
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

248

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

A Heuristic Approach for Selection of Software Architecture

Using Functional Key Areas and Visualization Tools

Integrated with DArch

K. Delhi Babu
S.V. University,

Tirupati

Dr. P. Govindarajulu
S.V. University,

Tirupati

Dr. A. Ramamohana Reddy
S.V. University,

Tirupati

A.N. Aruna Kumari
Sree Vidyanikethan

Engineering College, Tirupati

Abstract
Architecting the distributed software applications is a complex

design activity. The selection of a best design among number of

design alternatives is an important activity. To satisfy various

stakeholders’ functional and non-functional requirements of a

particular application, there is a need to take a number of

decisions. This problem has become the multiple decision making

problem. Visualization tools based on functional key areas

integrated with DArch have been used in the context. In this paper

we are proposing a new approach for selection of Software

Architectures using functional key areas which are basis for

visualization tools.

Key words:
Heuristic, DArch.

1. Introduction

In general the software development organizations face the problem

of selecting the best design from a group of designs alternatives.

Architecting the systems like distributed software is a complex

design activity. It involves making decisions about a number of

inter-dependent design choices that relate to a range of design

concerns. Each decision requires selecting among a number of

alternatives; each of which impacts differently on various quality

attributes. Additionally, there are usually a number of stakeholders

participating in the decision-making process with different, often

conflicting, quality goals, and project constraints, such as support

dynamic data, Platform dependence, accommodate large volumes of

information etc. This technique can help all stack holders to

understand the system in functional key areas perspective.

2. Related work

2.1 Software Architecture Evaluation Techniques

Software quality is the degree to which an application possesses

the desired combination of quality attributes. Software architecture

evaluation has emerged as an important software quality assurance

technique. The principle objective of evaluating architecture is to

assess the potential of the chosen architecture to deliver a system

capable of fulfilling required quality requirements. A number of

methods, such as Architecture Tradeoff Analysis Method (ATAM)

[3] and Architecture-Level Maintainability Analysis (ALMA) [4],

have been developed to evaluate the quality related issues at the

architecture level. The architecture design evaluation methods like

Quality Attribute Workshop [5], Cost-Benefit Analysis Method

[2], Active Reviews for Intermediate Designs [6] and Attribute-

Driven Design [7] includes a number of activities that logically

belong to different parts of the traditional SDLC [8]. Kazman et al.

[2] propose the Cost Benefit Analysis Method (CBAM) to

quantify design decision in terms of cost benefit analysis. ATAM

is a SA evaluation method, which itself needs a SA as an input to

the evaluation process.

2.2 Software Visualization

The most prominent types of visualization defined in the literature

are

1. Scientific Visualization

2. Information Visualization

3. Software Visualization

Scientific Visualization is concerned with creating visualizations

for physically-based systems. Information Visualization is

concerned with abstract nonphysical data. Software Visualization

has been defined as a discipline that makes use of various forms of

imagery to provide insight and understanding and to reduce

complexity of the existing software system under consideration.

The motivation for visualizing software is to reduce the cost of

software development and its evolution. Software visualization

can support software system evolution by helping stakeholders to

understand the software at various levels of abstraction and at

different points of the software life cycle. Software Visualization

can be seen as the application of Information Visualization

techniques to software, as the data collected from all areas of a

system development, such as code, documentation, and user

studies, is abstract and, hence, has no associated physical structure.

Software Visualization is the process of mapping entities in a

software system domain to graphical representations to aid

comprehension and development. It has traditionally been focused

on aiding the understanding of software systems by those who

perform development and maintenance tasks on that software.

Although Software Visualization supports the software development

and maintenance process, this focus excludes other valid

stakeholders such as Users and Acquirers as listed in Table 1.

