
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

280

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

Enhancement Misconfiguration Management of Network

Security Components Using Range Algorithm

Ahmed Farouk
1
, Hamdy N.Agiza

2
, Elsayed Radwan

3

1,3
Faculty of Computer and Information Sciences, Mansoura University, Egypt,

2
Faculty of Sciences, Mansoura University, Egypt,

Summary
Many companies and organizations use firewalls to control the

access to their network infrastructure. When processing packages,

conflicts due to rule overlaps can occur within the filtering policy.

To solve these conflicts most firewall implementation use a first

matching strategy through the ordering of rules. This way each

packet processed by the firewall is mapped to the decision of the

rule with highest priority. This strategy introduces however new

configuration errors such as shadowing of rules and redundancy

lead to inaccurate results. In this paper new algorithm called

range algorithm introduced to get the best case for solving

conflict and shadowing problems. Also get result rules that is free

inconsistency and finding rules that cause inconsistency.

Keywords: Network Security, Firewalls, Redundancy and

Shadowing of Rules, Conflict, and Range Algorithm

1. Introduction

Network security is essential to the development of

Internet and has attracted much attention in research and

industrial communities. With the increase of network

attack threats, firewalls are considered effective network

barriers and have become important elements not only in

enterprise networks but also in small-size and home

networks. A firewall is a program or a hardware device to

protect a network or a computer system by filtering out

unwanted network traffic. The filtering decision is based

on a set of ordered filtering rules written based on

predefined security policy requirements. Firewalls can be

deployed to secure one network from another. However,

firewalls can be significantly ineffective in protecting

networks if policies are not managed correctly and

efficiently. It is very crucial to have policy management

techniques and tools that users can use to examine, refine

and verify the correctness of written firewall filtering rules

in order to increase the effectiveness of firewall security

[12].

Firewalls are network security components which provide

means to filter traffic within corporate networks, as well as

to police incoming and out coming interaction with the

Internet [6]. Firewall ACLs can contain inconsistencies.

There is an inconsistency if different actions can be taken

on the same flow of traffic, depending on the ordering of

the rules. Inconsistency rules should be notified to the

system administrator in order to remove them. Minimal

diagnosis and characterization of inconsistencies is a

combinatorial problem. Although many algorithms have

been proposed to solve this problem, all reviewed ones

work with the full ACL with no approximate heuristics,

giving minimal and complete results, but making the

problem intractable for large, real-life ACLs [11] in this

paper a different approach introduced.

First, we deeply analyze the inconsistency diagnosis in

firewall ACLs problem, and propose to “change” split the

process in several parts that can be solved sequentially:

Division Process, inconsistency detection, and Test

Completeness & correctness

Filtering Rule Format It is possible to use any field in IP,

UDP or TCP headers in the rule filtering part, however,

practical experience shows that the most commonly used

matching fields are: protocol type, source IP address,

source port, destination IP address and destination port.

Some other fields, like TTL and TCP flags, are

occasionally used for specific filtering purposes. The

following is the common format of packet filtering rules in

a firewall policy:

<Order><protocol><src_ip><src_port><dst_ip><dst_port

> <action> [11] In this work the rules defined will be

written as follows Ri : {condition} decision [3]

equivalent to where i is the relative position of the rule

within the set of rules, decision i is a Boolean expression in

{accept; deny}, and {condition} I is a conjunctive set of

condition attributes such that {condition} I equals A1 ^ A2

^ ::: ^ Ap, and p is the number of condition attributes of the

given filtering rules. Attributes of conditions are Source

and Destination IP address, in our work we suppose Source

port, Destination port and IP protocol true value, there’re

two types of decision are Accept and Deny, Use ipv4 and

network class C that address size is 32 bits, four octets,

each one is 8 bit. Although firewall security has been given

strong attention in the research community, the

EMPHASIS was mostly on the filtering performance and

hardware support issues. On the other hand, few related

work [2] present a resolution for the correlation conflict

problem only. Other approaches [1] propose using a high-

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

281

level policy language to define and analyze firewall

policies and then map this language to filtering rules.

