
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

288

Manuscript received June 5, 2009

Manuscript revised June 20, 2009

BC-WASPT : Web Acess Sequential Pattern Tree Mining

D.Vasumathi
1
 A .Govardhan

2

1 Assoc. Professor, Dept.Of CSE, JNTUCEH, JNTUniversity, Hyderabad-85.

2 Professor & HOD, Dept.of CSE, JNTUCEH, JNTUniversity, Hyderabad-85.

Abstract
In this paper, we explore a new sequence pattern technique

called BC-WAPT (Binary coded Web Access pattern Tree).it

eliminates recursive reconstruction of intermediate WAP tree

during the mining by assigning the binary codes to each node in

the WAPTree. Sequential Pattern mining is the process of

applying data mining techniques to a sequential database for the

purposes of discovering the correlation relationships that exist

among an ordered list of events. Web access pattern tree (WAP-

tree) mining is a sequential pattern mining technique for web log

access sequences, which first stores the original web access

sequence database on a prefix tree, similar to the frequent

pattern tree (FP-tree) for storing non-sequential data. WAP-tree

algorithm then, mines the frequent sequences from the WAP-

tree by recursively re-constructing intermediate trees, starting

with suffix sequences and ending with prefix sequences. An

attempt has been made to modify WAP tree approach for

improving efficiency. BCWAPT totally eliminates the need to

engage in numerous reconstruction of intermediate WAP-trees

during mining and considerably reduces execution time.

Keywords:

WAP tree, data mining, sequential data mining, frequent pattern

tree

1. Introduction

Sequential mining is the process of applying data mining

techniques to a sequential database for the purposes of

discovering the correlation relationships that exist among

an ordered list of events. The objective of this work is to

apply data mining techniques to a sequential database for

the purposes of discovering the correlation relationships

that exist among an ordered list of events. Given a WASD

(Web Access Sequence Database), the problem to find

frequently occurring Sequential patterns on the basis of

minimum support provided. The application of sequential

pattern mining are in areas like Medical treatment,

science & engineering processes, telephone calling

patterns. Sequential pattern mining Web usage mining for

automatic discovery of user access patterns from web

servers. It is used by an e-commerce company, this

means detecting future customers likely to make a large

number of purchases, or predicting which online visitors

will click on what commercials or banners based on

observation of prior visitors who have behaved either

positively or negatively to the advertisement banners.

2. Background

sequential Pattern Mining comes in Association rule

mining. For a given transaction database T, an

association rule is an expression of the form X Y,

where X and Y are subsets of A and X Y holds with

confidence t, if t % of transactions in D that support X

also Y. The rule X Y has support δ in the transaction

set T if t% of transactions in T support X U Y.Association

rule mining can be divided into two steps. Firstly,

frequent patterns with respect to support threshold min

sup are mined. Secondly association rules are generated

with respect to confidence threshold minimum

confidence. Pattern Mining is of two types:

[1]Non Sequential Pattern Mining: The items occurring

in one transaction have no order.

[2] Sequential Pattern Mining: The items occurring in

one transaction have an order between the items (events)

and an item may re-occur in the same sequence. WAP-

tree, which stands for web access pattern tree. The main

steps involved in this technique are summarized next.

The WAP-tree stores the web log data in a prefix tree

format similar to the frequent pattern tree (FP-tree) for

non-sequential data. The algorithm first scans the web log

once to find all frequent individual events. Secondly, it

scans the web log again to construct a WAP-tree over the

set of frequent individual events of each transaction.

Thirdly, it finds the conditional suffix patterns. In the

fourth step, it constructs the intermediate conditional

WAP-tree using the pattern found in previous step.

Finally, it goes back to repeat Steps 3 and 4 until the

constructed conditional WAP-tree has only one branch or

is empty.

Table 1. Sequence database for WAP-tree

TID
Web Access

Sequence

Frequent

Subsequence

100 Pqspr Pqpr

200 Tptqrp Pqrp

300 Opqupt Qpqp

400 Puqrur Pqprr

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

289

Thus, with the WAP-tree algorithm, finding all frequent

events in the web log entails constructing the WAP-tree

and mining the access patterns from the WAP tree. The

web log access sequence database in Table 1 is used to

show how to construct the WAP-tree and do WAP-tree

mining. Suppose the minimum support threshold is set at

75%, which means an access sequence, s should have a

count of 3 out of 4 records in our example, to be

considered frequent. Constructing WAP-tree entails first

scanning database once, to obtain events that are frequent.