Software Architecture Visualization can help all stakeholders to

understand the system at all points of the software life cycle.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

249

TABLE 1 Stakeholders

2.3 Evaluating Software Visualizations

A number of taxonomies have been developed for classifying

software visualizations. Taxonomies define a number of features

that visualizations can be measured against. A commonly used

method for evaluating software visualizations is to apply these

taxonomies as an evaluation framework. Price et al. [17] present a

taxonomy of Software Visualization with six distinct categories:

Scope (the range of systems that can be visualized, platform for

system, and scalability), Content (the subset of data from Scope

that is actually used in the visualization: control flow, data flow,

and algorithms), Form (the characteristics of the visualization:

medium, level of detail, and synchronized views),Method (how

the data for the visualizations is gathered: automatically generated

visualization, code instrumentation, and noninvasive probes),

Interaction (user interaction and control: use of buttons and menus

and navigation), and Effectiveness (how well the visualizations

meet their objectives: purpose of the visualizations, clarity, and

degree of empirical evaluation). These categories are structured

hierarchically, with each category expanded into subcategories.

The categories were derived bottom-up, first by surveying existing

taxonomies, then examining current tools, and finally letting these

observations suggest a new formulation.

Bassil and Keller [24] use Price et al.’s framework to qualitatively

analyze a collection of software visualization tools. Maletic et al.

[16] enhance the Price framework with regard to task orientation.

Task orientation is similar to our use of stakeholders; however, we

have a larger scope of task than that presented by Maletic et al.

The seven functional key areas for any software architecture are

described [9] below.

2.3.1 Static Representation (SR)

Static Representation is the architectural information which can be

extracted before runtime, for example, source code, test plans, data

dictionaries, and other documentation. It is possible that a

visualization system will be restricted to a small number of possible

architectures. A Visualization need not support a multitude of software

architectures if that is not the intention of the visualization. In some

cases, the software architecture is clearly defined and a single data

source exists from which the visualization can take its input. Often,

architectural data does not reside in a single location and must be

extracted from a multitude of sources. An architecture visualization

certainly benefits from the ability to support the recovery of data from

a number of disparate sources. Moreover, with multiple data sources,

there should be a mechanism for ensuring that the data can be

consolidated into a meaningful model for the visualization.

Architectural information may not be available directly but is

recovered from sources that are nonarchitectural. For example, file

systems may not be directly architecturally related, but they can

contain important information that relates to architecture. Even more

so, namespaces, modules, classes, methods, and variables can all

contribute to a view of the software architecture and, so, a

visualization system should support language-specific constructs. If

architectural data is to be retrieved from nonarchitectural data,

there is a potential for the data repository to contain large amounts

of data from lower levels of abstraction. If this is the strategy

employed by the visualization,then the visualization should be

able to deal with large volumes of information, that is, the system

should be scalable.

2.3.2 Dynamic Representation (DR)

Dynamic Representation is the architectural information that can

be extracted during runtime. Some relationships between

components of a system will be formed only during execution due

to the nature of late-binding mechanisms such as inheritance and

polymorphism. Runtime information can indicate a number of

aspects of the software architecture. Visualizations should support

the collection of runtime information from dynamic data sources

in order to relay runtime information. Typically, for smaller

software systems, this runtime information will only be available

from one source, but, for larger distributed software systems, the

visualization may need the capability of recovering data from a

number of different sources. These data sources may not reside on

the same machine as the visualization system, so the ability to use

remote dynamic data sources is useful. Some sources may produce

data of one type, where another source produces different data. In

this case, the visualization should provide a mechanism by which

this data is made coherent.

When dynamic events occur, the visualization should be able to

display these events appropriately and within the context of the

architecture. The visualization must therefore be able to associate

incoming events with architectural entities. Any method of

recording dynamic information from a software system will affect

that software system in some way. At one extreme, there is the

directly invasive approach of adding lines to the software source

code. At the other extreme, there is retrieval of information from a

virtual machine. The visualization system should support a

suitable approach to recovery of dynamic architecture data in the

least invasive way; disruptive behavior is not desirable. By

visualizing the dynamic data as it is generated, there may be an

affect on the software being visualized. A “postmortem style” has

the benefit of knowing the period of time over which the

visualization occurs. This is useful to a visualization, in that it can

render a display for a particular instance in time while knowing

what will occur next.