Firewall query-based languages based on filtering rules are

also proposed in [10]. So in general, In this paper a new

progress in this area because it offers new techniques for

complete anomaly discovery and rule editing that can be

applied on legacy firewall policies of low-level filtering

rule representation, solving Disadvantages of latest

approach are Inaccurate results, Number of algorithms

used to perform functions, Time is huge, Performance is

low.

2. Preliminaries

2.1 Analysis of Consistency Problems

To understand the problem, it is important to firstly review

the inconsistencies characterized in the bibliography. A

complete characterization that includes inconsistency,

shadowing, and redundancy has been given in [3,5and11].

Although all of these are inconsistencies, usually not all are

considered to be errors, as it can be used to cause desirable

effects.

--Inconsistency: -- Two rules Ri, Rj RS are inconsistent

if and only if the intersection of each of all of its selectors

R [k] is not empty, and they have different actions,

independently of their priorities. The inconsistency

between two rules expresses the possibility of an

undesirable effect in the semantics of the rule set. The

semantics of the rule set changes if an inconsistent rule is

removed.

Definition 1

--Shadow-- A rule Ry is shadowed by another rule Rx,

with Rx>Ry, if all of its selectors to or supersets of the

selectors of Ry, and Rx and Ry have different action.

Definition 2

--Redundancy-- A rule Rx is redundant to another rule

Ry, with Rx>Ry, if all of its selectors are subsets or equal

to the selectors of Rx, they have the same action, and if

there is no rule between Rx and Ry which is correlated or

subset of Rx. Redundancy of Ry respect to Rx is

symmetrical. Redundancy is not really an inconsistency,

since if all redundant rules are removed; the semantic of

the rule set does not change.

Definition 3

2.2 Related and Previous Work

A first approach to get a firewall configuration free of

errors is by applying a formal security model to express the

network security policy. Nonetheless, this approach is not

enough to ensure that the firewall configuration is

completely free of errors [4].

Figure 1: An example of Cisco router access list. Note that the

fourth rule is never matched because of the second rule

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

282

Simple packet filters usually use simple ordered lists of

rules. An example of a Cisco router access list is shown in

Figure 1. When a packet is received, the list is scanned

from the start to the end, and the action (either “permit” or

“deny”) associated with the first match is taken. If a packet

doesn’t match any of the rules, the default action is “deny”.

Often a “deny all” rule is included at the end of the list to

make it easier to verify that a list has not been truncated.

Separate lists can be specified for each network interface.

The rules can use the following fields from the IP protocol

header: next level protocol (e.g., TCP or UDP), source and

destination IP addresses, type-of-service, and precedence.

In addition, some fields for upper level protocols, such as

TCP and UDP port numbers can be used. For a more

complete discussion of the syntax of the rules used by

Cisco routers, see [8].

A second approach in a configuration set, two rules are in

conflict when the first rule in order matches some packets

that match the second rule, and the second rule also

matches some of the packets that match the first rule. This

approach is very limited since it does not detect what we

consider serious misconfiguration errors, redundancy and

shadowing of rules [9].

Latest approach goal is to find minimum set of rules that

cause the security policy don’t change by Detection of

shadowing rules and removes it, Detection of redundancy

rules and solves it and Test completeness of security policy

and ensure that don’t change Disadvantages of latest

approach are Inaccurate results, Number of algorithms

used to perform functions, Time is huge, Performance is

low

2.3 IPv4 and class C

In our work, IPv4 will use to represent source and

destination the original designers of TCP/IP defined an IP

address as a 32-bit number IP addresses are stored as

binary numbers, they are usually displayed in human-

readable notations, such as 208.77.188.166. IPv4

addresses are normally written in a format known as

"dotted decimal notation". In this format, each byte of the

4-byte address is expressed as a decimal (base 10) number

(i.e. 0 to 255). The four decimal numbers are separated by

"dots" or "periods"[7]

 Figure 2:- graphical representation of class c

Class C addresses, indicated by two 1s followed by a 0 in

the first three bits of the address, are intended for small

subnetworks. Class C addresses have a 24-bit NETID and

an 8 bit HOSTID, permitting over two million possible

network addresses. The first number of a Class C address

always falls in the range 192 through 223 as Figure 2.

