of the absolute of the received training 
pattern and then calculating the maximum energy instant 
from it. An overview of the whole system architecture is 
presented and its performance is evaluated. BER curves 
for different frequency and timing offsets are also 
presented. Some tasks in the system may serve as 
bottlenecks to higher data rates owing to their 
computationally intensive nature. These tasks are 
identified and based upon that, the proposed algorithm is 
partitioned into two parts. One part is to be implemented 
on FPGA and consists of high computational complexity 
modules and the other is to be coded on a DSP processor. 
Keywords: 
Algorithm, Demodulator, Quadrature Phase Shift Keying, 
Transponder, Linear algebra, Architecture, Field Programmable 
Gate Arrays. 

1. Introduction 

A communication satellite functions as an overhead 
wireless repeater station that provides a microwave 
communication link between two geographically remote 
sites. Due to its high altitude, satellite transmissions can 
cover a wide area over the surface of the earth. What 
makes a communications satellite different from other 
satellites is its payload, usually a radio repeater consisting 

of a transmitter/receiver combination called a transponder. 
A transponder is a communications repeater for radio 
signals received on board the satellite, processed and then 
retransmitted to an earth station. A transponder is 
generally defined by its bandwidth capacity, its available 
effective isotropic radiated power and its on-board 
processing capabilities.  

1.1 Advanced On-Board Processing (OBP) Satellite 
Systems 

A repeater satellite only changes frequency and power 
parameters on a digitally modulated signal. It makes no 
attempt to detect the digital data. That means that if there 
is distortion on the uplink signal, this distortion will be 
amplified and translated in frequency to the downlink, thus 
lowering the quality of the signal even more. This has a 
negative impact on the received downlink signal power 
and results in inferior bit error rate (BER). Neither the user 
nor the repeater satellite can improve that signal, although 
coding may help to improve the bit error rate performance. 
Due to these limiting factors, new types of transponders 
were conceived, which allow a number of different 
approaches to avoid these problems. None of them is 
currently able to solve all the problems, since the 
limitations are different for each application. These types 
of transponders are used on “smart” satellites called On-
Board Processing (OBP) satellites, since they process in 
various ways the up-linked signals before repeating them 
on the downlink. 
To increase the data processing rate without impairing the 
performance is the main focus of the present work. This 
problem can be solved in two ways. First, this is 
accomplished by making the signal processing algorithms 
computationally efficient, so that they need minimum 
hardware for their implementation, without significant loss 
in BER performance. Applying linear algebra techniques 
such as iterative, sub-optimal schemes or exploiting the 
structure of the algorithms achieves the algorithmic 
modifications. These algorithms, typically working on 
matrix data sets, have significant levels of parallelism. 
This inherent parallelism and bit-level nature of the 
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computations can be exploited to achieve high data 
processing speeds by an efficient architectural design. 
Modifying the algorithm for a computationally efficient 
solution and exploiting its parallelism using a suitable 
architectural design are needed to achieve high-speed data 
processing. Second method to increase the data processing 
speed is by employing high speed and low power 
computational engines to implement these algorithms. 
Most of the signal processing is done in digital domain 
than in analog domain, due to the inherent limitations of 
analog implementations, such as high temperature 
sensitivity, sensitivity to DC offsets, DC voltage drifts, 
amplifier/mixer non-linearity, susceptible to noise, etc.  
DSP algorithms can be implemented in software or 
hardware. In software implementation, a DSP processor 
such as ADSP-21020 is used. In hardware implementation, 
Application Specific Integrated Circuits (ASICs) or Field 
Programmable Gate Arrays (FPGAs) are used. FPGA 
devices provide nearly the throughput of custom ASICs 
while maintaining full flexibility of a DSP processor. This 
is because FPGAs can be reprogrammed to reconfigure the 
entire DSP implementation on-the-fly. Some functions 
work faster on Digital Signal Processors too. Therefore, a 
proper implementation strategy is required to enhance the 
overall processing speed of the onboard processing system. 
Such a strategy is proposed in this work, which will be 
elaborated in Section 3. 