2.3.3 Views (V)

Kruchten [10] identifies four specific views of software

architecture, whereas the IEEE 1471 standard allows for the

definition of an arbitrary number of views. A visualization may

support the creation of a number of views of the software

architecture and may wish to allow simultaneous access to these

views. In the IEEE 1471 standard, architectural views have

viewpoints associated with them. A viewpoint defines a number of

important aspects about that view, including the stakeholders and

concerns that are addressed by that viewpoint, along with the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

250

language, modeling techniques, and analytical methods used in

constructing the view based on that viewpoint. A visualization

may make this information available to the user in order to assist

in their understanding of the view they are using.

2.3.4 Navigation and Interaction (NI)

Interactive visualizations systems provide a means by which users

will move within, and interact with, the graphical environment.

Common user navigation techniques such as panning, zooming,

book marking, and rotating are usually offered in both 2D and 3D

environments. Interaction with the environment can involve

selection, deletion, creation, modification, and so on.

An important part of the comprehension process is the formulation

of relationships between concepts. Having the ability to follow these

relationships is fundamental. Storey et al. [12] indicate that a

software visualization system should provide directional navigation.

The visualization should support the user being able to follow

concepts in order to gain an understanding of the software

architecture. Searching is the data-space navigation process that

allows the user to locate information with respect to a set of criteria.

Storey et al. [12] label this as arbitrary navigation—being able to

move to a location that is not necessarily reachable by direct links.

Sim et al. [19] identify the need for searching architectures for

information; so, the visualization should support this searching for

arbitrary information. Query drilling is a term that describes a

method of dataspace navigation that is a particular hybrid of

browsing and searching. It allows a user to search the data space and

then recursively search within the resulting data set.

Architecture is often comprised of a number of views. Moving

between views is essential in order to understand an architecture from

different viewpoints. Context should also be maintained when

switching between views so as to reduce disorientation. Along with

data-space navigation, the movement within a view is also important.

Shneiderman’s mantra for visualization is overview first, zoom, and

filter, and then show details on demand [18]. A visualization system

should support this strategy. Also, the visualization should allow the

user to move around so as to focus on and see the information they are

looking for. Typical navigational support would be pan and zoom.

While allowing the user to navigate, the visualization should provide

orientation clues in order to reduce disorientation.

2.3.5 Task Support (TS)

Task Support is crucial for any usable software visualization

system. This area of the framework explores the ability of the

visualization to support stakeholders while they are developing

and understanding the software architecture. The visualization

should support architectural analysis tasks. As comprehension

strategies are task dependent, architecture visualizations should

support either of top-down or bottom-up strategies, or a

combination of the two. An important comprehension task is the

identification of anomalies. Architectures may be broken or

misused and exhibit unwarranted behavior. The ability to tag

graphical elements in a visualization is important for various

activities. Annotation can allow users to tag entities with

information during the formulation of a hypothesis. Visualizations

should support any number of stakeholders. In order to facilitate

the communication of the architecture to a stakeholder, the

visualization must represent the architecture in a suitable manner.

Stakeholders may require very different views from other

stakeholders. Software architecture can evolve over time.

Subsystems may be redesigned; components replaced, new

components added, new connectors added, and so on. An

architecture visualization should provide a facility to show the

evolution. This support may be basic, showing architectural

snapshots, or the support may be more advanced by using

animation. Visualizations may offer the capability for the users to

create, edit, and delete objects in the visualization. In order to be

able to fully support the construction of software architecture, the

visualization must be able to allow the user to create objects in the

domain of the supported viewpoint. Of course, the visualization

should also then support the editing and deleting of those objects.