3. Range Algorithm

In this paper, range algorithm will work on IPv4, class c,

on last byte on source IP and destination IP that mean only

that all IP addresses belongs to only one network That

means don’t care about first three bytes, work only on last

byte Last byte means from [0- 255], that we will exclude 0

“represent network itself “and 255 “represent broadcast

“Now working on range [1-254] on last byte

Pervious approaches to solve conflict and overlap

problems leads to inaccurate result that cause inaccurate

and weak system, division of IPv4 leads to detect

redundant rules easier and inconsistent rules that has same

source and destination different action, Range algorithm

lead to this because all rules compared to same divided

IPv4 Division process ” divide firewall rules on basis of

range “, Detecting process “ detect redundant, overlap,

inconsistency rules depend on hybrid comparison and

intersection modules ,Test correctness “ test that result set

of rules in independency case by drawing result that means

free of inconsistency and achieving best solution “

In this paper our main objective is the discovering of both

shadowing and redundancy Errors inside an initial set of

filtering rules R. Such a detection process is a way to alert

the security Officer in charge of the network about these

configuration errors, as well as to remove all the useless

Rules in the initial firewall configuration the data to be

used for the detection process is the following. A set of

rules R as a dynamic linkedlist of initial size n, where n

equals count(R), and where each element is an associative

array with the strings condition, decision, shadowing, and

redundancy as keys to access each necessary value. To

simplify, assume one can access a linked-list through the

operator Ri, where i is the relative position regarding the

initial list size count(R), also assume one can add new

values to the list as any other normal variable does

(element value), as well as to remove elements through the

addition of an empty set (element ;). The internal order of

elements from the linked-list R keeps with the relative

ordering of rules. In turn, each element Ri [source] is an

indexed array of size p containing the set of source

conditions of each rule; each element Ri [destination] is an

indexed array of size p containing the set of destination

conditions of each rule; each element Ri [decision] is a

Boolean variable whose values are in accept; deny For

simplicity detection process and the removal of

misconfiguration split in five different processes.

Thus, first divided IP function (Algorithm 1), divide ipv4

address whose input is Range specified in algorithm, using

ceiling function that approximate to the largest integer and

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

283

comparing result to our limit 254, Second conversion

function (Algorithm 2), who’s input is the initial set of

filtering rules, and output is conversion R by extract last

byte from source and destination, convert decision to be 0

and 1 Third division function (Algorithm 3), who’s input is

extracted source and destination of R, in this algorithm

source and destination of each rule will be compared to

divided IPv4 result from algorithm 1 and put result in

division table .Fourth, detection function(Algorithm 4), is

recursive whose input is R from division table and take

each rule and compare to other rules , that if there is

intersection between source and also destination between

rules with same decision then extract consistent rules by

comparing if there is intersection between source and also

destination between rules with different decisions then

extract consistent and inconsistent between rules by

comparing , else add two rules directly to consistent ,

because no intersection between source or destination that

means two rules applied to different destination or two

different sources , the output of the main detection function

is the set which results as a transformation of the initial set

R. This new set is equivalent to the initial one, R, and all

its rules are completely disjoint. Therefore, the resulting

set is free of both redundancy and shadowing of rules, as

well as any other possible configuration error Fifth,

(Algorithm 5), test completeness by drawing result of

consistent rules and if drawing is independent so,

achieving to best case of independency,

3.1 Division Process

Algorithm 1: Divided ip (Range)

Begin

CountRange ← ceiling (254/Range)

Assign value one to variable j

Assign value zero to variable div 2

For I ← 1 to CountRange

If (div2 < 254)

do

Divide (div1, div2) ←add (j, j+Range)

j =j+ Range+1

End

Else div2 equal 254

End

Algorithm 2: Conversion(R)

Begin

For i←1to (count(R))

do

Ri [Source] ← extract range of last byte of

source

Ri [Destination] ← extract range of last

byte of destination

Ri [decision] ← extract decision part and

convert

Deny←0, Accept←1

Division (Ri [Source], Ri [Destination])