1.2 Conventional Satellite Demodulator Receiver 

A conventional digital demodulator employs a DSP 
processor such as ADSP-21020. The received signal from 
the antenna is conditioned in the RF front end before the 
ADC. The input to the ADC is a modulated signal at a 
standard intermediate frequency of 455 KHz and the ADC 
samples it at a rate of 1.536 MHz. This sampled signal is 
then processed in ADSP-21020 to recover the data bits. 
The main drawback of this system is its low throughput 
(64 K bits/second). Algorithmic and architectural 
techniques mentioned earlier need to be applied in order to 
increase the throughput as has been done in the present 
work.  
Quadrature Phase Shift Keying (QPSK) is the preferred 
modulation scheme for satellite data communication. A 
two-stage estimation scheme is presented, where carrier 
frequency estimation is followed by timing recovery under 
training. Frequency offset estimation is performed by 
finding the slope of the best-fit line through the unwrapped 
phase. Since this carrier frequency estimation technique 
gives an approximate estimate of the frequency offset, 
there still remains some frequency offset to be corrected. 
This is done in the second stage, where least mean square 
algorithm is employed to track the variations in frequency 
and estimating the symbols. Some tasks in the system may 
serve as bottlenecks to higher data rates, due to their 

compute intensive nature. These tasks are identified and, 
based on these tasks; the algorithm is partitioned into two 
parts. One part, that is computationally intensive, is to be 
implemented on FPGA and the other part is to be coded on 
a DSP processor. A number of DSP techniques can be 
applied to reduce the computational complexity of the 
selected tasks, thus easing their hardware implementation.  
In the next section, a novel development of algorithm is 
presented for a demodulator used in satellite data 
communication. Receiver architecture and task 
partitioning is presented towards its end. In section 3 is 
presented the proposed architecture of the demodulator so 
that it may be implemented on an FPGA. The complete 
receiver was simulated in C and the BER curves are 
presented in the section on Results. Finally, conclusion is 
presented. 

2. Development of the Demodulator 
Algorithm 

Satellite receiver processes signals that bear information as 
well as disturbances caused by the transmitter/receiver 
circuits and channel impairments such as fading and 
additive white Gaussian noise. The receiver makes the 
decision on the received data using locally generated 
carrier oscillator and symbol clock, both of which are not 
referenced to the actual versions used to generate the data 
at the transmitter. The receiver has to estimate the offset 
between locally generated carrier and symbol clock to 
those used at the transmitter.  
Carrier frequency offset recovery is the process of 
estimating the offset between the frequency drift/change of 
the local oscillator and the actual carrier frequency 
transmitted. Symbol timing synchronization is the process 
in which the receiver estimates the offset between the 
locally generated symbol clock at the receiver and the 
actual symbol clock used at the transmitter. This offset 
estimate is used to sample the matched filter output at the 
correct timing instant that maximizes the signal to noise 
ratio. The receiver clock, when not matched to the 
transmitter clock, will cause the receiver symbol decision 
circuitry to sample the symbols at the wrong instance, 
resulting in detection errors. The problem of 
synchronization, thus, reduces to estimating the timing and 
frequency offsets in the carrier, using noisy samples of the 
received signal, under training. 

2.1 Carrier Frequency Offset Estimation 

Consider a general case of a pass band signal, which has 
been subjected to frequency offset. It can be expressed as 
follows: 
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where )t(x~  is called the complex pre-envelope of the 
signal, )t(x I  and )t(xQ  are the in-phase and 
quadrature-phase components, cω  is the carrier 
frequency in radians/second and )t(θ  models the 
frequency offset and/or phase jitter. If there is a constant 
frequency offset, then )t(θ  will have a linear term, 

toω .  At the receiver end, we demodulate this signal 

with the locally generated carrier ))t(t(j ce φω +− , where 
)t(φ  is the receiver’s estimate of the carrier phase. If, 

now, we sample this demodulated signal at the symbol 
rate, we get  

{ })(j
k

kke)k(x~Req φθ −=                        

where kθ  and kφ  are samples of )t(θ  and )t(φ  
respectively. For constant value of ( kk φθ − ), the 
received constellation will be a tilted version of the 
transmitted constellation. If the receiver demodulates with 
the wrong frequency, kTokk ωφθ =− )( , where T  is 
the symbol period, the received constellation rotates with 
an angular velocity of oω radian /sec. If left uncorrected, 
the rotating constellation will make errors every time a 
received symbol rotates past the boundary of a decision 
region. To correct this, a carrier offset estimation and a 
subsequent compensation is needed. Two commonly used 
methods of frequency-offset estimation at the receiver are 
data aided and non-data aided. We use data aided 
technique to recover the carrier offset. 