Architectural descriptions can be used for the planning, managing,

and execution of software development [15]. In order for the

visualization to support this task, it should provide rudimentary

functionality of a project management tool—or have the ability to

communicate with an existing project management tool. Software

architecture evaluation allows the architects and designers to

determine the quality of the software architecture and to predict

the quality of the software that conforms to the architecture

description [15]. To support this, a visualization should have some

mechanism by which quality descriptions can be associated with

components of the software being visualized. A typical use of

software architecture visualization is the comparison of as-

implemented with as-designed architecture. The visualization

should be able to support the display of these two architectures

and allow users to make meaningful comparisons between them.

Software built from a softwareproduct line is a typical scenario

where comparison of architectures is particularly useful. The

rationale for the selection of architecture and the selection of the

individual architectures of the components of that architecture are

included in architectural descriptions. Rationale can also be

associated with each viewpoint of an architecture. By showing the

rationale for the elements of the architecture and the architecture

as a whole, a visualization will allow a user to have an insight into

the decision making process.

2.3.6 Implementation (I)

Visualizations should be able to be generated automatically. If

platform choice prohibits remote capture of system data, the

visualization should be able to execute on the same platform as the

software it is intended to visualize. Where possible, remote

capture may be preferred for its potential in reducing unwanted

interaction with the software. As there are many stakeholder roles

in a software system, there may also be a one-to-one mapping of

role to physical users. Therefore, the visualization should support

multiple users concurrently or asynchronously.

2.3.7 Representation Quality (RQ)

Representation Quality is an area of the framework that deals with

the capability of the visualization to adequately represent the

software architecture. For software architecture visualization, the

visualization must present the architecture accurately and

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

251

represent all of that architecture if the visualization purports to do

so. During its execution, software may change its configuration in

such a way that its architecture has changed. Software that

changes its architecture in such a way is labeled software that has

a dynamic architecture. If the visualization is able to support

architectural views of the software at runtime, then it may be

capable of showing the dynamic aspects of the architecture. In

order to do so, the visualization may either support snapshot views

of the progression or animate the changes.

3.0 Software Architecture Visualization tools

Each visualization tool can satisfy some specific activities. Only

one tool does not satisfy the needs to visualize the software

completely and effectively.

3.1.1 Arch View (AV)

The ArchView [23] tool uses the architecture analysis activities of

extraction, visualization, and calculation. It produces an

architecture visualization that presents the use relations in

software systems. The relations are stored in a set of files that are

read by a browser. The browser reads layout information files and

allows the selection of shapes and the manual configuration of

layout. A collection of tools is used to manipulate the set of

relations to perform selected operations. A VRML generator

creates a 3D representation using the 2D layouts and layer position.

3.1.2 The Searchable Bookshelf (SB)

The Searchable Bookshelf [19] visualization attempts to combine

both searching and browsing approaches to software

comprehension. The Searchable Bookshelf adds search

capabilities to the Software Bookshelf. Users can browse the

software structure from an initial overview by navigating through

an HTML style display and a software landscape central view.

Here is an example of the difference between searching and query

drilling. The Searchable Bookshelf allows searching but does not

allow extended searching within the resulting data space.

This visualization affords the user a number of different views;

however, the number of views is limited and the user cannot add

custom views. Dynamic data is not linked to the static

representations of the architecture. The visualization is therefore

unable to deal with architectures that change configuration during

runtime.

3.1.3 SoftArch (SA)

SoftArch [14] is both a modeling and visualization system for

software, allowing information from software systems to be

visualized in architectural views. SoftArch supports both static and

dynamic visualization of software architecture components and

does so at various levels of abstraction. SoftArch’s

implementation of dynamic visualization is that of annotating and

animating static visual forms. SoftArch defines a metamodel of

available architecture component types from which software

systems can be modeled. In this way, a system’s behavior can be

visualized using copies of static visualization views at varying

levels of abstraction to show both the highly detailed or highly

abstracted running system information. SoftArch is integrated into

a development environment; thus, it addresses a key criticism of

other visualizations: It provides a mechanism by which it can be

used by developers during software development. Other aspects of

architecture such as project management, architecture comparison,

and architecture evaluation are not directly supported in SoftArch.

3.1.4 SoFi

SoFi is a tool that performs source code analysis in order to

compare intended architecture with implemented architecture.