End

End
Algorithm 3: Division (A, B)

Begin

For i←1 to count(R)

do

Divided(R) ←divide R by comparing A to

divided ip

Divided(R) ←divide R by comparing B to

divided ip

End

End

3.2 Detection Process

Algorithm 4: Detection(R)

Begin

Repeat

do

For i←1 to (count(R) -1)

do

For j←i+1to (count(R))

do

If ((Ri  source ∩ Rj source ≠ Ø)

(Ri destination ∩ Rj destination

 ≠ Ø))(Ri [decision] = Rj

[decision] 

Then compare Ri and Rj

Consistent[Rcons]←extract

consistent part

Else If ((Ri  source ∩ Rj source ≠

Ø)(Ridestination∩Rjdestination

≠ Ø)(Ri [decision] ≠ Rj [decision]



Then compare Ri and Rj

Consistent[Rcons]←extract

consistent part

Inconsistent[Rincons]←extract

inconsistent part

Else

Consistent [Rcons] ← add (Ri, Rj)

End

End

End

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

284

End

Until no inconsistency detect

If (Inconsistent [Rincons] ≠ Ø)

Then “warning inconsistency occurred “

Testcompleteness (Consistent [Rcons])

End

3.3 Test Completeness & correctness

Algorithm 5: Testcompleteness(C)

Begin

For i←1 to (count(C))

do

Drawcons←Draw Ci

End

If (∩ Drawcons = Ø)

Then “consistent reached

Else “warning still inconsistent”

End

End

3.4 Complete Algorithm

CompleteDetection(R)

Begin

Srange=Drange=Range

Divided ip (Range)

Foreach set of firewall rules

do

Conversion(R)

Detection(R)

End

End

3.5 Applying the Algorithms

3.5.1 Applying division process

Example:-

Table 1 : Example of a set of filtering rules with five condition

attributes

In Table 2 result of applying algorithm 1 for range

specified 15 so divided IPV4 on this base is shown in this

Table. by applying algorithm 2 as shown in Table 3, taking

rules and rebuild rules in table that contains source [Si, Sj],

destination [Di, Dj] and decision [Aij] and called initial

table.

Table 2: result of applying algorithm 1 with Range =15

1 15

16 30

31 45

46 60

61 75

76 90

91 105

106 120

121 135

136 150

151 165

166 180

181 195

196 210

211 225

226 240

241 254

Table 3: result of applying algorithm 2

By applying algorithm 3 as shown in Table 4, taking Table

3 and divide source [Si, Sj] on basis of range and divide

destination [Di, Dj] on basis of range, in this example

range defined is 15.

/*construct initial table */

Si Sj Di Dj Aij

1 30 20 45 0

20 60 25 35 1

40 70 20 45 1

15 45 25 30 0

25 45 20 40 1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

285

Table 4: result of applying algorithm 3

Define Srange=Drange=Range = 15

Si Sj Di Dj Aij

1 15 20 30 0

1 15 31 45 0

16 30 20 30 0

16 30 31 45 0

20 30 25 30 1

20 30 31 35 1

31 45 25 30 1

31 45 31 35 1

46 60 25 30 1

46 60 31 35 1

40 45 20 30 1

40 45 31 45 1

46 60 20 30 1

46 60 31 45 1

61 70 20 30 1

61 70 31 45 1

15 30 25 30 0

31 45 25 30 0

25 30 20 30 1

20 30 31 40 1

31 45 20 30 1

31 45 31 40 1

3.5.2 Detection process

By applying algorithm 4 as shown In Table 5, taking Table

4 and apply hybrid intersection and comparisons sequence

modules recursively that result is consistent table that

contains only consistent rules that free of any conflict or

inconsistency

Table 5: result of applying algorithm 4

In Table 6, taking Table 4 and apply hybrid intersection

and comparisons sequence modules recursively that result

is inconsistent table that contains only inconsistent rules

that cause inconsistency problems.