2.1.1 Signal Model 

The base band equivalent of the received pass band signal 
is given by   
 

 
 
 

where τ  is the unknown timing offset, )t(θ  models 
unknown frequency offset, p(t) is the Root Raised Cosine 
(RRC) pulse and  )t(n~ p  is the baseband equivalent of 
Additive White Gaussian Noise. We demodulate )t(x~  

with a local carrier )t(je φ− , where )t(φ  is the 
receiver’s estimate of the carrier phase, resulting in  
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Since the transmitter uses an RRC pulse with 40% excess 
bandwidth as the shaping filter, the matched filter (MF) is 
also an RRC pulse with 40% excess bandwidth. The 
output of the matched filter is given by 
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where )t(g  is the Raised Cosine (RC) pulse. 

Satellite signal impairments are mostly due to the 
propagation channel effects and the transmitter/receiver 
circuitry of both the ground stations and the satellite 
transponder. The timing recovery scheme that we will 
discuss later requires a relatively cross-talk free baseband 
signal. Hence we need to estimate the large frequency 
offset signal, compensate for it, then proceed for timing 
recovery and finally perform carrier phase tracking. 
At the beginning of each packet, sixty-four (1, 1) symbols 
are used to estimate the carrier offset. In discrete time 
domain, the received signal for this training sequence is 
given by 
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It may be noted that the phase of )k(r , i.e., 
)k(/ 'θπ +4  contains information about the frequency 

offset, but corrupted by noise. For constant phase offset, 

c
' )k( θθ =  (a constant) and, for fixed frequency offset 

oω , k)k( o
' ωθ = . In both cases, )k('θ is a linear 

function of k. The problem, thus, reduces to fitting a 
straight line through the phase trajectory and finding its 
slope using Recursive Least Square Algorithm (RLS) [1]. 

2.1.2 Unwrapping the angles 

If the frequency offset )k('θ  is large, then the phase of 
)k(r  may exceed 2π . Usually, any angle greater than 

2π  is represented as 'θ mod 2π . This poses a problem 
during RLS implementation, since RLS works on 
unwrapped phase. If this sequence is input to the RLS 
block, then erroneous results will be generated. One 
approach to implement unwrapping is explained in Ref. 
[2]. In this method, we need to compute the phase 
derivative and the principal value of phase at equally 
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spaced frequencies. At each kω , one-step trapezoidal 
integration performs a phase estimate 1−kω . If the 
difference between the estimate and the principal value is 
not within a given threshold (which can be specified), the 
step size is halved to get a new estimate. Another way is to 
use discrete time approach to solve the wrap around 
problem, as explained in Ref. [3]. The basic task in 
unwrapping is to distinguish a genuine transition of 2π  
radians and the spike introduced due to noise. To 
distinguish between the two, two absolute differences, a 
backward difference b(n) = | )n()n( '' 1−− θθ | and a 
forward difference f(n) = | )n()n( '' 1+− θθ | are 
maintained.    While   the   second   technique    
gives  
 

 

 

 

 

Figure 1 Structure to Calculate the Phase Angle Between Two Adjacent 
Samples 

satisfactory results in the absence of noise and in the 
presence of low noise, it fails to unwrap the phase 
satisfactorily, when signal to noise ratio (SNR) is small. 
We propose a technique that works well even at lower 
SNR. We correlate the current sample with the conjugate 
of the previous one, as shown in Fig. 1. The probability of 

)k(r)k(r 1−∗  exceeding 2π  is very small. Therefore, 
accumulating these phases and then using RLS algorithm 
over it can solve phase unwrapping problem. It is seen that 
the above mentioned technique works with higher noise 
values as compared to the previously mentioned two 
unwrapping methods. 