SoFi’s clusters source files into a structure based on source file

naming schemes. SoFi relies heavily on intervention by an

architect to perform restructuring. This restricts the applicability of

this visualization to scenarios that require automated generation of

a visualization of an existing system. SoFi is focused on lower level

areas of architecture and does not support dynamic data. Visualizing

evolution can only be supported by repeated application of the tool

and visually comparing the differences between subsequent images.

3.1.5 LePUS

LePUS is a formal language dedicated to the specification of

object-oriented design and architecture [11], [12], [13]. LePUS

diagrams are intended to be used in the specification of

architectures and design patterns and in the documentation of

frameworks and programs. As a visual language, LePUS is not

concerned with the extraction of architectural information from

systems but is simply a means by which an architect can encode

software architecture for communication to other stakeholders in

that architecture. This will allow for some activities, such as

construction, evaluation, and comparison, but is not suited to core

visualization activities such as searching and query drilling.

3.1.6 Enterprise Architect (EA)

Enterprise Architect [20] is a UML CASE tool that allows

software architects, designers, and analysts to design software

from several viewpoints. EA can be used from requirements

capture to UML modeling to testing and project management. EA

utilizes a graphical user interface that sits above an entity-

relationship repository. The primary mechanism for modeling

software systems in EA is to use diagrams. Entity templates are

dragged onto a diagram area, causing a new entity to be created.

These entities can be edited using the graphical user interface.

Links can be formed between diagram entities. These links cause

relationships to be formed between entities in the underlying

model. Existing entities can be dragged onto newly formed

diagrams and any existing relationships are automatically shown.

Thus, the entity-relationship model is distinct from the visual

representations that form the user- interface. EA’s primary use is

for designing new software but it also offers a broad range of other

tools. For example, EA also allows existing software to be parsed

and imported. EA supports many activities and is suited to a wider

audience of stakeholders. It does not support dynamic data and has

difficulty in showing architectural evolution. EA does permit the

construction of new views.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

252

3.1.7 Arch Vis (Avis)

Arch Vis is prototype software architecture visualization tool. Its

design was driven by the key concerns regarding software

architecture visualization requirements. That is to say that Arch

Vis was designed and built using the evaluation framework as

requirements. In this sense, including it in this list is skews the

results. However, the framework and Arch Vis were developed in

parallel, so features were added to the framework after the design

of Arch Vis was complete.

All these seven existing visualization tools all the attributes that

are present in the seven key areas. We can know this by

superimposing the starplots of all the existing tools on one another

we can obtain the combined starplot of all the existing tools. This

combination starplot clearly shows that some of the attributes

related to dynamic events should not supported by the existing

tools. In this representation we can find that some specific

activities should not be satisfied by the existing tools. In order to

satisfy those activities we can propose a new tool for visualizing

the software completely. In order to satisfy all the attributes

related to dynamic events we can propose a new tool, it can be

referred as DArch(DA).

3.2 DArch (DA)

The proposed conceptual tool [22] by us covers the activities of

non invasive collection of data, evolution of software, planning

and development, rationale selection of architectures and

dynamically changing architecture. This tool is mainly focused on

the dynamic events that are related to a particular software

development. By utilizing the new tool we can retrieve the data

required for visualizing the software architecture in a proper way

in order to avoid abnormal behavior. Figure 3.2 shows the star plot

of the proposed conceptual tool DA.

Fig. 3.2

3.3 Selection of Software Architecture based on

functional key areas using visualization tools

Visualization Technique as a critical decision making tool for

several applications. There are several visualization tools available

for a particular software architecture visualization. The principle

difference is that this work is about selecting software architecture

among alternatives based on functional key area attributes. Where

as the visualization tools are to visualize a particular architecture

only.

Figure 3.3: A Framework for selection of software

architecture based on functional key area attributes using

visualization tools

This tents to neglect the solution development stage in a decision

making process, the implications of intermediate decisions and

analysis are lost. Tradeoffs with a design alternative tend to be

much less explicit. This holistic view may lead to situations where

the preferences are given for functional key area attributes hinges

on sensitive and critical decisions of which stakeholders are not

aware. Fig 3.3 shows this model of selecting software

architectures.