Table 6: result of applying algorithm 5

/*construct final inconsistent table that contains only

inconsistent rules that cause conflict and overlap */

Si Sj Di Dj Aij

20 45 25 30 0

20 45 25 30 1

25 30 20 40 0

25 30 20 40 1

31 45 25 30 0

31 45 25 30 1

/ * resulting rules * /

R1 :(s [1, 19] d  [20, 45]) → deny

R2 :(s  [20, 24] d  [20, 24]) → deny

R3 :(s  [20, 24] d [36, 45]) → deny

R4 :(s  [20, 30] d [40, 45]) → deny

R5 :(s [31, 45] d [20, 24]) → accept

R6 :(s  [31, 45] d [31, 40]) → accept

R7 :(s  [40, 45] d [41, 45]) → accept

R8 :(s  [46, 70] d [25, 45]) → accept

Figure 3: consistent resulting rules after applying range

algorithm in Figure3, rebuild table 5 in form of rule

structure that contains only consistent rules.

3.5.3 Test completeness

Figure 4: result of Table 5 construct final consistent table

By applying algorithm 5 as shown in Figure 4 of resulting

rules that indicate achieving best case for inconsistency

detection, that no overlap each rule is separated from other

rules that means shadowing and redundancy our goal

problems solved using this new technique

4. Conclusions and Future Work

A firewall is a system or group of systems that enforces an

access control policy between two networks. The actual

means by which this is accomplished varies widely, but in

principle, the firewall can be thought of as a pair of

mechanisms: one that exists to block traffic, and the other,

which exists to permit traffic. Probably the most important

thing to recognize about a firewall is that it implements an

access control policy. If you don't have a good idea of what

/*construct final consistent table that contains only

consistent rules */

Si Sj Di Dj Aij

1 19 20 45 0

20 24 20 24 0

20 24 36 45 0

20 30 40 45 0

31 45 20 24 1

31 45 31 40 1

40 45 41 45 1

46 70 25 45 1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

286

kind of access you want to allow or to deny, a firewall

really won't help you. It's also important to recognize that

the firewall's configuration, because it is a mechanism for

enforcing policy, imposes its policy on everything behind

it. Administrators for firewalls managing the connectivity

for a large number of hosts therefore have a heavy

responsibility and many problems occurred when

configuration of firewall systems so in this paper new

algorithm introduced that can guide to construct firewall

systems free of inconsistency that remove inconsistent

rules. In this paper range algorithm solve many problems

in latest approach are the most important Problem

Inaccurate results that solved and reach the best case “

independency case “, so more accurate results can achieve

using range algorithm Some other advantages of our

approach are the following. First of all, our transformation

process verifies that the resulting rules are completely

independent between them. Otherwise, each redundant or

shadowed rule considered as useless during the process is

removed from the configuration. On the other hand, the

discovering process provides an evidence of error to the

administration console. This way, the security officer can

check whether the security policy is consistent, in order to

verify the correctness of the process. The complete

independence between rules, moreover, enables the

possibility to perform a second rewriting of rules in a

positive manner " final consistent table " or in a negative

manner " final inconsistent table " After performing this

second transformation, the security officer will have a clear

view of the accepted traffic or the rejected traffic. Our

future research plan includes detecting inconsistent firewall

rules importance using hybrid rough sets and range

algorithm using importance rule to detect importance of

each inconsistent rule that higher importance rule

probability cause first to execute, evaluation of range

algorithm related to relation between range and processing

time, and extending the proposed techniques to handle

class B and class A.

References
[1] A Mayer, A Wool, E Ziskind, 2000. “Fang: A

Firewall Analysis Engine.” IEEE SYMPOSIUM

ON SECURITY AND PRIVACY

[2] B. Hari, S. Suri and G. Parulkar. , March 2000

“Detecting and Resolving Packet Filter Conflicts.”