2.1.3  Timing Recovery 

Once we have estimated the bulk carrier offset and 
compensated the incoming signal for this offset, the next 
step is timing recovery. The sequence is processed in the 
timing recovery module. We use a peak average energy 
criterion algorithm proposed in Ref. [3] to estimate the 
timing offsetτ . If τ  is unknown but deterministic, it has 
to be estimated in the receiver. We maximize the 
likelihood function ( )τ|rf  with respect toτ , where r 
is the signal space vector representation of the received 
noisy waveform r(t), given by  

)t(n);t(s)t(r += τ    

where )t(r  is the received signal with a unknown 
timing offset τ , ∑ −−=

n
n )nTt(ga);t(s ττ  is 

the baseband signal, { }na  are binary ± 1 symbols with 
equal probability and )t(n  is the zero mean Gaussian 
noise. It has been shown mathematically in Ref. [3] that 
the value of τ  that maximizes the energy is the estimate 
of timing offset. Finding τ  that minimizes the energy is 
more reliable than finding τ  that maximizes the energy. 
Thus, we will use the technique that finds the value of 

minτ , which minimizes the energy and then correcting it 
to find that τ  which maximizes the energy. Since we 
have 12 samples per symbol, the worst case of inter-
symbol interference (ISI) can occur midway between two 
samples, resulting in maximum timing error (also called 
timing jitter) of 

 
 
 
 

where T  is the symbol period. 
 
We maintain Modulo N sums (SUM0 to SUM11) of 
absolute values of the samples under a training sequence 
of 32 alternate symbols of (1,1) and (0,0). These sums are 
averaged over M (=32) symbol duration. The timing 
estimation algorithm is given by 
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Once the value of τ  that minimizes the energy, minτ , is 
found, the τ corresponding to maximum energy can be 
calculated as follows:  
If (τmin – 6) ≥  0, then 

Timing Estimate = τmin – 6;                           

(12)                                                   

elseif (τmin – 6) < 0 , then 

 Timing Estimate = τmin + 6;   

After we have corrected the incoming signal with the 
estimate of the frequency offset θ̂ , the input to the timing 
recovery block can be expressed as:  
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Substituting εθθ =− ˆ' , )k(r ′  can be expressed as  
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where the in-phase term is given by 
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The quadrature-phase term is given by 
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n
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We see that the in-phase and quadrature components have 
cross talk terms )P/kTsin(b n ε  and 

)P/kTsin(a n ε  respectively. As ε  becomes large, 
the cross talk terms begin to affect the timing recovery 
estimation scheme. When ,0=ε  there will be no cross 
talk and hence the estimate that we obtain is the best in the 
presence of noise. We get, at the output of the timing 
recovery scheme, a number between 0 and 11 (since we 
have 12 samples per symbol), which indicates the sample 
closest to the ideal sampling instant. Now, as we 
increase ε , then due to the presence of the term 

P/kTje ε , the received constellation starts rotating at a 
rate depending upon the magnitude of ε . The incoming 
symbols trace out a circle as they rotate because of 
uncompensated frequency offset. A least mean square 
algorithm based tracking loop is used to track and correct 
this residual frequency offset continually, which if left 
uncorrected, can accumulate and cause errors in the 
decision every time the symbols cross over the decision 
boundary.    

2.1.4 Tracking and Symbol Detection 

Frequency offset estimation and timing recovery is 
performed only at the start of burst and then continuous 
tracking and detection are done using the Least Mean 
Square (LMS) Algorithm [4-7]. 
 
Least Mean Square Algorithm 

 
The LMS algorithm is a stochastic gradient algorithm. An 
important feature of the LMS algorithm is its 
computational simplicity. Consider the arrangement shown 
in Fig. 2. The error )n(e  is the difference in the filtered 
output )n(y  and the desired response )n(d  as 
shown. 