4.0 Ideal Tool

Representing architecture visualization tools through starplots

gives an immediate impression as to the tool’s capability. Each

tool has its own relative merit and none supports all of the

framework’s elements and thus represents the trade-offs made by

the tool developers. This highlights a potential problem, where an

organization may want a single tool to give all stakeholders a

central repository for architectural information that can be

represented in different ways to each stakeholder.

Fig. 4.0

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

253

The below figure 4.0 illustrates an ideal tool that combines the

features of all tools analyzed. A salient feature is that this would

provide full support of all attributes of the key functional areas. In

the figure the lined portion indicates the support for the new tool

called DArch (DA). By including this tool along with the existing

tools we can meet the all requirements to achieve an ideal tool in

order to satisfy all the attributes related to the seven key areas

discussed with help of this ideal tool we can select best

architecture among various alternatives by visualization.

4.1 Selection of Software Architectures based on

functional key areas using visualization tools

integrated with DArch

The Fig.4.1 is the framework [21] using ideal tool of architecture

visualization for selection of required software architecture using

functional key area attributes [22].

Figure 4.1 A Framework for selection of software architecture

based on visualization tools integrated with

DArch (Ideal Tool)

Various design decisions are used to design various architectures

of various problems. This model used to select the best

architecture suitable for stakeholders functional requirements just

by visualization.

5.0 Conclusion

In the selection of software architecture among various

alternatives technological justification involves active

participation of different groups of specialists (stakeholders). It is

absolutely necessary to have their preferences. So this model is

helpful to visualize their required functional priorities in various

software architecture alternatives. It helps to reduce the cost, effort,

time etc. of software development. This model also used to select

suitable software architecture best suitable for a specific problem

and also for some applications with limited modifications. We

have developed and presented a model for the complete

visualization of the functional capabilities of software architecture

using an ideal tool [22]. These issues lead to an architecture better

prepared for future change.

Reference
[1] Chung L et al, “Non-Functional Requirements in Software

Engineering”: Kluwer Academic Publishers, Boston, MA.

1999].

[2] Kazman, Rick; Asundi, Jai; & Klein, Mark. “Quantifying the

Costs and Benefits of Architectural Decisions,” 297-306.

Proceedings of the 23rd International Conference on

Software Engineering (ICSE 2001). Toronto, Ontario,

Canada, May 12 - 19, 2001. Los Alamitos, CA: IEEE

Computer Society, 2001.

[3] Kazman, R., Barbacci, M., Klein, M., and Carriere, J 1999.

“Experience with performing architecture tradeoff analysis”.

In Proceedings of the 21st International Conferences on

software Engineering (ICSE’99), pp.54-63.

[4] Bengtsson, P., Lassing. N., Bosch, J., and Vliet, H.V. 2004.

“Architecture-level modifiability analysis (ALMA)”. Journal

of Systems and Software 69(1/2): 129-147.

[5] Barbacci, Mario R.; Ellison, Robert; Lattanze, Anthony J.;

Stafford, Judith A.; Weinstock, Charles B.; & Wood,

William G. “Quality Attribute Workshops”, Third Edition

(CMU/SEI-2003-TR- 016). Pittsburgh, PA.

[6] Clements, Paul C. “Active Reviews for Intermediate

Designs” (CMU/SEI-2000-TN-009, ADA383775).

Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University, 2000.

[7] Bass, Len; Clements, Paul; & Kazman, Rick. “Software

Architecture in Practice”, Second Edition. Boston, MA:

Addison-Wesley, 2003.

[8] Kazman Rick “A Life-Cycle View of Architecture Analysis

and Design Methods”, September 2003, TECHNICAL

NOTE, CMU/SEI-2003-TN-026.