Proceedings of IEEE INFOCOM’00

[3] Cuppens, F., Cuppens-Boulahia, N., and J. Garcia-

Alfaro. November 2005, Misconfiguration

Management of Network Security Components. In

Proceedings of the 7th International Symposium on

System and Information Security, Sao Paulo,

Brazil

[4] Frédéric Cuppens, Nora Cuppens-Boulahia and

Alexandre Miège, 2004 and formal approach to

specify and deploy a network security policy. In

Second Workshop on Formal Aspects in Security

and Trust, pages 203-218

[5] E. Al-Shaer and H. Hamed. March 2003 “Firewall

Policy Advisor for Anomaly Detection and Rule

Editing.” Proceedings of IEEE/IFIP Integrated

Management Conference (IM’2003)

[6] Fr éd éric Cuppens, Nora Cuppens-Boulahia, and

Joaqu´ınGarc´ıa-Alfaro, December 2007 Detection

of Network Security Component Misconfiguration

by Rewriting and Correlation, Universitat

Autonoma de Barcelona, page 1-3

[7] http://en.wikipedia.org/wiki/IP_address

[8] Kent Hundley and Gil Held. Cisco Access Lists

Field Guide. McGraw-Hill, March 2000

[9] Liu, A. X., Gouda, M. G., Ma, H. H., and Ngu, A.

H. (2004). Firewall Queries. In Proceedings of the

8th International Conference on Principles of

Distributed Systems (OPODIS-04), pages 197-212

[10] P. Eronen and J. Zitting, November 2001 “An

Expert System for Analyzing Firewall Rules.”

Proceedings of 6
th

 Nordic Workshop on Secure IT-

Systems (NordSec 2001),

[11] Pozo4, S., Ceballos, R., Gasca, R.M, 2008

"Polynomial Heuristic Algorithms for

Inconsistency Characterization in Firewall Rule

Sets". 2
nd

 International Conference on Emerging

Security Information, Systems and Technologies

(SECURWARE). Cap Esterel, France. IEEE

Computer Society Press.

[12] Tung Tran, Ehab Al-Shaer, and Raouf Boutaba,

November 11-16, 2007 Firewall Security Policy

Visualization and Inspection Proceedings of the

21st Large Installation System Administration

Conference (LISA '07) page 1-16

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

287

Hamdy N.Agiza Obtained his B. Sc.

1976, in Mathematics "Excellent".

Faculty of Science, Mansoura

University, Egypt. M. Sc. 1982, in Pure

Mathematics, Faculty of Science,

Mansoura University, Egypt. Entitled

"Study of Some Tauberian Conditions

for Some Methods of summability". Ph.

D. 1987, in applied Mathematics,

Heriot Watt University, Edinburgh, Scotland U.K. entitled "A

Numerical and Theoretical Study of Solutions to a Damped

Nonlinear Wave Equation". He worked as Demonstrator in

Mathematics Department, Mansoura University, 1976- 1981.

Assistant Lecturer in the same Faculty.1981 - 1983. Post

Graduate stude Heriot-Watt University (UK) 1983 - 1987.

Lecturer in Mansoura University1987-1999. Assistant

Professor in Mansoura University 1999-2005. Professor in

Mansoura University 2005-Now.

Elsayed Radwan B. Sc. Student, 1992,

Mathematics department (Statistics and

Computational Sciences), Faculty of

Science, Mansoura University with

excellent degree M.Sc. 1999 "On Recent

Technique for Solving Stockastic Multi-

Objective Programming Problem" Egypt,

University of Mansoura, Faculty of

Science, Math. Department (Statistics and Ph.D. 2006

"Increasing Cellular Neural Template Robustness by New

Artificial Intelligence Techniques" Japan, Toin University of

Yokohama, Faculty of Engineering, Tazaki lab future research

plans are to develop a new hybrid model of Fuzzy Cellular

Neural Networks and Rough Sets in Image enhancement. The

future work should study the sensitivity analysis of the new fuzzy

template

Ahmed Farouk Obtained his B. Sc. 2006

in computer sciences "very good". Faculty

of Computer Sciences and Information

System, Mansoura University, Egypt.

Premaster in Computer Sciences 2007,

Faculty of Computer Sciences and

Information System, Mansoura University,

Egypt. Prepare master now in Computer

Sciences specialized in network security related to firewall

configuration. Now working as network engineer in Etisalat

Company as I have Cisco Certified Network Professional(CCNP).

My future research will focus on network security, rough sets,

and artificial intelligent, networking information security.