)n(y)n(d)n(e −=  

The purpose of the filter is to produce an estimate of the 
desired response by adaptively changing the filter 

coefficients. The filter coefficients are updated using the 
LMS algorithm with the criterion that the cost function 

[ ]2)n(eEJ =  is minimized. The desired responses in 
this case are the constellation points. The error signal 

)n(e  is the difference between the symbol decisions and 
slice input, i.e., 
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Here, the filter has only one coefficient, which is updated 
using the standard LMS algorithm adaptation, 
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where μ  is the step size whose value needs to be chosen 
carefully to ensure rapid convergence of the LMS 
algorithm. 1+kw  is the correction that needs to be 
applied to the incoming signal. 
Carrier frequency offset estimation algorithm estimates the 
slope of the best-fit line through the unwrapped phase of   
the   received   training   sequence.      Timing 
recovery algorithm is based upon finding the instant 
corresponding to the minima of the absolute of the 
received training sequence and then correcting it to get an 
estimate of the ideal sampling instant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 LMS Structure 

2.1.5 Receiver Structure and Task Partitioning 

In the previous section, we discussed as to how the 
synchronization is achieved and data is detected so as to 
get minimum error at the output. Carrier and Timing 
synchronization are the two major tasks that are performed 
at the receiving end. These schemes vary from receiver to 
receiver depending upon various factors such as tolerable 
bit error rate, training sequence, modulation technique in 
use, etc. All these techniques are employed on the signal 
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that is either at base band or near base band. Also, the 
incoming signal at the input of ADC is at the intermediate 
frequency (IF). Thus, IF to base band conversion must be 
performed before proceeding for synchronization and 
detection.  
In the first part of this section, we will discuss IF to base 
band conversion scheme and the techniques involved for 
its simplification from the hardware implementation point 
of view. Then we will see an overview of the complete 
receiver. Finally, the entire computational load of the 
receiver system is partitioned between FPGA and DSP for 
the proposed efficient implementation. 
 
IF to Baseband Conversion  

 
Conversion from IF to baseband is a method to obtain a 
complex baseband representation of a real bandpass signal. 
It has a wide variety of applications in areas such as radar 
and sonar signal processing, digital communications and 
biological signal analysis. The real signal obtained from a 
transducer such as an antenna, a hydrophone or a 
biological probe, is amplified, filtered and shifted to an 
appropriate IF before quadrature demodulation. Once this 
process is done, the resulting complex signal 
representation contains the information present in the 
original signal and, its format facilitates subsequent 
processing such as spectral analysis or extraction of 
modulation information, as in the present scenario. 
The input signal to a QPSK demodulator can be described 
by the expression: 

)tsin()t(Q)tcos()t(I
))t(tcos()t(A)t(x

cc

c

ωω
φω

−=
+=

  

where A(t) is the signal amplitude, cω  its carrier 
frequency in radians/second, φ (t) its time varying 
unknown phase angle and I(t), Q(t) are the in-phase and 
quadrature-phase signals respectively.   
The traditional analog approach to quadrature 
demodulation is shown in Fig. 3. The signal to be 
demodulated (in this case the output of the IF amplifier) is 
multiplied by two sinusoids with a 90 degree phase angle 
difference. This effectively creates quadrature versions of 
the signal nominally centered around zero frequency and 
at twice the carrier frequency. The signal component 
centered about 2ωc is then removed by low-pass filtering, 
leaving complex baseband signal [8]. If a digital 
representation of the in-phase and quadrature components 
is desired, analog-to-digital conversion (ADC) is 
performed. In Fig. 3, the modulating signals cos and sin 
are shown with amplitude of 2 in order to match the input 
and output power levels. In practice, however, this factor 
is taken care of while deciding the response of the low 
pass filter (LPF). The traditional analog implementation of 
quadrature demodulation shown in Fig. 3 suffers from 

many problems, especially the gain and phase mismatches 
between I and Q channels and the presence of DC offsets. 
In such an implementation, with the exception of the 
Analog-to-Digital Converters (ADC) used to digitize I and 
Q signals, all processing are carried out by analog circuits. 
The first processing step after conversion of the input 
analog signal to a digital format is frequency shifting to 
baseband. It involves multiplying the input data by cosine 
and sine sequences at the center frequency of the input 
signal. This step can be quite complex, first requiring the 
generation of the two sinusoids, then their multiplication 
with the stream of input data. However, a careful  
selection of  the sampling  frequency can greatly  
simplify this problem [9]. If it is selected such that fs = 4 × 
fc, then the two sequences are represented by cos(πn/2) and 
–sin(πn/2), which reduce to: 

cos:  1, 0, -1, 0, 1, 0, -1, 0, ... 
-sin:  0, -1, 0, 1, 0, -1, 0, 1, ... 