[9] Keith Gallagher, Andrew Hatch and Malcolm Munro,

“Software Architecture Visualization: An Evaluation

Framework and Its Applications”, IEEE Transactions on

Software Engineering, Vol 34, No.2, March/April 2008.

[10] P. Kruchten, “The 4 + 1 View Model of Software

Architecture,” IEEE Software, vol. 12, no. 6, pp. 42-50, Nov.

1995.

[11] A. Eden, “Visualization of Object-Oriented Architectures,”

Proc. IEEE 23rd Int’l Conf. Software Eng. Workshop

Software Visualization, pp. 5-10, 2001.

[12] M. Storey, D.Cubranic,and D.German, “On the use of

visualization to Support Awareness of Human Activities in

software Development,” Proc. ACM Symp.Software

visualization,pp.193-202,2005.

[13] M. Eisenstadt and M. Brayshaw, “A Knowledge Engineering

Toolkit: Part I,” BYTE: The Small Systems J., pp. 268-282,

1990.

[14] J. Grundy and J. Hosking, “High-Level Static and Dynamic

Visualisation of Software Architectures,” Proc. IEEE Symp.

Visual Languages, pp. 5-12, Sept. 2000.

[15] “IEEE Recommended Practice for Architectural Description

of Software Intensive Systems,” technical report, IEEE, 2000.

[16] J. Maletic, A. Marcus, and M. Collard, “A Task Oriented

View of Software Visualization,” Proc. IEEE Workshop

Visualizing Software for Understanding and Analysis, pp.32-

40, 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

254

[17] B.A. Price, R. Baecker, and I.S. Small, “A Principled

Taxonomy of Software Visualization,” J. Visual Languages

and Computing, vol. 4, no. 3, pp. 211-266, 1993.

[18] B. Shneiderman, Designing the User Interface: Strategies for

Effective Human-Computer Interaction. Addison-Wesley,

1998.

[19] S. Sim, C. Clarke, R. Holt, and A. Cox, “Browsing and

Searching Software Architectures,” Proc. Int’l Conf.

Software Maintenance, pp. 381-390, Sept. 1999.

[20] Sparx Systems, Enterprise Architect,

http://www.sparxsystems. com.au, 2008.

[21] A. Rama Mohan Reddy, M.M. Naidu and P. Govindarajulu,

“An Integrated approach of Analytical Hierarchy Process

Model and Goal Model (AHP-GP Model) for selection of

Software Architecture”, IJCSNS International Journal of

Computer Science and Network Security, Vol. 7, No.10,

October 2007.

[22] K. Delhi Babu, P. Govindarajulu and A.N. Aruna Kumari,

“Development of the Conceptual Tool for Complete

Software Architecture Visualization: DArch (DA)”, IJCSNS

International Journal of Computer Science and Network

Security, VOL.9 No.4, April 2009.

[23] L. Feijs and R. de Young, “3D Visualization of software

architecture”, Comm. ACM, Vol.41, No.12, pp.73-78, Dec,

1998.

[24] S. Basil and R. Keller, “A Qualitative and Quantitative

Evaluation of Software Visualization”, Proc. IEEE

Workshop Visualization Software for Understanding and

Analysis, pp.32-40, 2002.

[25] Keith Gallagher, Andrew Hatch and Malcolm Munro,

“Software Architecture Visualization: An Evaluation

Framework and Its Application”, IEEE Transactions on

Software Engineering, Vol.34, No.2, March/April 2008.

Authors

K. Delhi Babu
Research Scholar

Department of Computer Science

S.V. University, Tirupati,

Andhra Pradesh, India

Dr. P. Govindarajulu
Professor

Department of Computer Science

S.V. University, Tirupati,

Andhra Pradesh, India

Dr. A. Ramamohana Reddy
Associate Professor

Department of Computer Science & Engineering

S.V. University, Tirupati,

Andhra Pradesh, India

Mrs. A.N. Aruna Kumari
Assistant Professor

Department of Computer Science & Engineering

Sree Vidyanikethan Engineering College

Tirupati

Andhra Pradesh, India