When constructing the WAP-tree, the non frequent part of

every sequence is discarded. Only the frequent sub-

sequences are used as input. For example, in Table 1, the

list of all events is p, q, r, s, t, u and the support of p is 4,

q is 4, r is 3, s is 1, t is 2, and u is 2.With the minimum

support of 3, only p, q, r are frequent events. Thus, all

non-frequent events (like s, t, u) are deleted from each

transaction sequence to obtain the frequent subsequence

shown in column 3 of Table 1. With the frequent

sequence in each transaction, the WAP-tree algorithm

first stores the frequent items as header nodes so that

these header nodes will be used to link all nodes of their

type in the WAP-tree in the order the nodes are inserted.

When constructing the WAP tree, a virtual root (Root) is

first inserted. Then, each frequent sequence in the

transaction is used to construct a branch from the Root to

a leaf node of the tree. Each event in a sequence is

inserted as a node with count 1 from Root if that node

type does not yet exist, but the count of the node is

increased by 1 if the node type already exists. Also, the

head link for the inserted event is connected (in broken

lines) to the newly inserted node from the last node of its

type that was inserted or from the header node of its type

if it is the very first node of that event type inserted. For

example, as shown in figure 1(a), to insert the first

frequent sequence pqpr of transaction ID 100 of the

example database, since there is no node labeled p yet,

which is a direct child of the Root, a left child of Root is

created, with label p and count 1. Then, the header link

node for frequent event p is connected (in broken lines) to

this inserted a node from the p header node. The next

event q is inserted as the left child of node p with a count

of 1 and linked to header node q, the third event p is

inserted as the left child of the node q having a count of 1,

and the p link is connected to this node from the inserted p.

The fourth and last event of this sequence is r and it is

inserted as the left child of the second p on this branch

with a count of 1 and a connection to r header node.

Secondly, insert the sequence pqrp of the next transaction

with ID 200, starting from the virtual Root (figure 1(b)).

Since the root has a child labeled p, the node p’s count is

increased by 1 to obtain (p: 2). similarly, (q: 2) is also in

the tree. The next event, r, does not match the next

existing node p, and new node r: 1 is created and Inserted

as another child of q node. The third sequence qpqp of ID

300 and the fourth sequence pqprr are inserted next to

obtain figure 1(c) and (d) respectively. Once the

sequential data is stored on the complete WAP-tree

(figure 1(d)), the tree is mined for frequent patterns

starting with the lowest frequent event in the header list,

in our example, starting from frequent event r as the

following discussion shows. From the WAP-tree of figure

1(d), it first computes prefix sequence of the base r or the

conditional sequence base of c as: pqp:2; pq:1; pqpr:1;

pqp:-1. The conditional sequence list of a suffix event is

obtained by following the header link of the event and

reading the path from the root to each node (excluding the

node). The count for each conditional base path is the

same as the count on the suffix node itself. The first

sequence in the list above, pqp represents the path to the

first r node in the WAP tree. When a conditional sequence

in a branch of a WAP-tree, has a prefix subsequence that

is also a conditional sequence of a node of the same base,

the count of this new subsequence is subtracted because it

has contributed before. Thus, the conditional sequence list

above pqp with counts of -1. This is because, when the

subsequence, pqpr is added to the list, its subsequence pqp

was already in the list. Thus, the count of pqp with -1 has

to be added to prevent it from contributing twice. To

qualify as a conditional frequent event, one event must

have a count of 3. Therefore, after counting the events in

sequences above, the conditional frequent events are p (4)

and q (4) and r with a count of 1, which is less than the

minimum support, is discarded. After discarding the non-

frequent part r in the above sequences, the conditional

sequences based on r are listed as: pqp: 2; pq: 1; pqp: 1;

pqp:-1. Using these conditional sequences, a conditional

WAP tree, WAP-tree|r, is built using the same method as

shown in figure 1.

3 Related Works

Sequential mining was proposed, using the main idea of

association rule mining presented in Apriori algorithm of

Agrawal and Srikant [2]. Later work on mining sequential

patterns in web log include the GSP[2], the PSP[12], the

G sequence and the graph traversal[11] algorithms.