   
 
 
 
 
 
 
 
 
 

 

Figure 3  Analog Quadrature Demodulator Block Diagram 

Multiplication by 0 and 1 are trivial.  For multiplication 
by -1, the only processing required is sign inversion, an 
operation whose complexity depends on the precision of 
the data. 
 
In-Phase and Quadrature Digital Filters 
 
The second step after multiplication of the input data by 
quadrature sinusoids is low-pass filtering, where unwanted 
high-frequency mixing products are removed to obtain the 
I and Q channel signals. Digital filters are used for this 
purpose in a digital implementation of quadrature 
demodulation. 
Phase linearity of filters used in the quadrature 
demodulator is an issue to be sorted out. It is essential to 
preserve the information contained in the original signals. 
A non-linear phase filter is, therefore, unsuitable for the 
quadrature demodulator designs considered here. While 
Infinite Impulse Response (IIR) filters usually have 
sharper transition bands than Finite Impulse Response 
(FIR) filters for a given filter order, they cannot have a 
linear phase characteristic and, thus, they are not 
considered further. Therefore, the quadrature demodulator 
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designs considered here will be restricted to linear-phase 
FIR filters. Fig. 4 shows a digital quadrature demodulator. 
The output y(n) from an FIR filter with impulse response 
h(n), filter length N, and input sequence x(n) is given by 
the convolution of the input sequence and the filter 
impulse response: 

∑
−

=
−=⊗=⊗=

1N

0m
)mn(x)m(h)n(x)n(h)n(h)n(x)n(y
 

In the basic quadrature demodulation approach, the two 
low-pass filters are identical, and the filter they reproduce 
is called the prototype filter. The impulse response of the 
low pass prototype filter will hereafter be denoted by 
hLP(n). Its cutoff frequency, transition bandwidth and stop-
band attenuation are selected according  to the 
characteristics of  the signal to be demodulated, 
especially the signal bandwidth. The passband of the filter 
should be at least equal to B/2, where B is the bandwidth 
of the signal prior to demodulation. From equation 22, 
assuming that the system sampling frequency is selected as 
fs = 4 × fc, and  

 
Figure 4 Digital Quadrature Demodulator 

that the prototype low pass filter has an impulse response 
hLP(n), the outputs of the in-phase channel and the 
quadrature channel can be expressed as: 
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Down-conversion of Frequency 
If we use the criterion of sampling frequency selection for 
selecting the intermediate frequency and to ease the 
sinusoidal wave generation and filter implementation, we 

need an IF of 384  K H z
4

sf
=  for an ADC sampling 

frequency of 1.536 MHz. We will assume that the user 
specification for an IF is 455 KHz at the input of ADC. 
However, the intermediate frequency of 455 KHz 
complicates the implementation. Thus, it has to be first 
down-converted to 384 KHz before applying it to the input 
of sampling rate converter. To achieve this goal, we must 
generate a 71 KHz sinusoidal signal in digital domain and 
mix it with the 455 KHz signal so as to get signals of 
frequencies (455 + 71) KHz = 526 KHz and (455-71) KHz 
= 384 KHz at the output of the mixer. 526 KHz signal is 
unwanted and, therefore, it is removed by filtering. The 
structure of the receiver, IF to Base-band Converter, is 
shown in Fig. 5 and described mathematically as presented 
next. Signal received at the  
input of ADC is given by  the following expression: 
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Sampling at 1536 KHz, we get 
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Figure 5 IF to Base-band Converter 

Mixing it with ⎟
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Finally, passing it through low-pass filter so as to remove 
passband signals, we have: 
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Similarly, the quadrature component is 
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3. Proposed System Architecture for 
Demodulator 

Combining all the parts of the system that we have 
discussed so far, we can present the overview of the whole 
system as shown in Fig. 6. The main point to note in this 
structure is the cascading of filters, which serves no 
purpose. Thus, replacing the cascade of filters by a single 
filter and redrawing the system structure, we get the 
system shown in Fig.7. In this new structure, it may be 
noted that the Root Raised Cosine filters serve two 
purposes: 
1) As pulse shaping filters that have minimum ISI. 
2) As low pass filters to remove unwanted out of band 
components. 

3.1 Task Partitioning 

Traditionally, DSP algorithms are implemented using 
general-purpose DSP chips for low throughput 
applications, or special-purpose DSP chips and ASICs for 
higher throughputs. The FPGA maintains the advantages 
of custom functionality like an ASIC while avoiding the 
high development costs and the inability to make design 
modifications after production. The SRAM-based FPGA is 
well suited for arithmetic, including multiply and 
accumulate (MAC) intensive DSP functions. The FPGA 
can also be reconfigured on-the-fly to perform one of 
many system level functions. When building a DSP system 
in an FPGA, the designer can take advantage of parallel 
structures and arithmetic algorithms to minimize resources 
and exceed the performance of single or multiple general-
purpose DSP devices. Distributed Arithmetic for array 
multiplication in an FPGA is one way to increase data 
bandwidth and throughput by several orders. 

 

 

 

 
    
 
 

Figure  6 Overview of Architecture for Demodulator 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 7 Modified System Structure 

3.2 FPGA-Based DSP Accelerator 

The engine in the DSP system is typically a specialized 
time multiplexed sequential computer system that 
performs continuous mathematical processes, attempted in 
real time. While the DSP processor may perform multiple 
instructions per clock cycle (Harvard Architecture), the 
overall process is performed in a three-step series of 1) 
Memory-Read, 2) Process and 3) Memory-Write 
instructions. This process is adequate for independent 
sequential algorithms. The processor becomes less 
efficient when an algorithm is dependent upon two or 
more of the past, present and future state conditions. This 
is primarily due to the feedback or parallel structure of the 
data flow being processed sequentially with additional 
wait states in a DSP.  
A typical DSP algorithm may contain several feedback 
loops or parallel structures. The software code for DSP 
algorithm of this type is not efficiently implemented on 
general purpose DSP [10]. Typically, about 10-30 % of the 
DSP code utilizes 60-80 % of the processors power. 
Analyzing the DSP algorithm and breaking out any 
parallel structures or repetitive loops into multiple data-
paths, one can enhance the overall performance of the 
algorithm. The multi-path parallel data structures can be 
processed either through parallel DSP devices or in a 
single FPGA-based DSP hardware accelerator with or 
without the assistance of a DSP device. The primary 
concepts in our approach are to load the computationally 
intense functions requiring multiple DSP clock cycles into 
the FPGA and allow the DSP processor to concentrate on 
the optimized single clock functions. In order to use the 
FPGA in a DSP design, we need to identify the parallel 
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data paths and the operations requiring multiple clock 
cycles in the DSP. 
 
 

3.3 Digital Filter Design 

The processing engine of most of the filter algorithms is a 
multiply and accumulate (MAC) functions and involving 
multi rate systems [11, 12]. Filter designs can vary over a 
wide range in the number of MACs, from one to thousands. 
As the number of MACs increase, the algorithm becomes 
increasingly more complex in terms of CPU based 
architecture. Hence the algorithm becomes more compute 
intensive for any conventional DSP. The MAC function 
can be implemented more efficiently with various 
Distributed Arithmetic Techniques than with conventional 
arithmetic methods. Distributed arithmetic can make 
extensive use of look-up tables (LUTs), which makes it 
ideal for implementing DSP functions in LUT-based 
FPGAs. 

3.4 FPGA Based Filters 

While designing a digital filter in an FPGA, the designer 
can take advantage of parallel structures and Distributed 
Arithmetic Algorithms to exceed the performance of 
multiple general-purpose DSP devices. The use of 
Distributed Arithmetic for array multiplication in an FPGA 
is one technique used to implement and increase the 
function’s data bandwidth and throughput by several 
orders of magnitudes over off-the-shelf DSP solutions. 
The FPGA has the capability to implement an FIR filter 
function using one of the several Distributed Arithmetic 
Techniques, depending upon the performance required. It 
may be noted that these techniques can be used to optimize 
the implementation of many other types of data processing 
or MAC-based algorithms. Parallel Distributed Arithmetic 
based techniques are used to achieve the fastest sample 
rates while lower rates can be sustained with a Serial 
Distributed Arithmetic based Techniques that use lesser 
resources.  
The primary design concern is the performance or the 
sample rate of the filter. The design must work at the 
desired sample rate. A design which runs below the 
sample rate is of no value, while any additional 
performance, which uses more chip area, is also of no 
added value. 

3.5 A Re-look at the Proposed Demodulator System 
Architecture 

Observing keenly the present system structure, it can be 
seen that the system front end contains two high order low 
pass filters of size: 24 x 8 + 1 = 193 taps. Direct 
implementation of these structures on a DSP is 

computationally intensive and, therefore, time consuming. 
As discussed earlier, we can make use of the inherent 
parallelism in the FIR filter algorithm to enhance its speed 
by implementing it on FPGA and using Distributed 
Arithmetic. In addition to the FIR filter, the Digital 
frequency synthesizer used to generate 71 KHz in digital 
domain, is also one of the potential candidates for FPGA 
implementation owing to its inherent parallel structure. 
The other modules such as carrier frequency offset 
estimation have a built-in serial data processing scheme. 
Thus, they are ideally suited for DSP implementation. 
Based on the above facts, we can divide the whole system 
into two parts, one to be implemented on FPGA and the 
other to be implemented on DSP as shown in Fig. 8. 
To summarize, the complete receiver structure has been 
presented. It is then partitioned into two parts, one to be 
implemented on FPGA and the other on DSP, based upon 
their best fit. The main idea is to off load the 
computationally intensive functions requiring multiple 
DSP clock cycles into the FPGA and allow the DSP to 
concentrate on the optimized single clock cycle functions. 
Work on FPGA implementation is currently under 
progress. Several FPGA implementations of demodulators 
following various other techniques have been reported in 
the recent years [13-15]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Task Partitioning for Implementation of the Demodulator on 
FPGA and DSP 

 
4. Results 
The complete receiver presented in previous sections was 
simulated in C and the BER curves are presented in Fig. 9 
for various values of frequency and timing offset. For 
simulation purposes, known frequency and timing offsets 
are introduced at the transmitter and estimated at the 
receiver end. The variance of the noise introduced after the 
transmitter is changed incrementally to get the range of 
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Eb/No values. The system works well up to a carrier offset 
of 17 KHz. It can be observed that the BER curves 
obtained from simulation closely follow the theoretical 
curves, which justifies the undertaking of FPGA-DSP 
implementation work proposed in this paper. Currently, 
the same is under development. 
 
5. Conclusion 

Complex applications such as demodulators, etc. have 
involved algorithms at their core, which need to be 
adapted or developed depending upon how we wish to 
implement the system. This paper dealt with the 
development of algorithms for the demodulator application 
so that it is suitable for implementation on FPGA/DSP. 
Before going for the architectural and hardware designs, it 
is of paramount importance to code 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solid line–Theoretical C Dotted line–Practical Curve 

Figure 9 BER curves for 

(a) Timing offset = 0, Frequency offset = 16 KHz,  
(b) Timing offset = T/6, Frequency offset = 0        
(c) Timing offset = T/6, Frequency offset = 16 KHz and  
(d) Timing offset = T/6 + T/24, Frequency offset = 16 KHz 

them in a high level language such as C or Matlab and test 
them to ascertain their feasibility. Accordingly, a novel 
algorithm of a demodulator for satellite communication 
was developed and presented along with its verification 
using C. The treatment therein was to show the power of 
DSP techniques to tame a complicated algorithm 
efficiently and thereby make it feasible for FPGA/DSP 
implementation. While developing algorithms for 
hardware implementation, we need to keep the actual 

hardware such as registers, counters, combination circuits, 
etc. in mind and, subsequently design the architecture. 
Only then, we will be in a position to meet stringent 
specifications when the algorithm is converted into an 
actual working product. The next in the chain of 
developments is the architectural design, which was also 
presented. It was shown that the BER results obtained 
from simulation using C closely follow the theoretical 
curves, which justifies the undertaking of time-consuming 
FPGA-DSP implementation work proposed in this paper. 
Currently, the FPGA part of the demodulator is under 
development using a hardware design language, Verilog. 
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