Agrawal and Srikant proposed three algorithms (Apriori,

AprioriAll, AprioriSome) to handle sequential mining

problem. Following this, the GSP (Generalized Sequential

Patterns) [2] algorithm, which is 20 times faster than the

Apriori algorithm in Agrawal and Srikant[1] was

proposed. The GSP Algorithm makes multiple passes over

data. The first pass determines the frequent 1-item

patterns (L1). Each subsequent pass starts with a seed set:

the frequent sequences found in the previous pass (Lk-1).

The seed set is used to generate new potentially frequent

sequences, called candidate sequences (Ck).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

290

Figure1. Construction of WAP tree

Each candidate sequence has one more item than a seed

sequence. In order to obtain k-sequence candidate Ck, the

frequent sequence Lk-1 joins with itself Apriori-gen way.

The GSP algorithm uses a hash tree to reduce the number

of candidates that are checked for support in the database.

The PSP [12] approach is much similar

to the GSP algorithm[2]. At each step k, the database is

browsed for counting the support of current candidates.

Then, the frequent sequence set, Lk is built. The only

difference between the PSP algorithm and the GSP is that

it introduces the prefix-tree to handle the procedure. Any

branch, from the root to a leaf stands for a candidate

sequence, and a terminal node provides the support of the

sequence from the root to the considered leaf inclusive.

The main idea of Graph Traversal mining which is

proposed by Nanopoulos and Manolopoulos[11], is using

a simple unweighted graph to reflect the relationship

between the pages of web sites. Then, a graph traversal

algorithm similar to Apriori algorithm, is used to traverse

the graph in order to compute the kcandidate set from the

(k - 1)-candidate sequences without performing the

apriori-gen join. From the graph, if a candidate node is

large, the adjacency list of the node is retrieved. The

database still has to be scanned several times to compute

the support of each candidate sequence although the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

291

number of computed candidate sequences is drastically

reduced from that of the GSP algorithm.

3.1 Tree binary position code assignment algorithm

Position code is a binary code used to indicate the position

of the nodes in the WAP-tree.In data structure , when

implementing a general tree data structure, a tree is

usually transformed into its equivalent binary tree, which

has a fixed number of child nodes. To convert a given

general tree, T , with nodes at n levels, and root at level 0,

the leaf nodes at level (n − 1), to a binary tree, the

following rule is applied. The root of the binary tree is the

leftmost child of the root of the general tree, T . Then,

starting from level 1 of the general tree and working down

to level n − 1 of the tree, for every node: (1) the leftmost

child of this node in the general tree is the left child of the

node in the binary tree, and (2) the immediate right sibling

of this node in the general tree is the right child of this

node in the binary tree. For example, given a tree shown

as figure 2, it can be transformed into its binary tree

equivalent shown in figure 2(b), where every node has at

most two links, one is its left child, and the other is its

sibling.

Fig 2: Position code assignment with node position in its

binary tree

The position code is assigned to the nodes on the binary

tree equivalent of the tree using the Huffman coding idea.

Here, the code assignment rule, starts from the leftmost

child of the root node of the general tree, which has a

binary position code of 1 because this node is the root of

the binary tree equivalent of the tree. Thus, given the

binary tree equivalent of a tree, with root node having a

code of 1, the single temporary position code assignment

rule assigns 1 to the left child of each node, and 0 is

assigned to the right child of each node. These temporary

position codes are used to define the actual binary

position code for each node in the original general tree.

The position code of a node on the WAP tree is defined as

the concatenation of all temporary position codes of its

ancestors from the root to the node itself (inclusive) in the

transformed binary tree equivalent of the tree. For

example, in figure 2(a), the position code of the rightmost

leaf node (r: 1) is obtained by concatenating all temporary

position codes from path (p: 3) to (r: 1) of the rightmost

branch of figure 2(b) to obtain 101111. The

transformation to binary tree equivalent is mainly used to

come up with a technique for defining and assigning

position codes (presented below as Rule 2.1) to nodes of

the tree that will accomplish the identification task needed

during PLWAP tree mining. It should be stressed that the

PLWAP algorithm does not involve physical

transformation of a WAP-tree to a binary tree before

mining. The tree transformation technique presented in

this section is mainly used to define a mechanism for

assigning position codes straight to PLWAP tree nodes

during their construction. After observing the position

code assignment with nodes in figure 2(a), the following

properties are defined.

Rule 2.1. Given a WAP-tree with some nodes, the position

code of each node can simply be assigned following the

rule that the root has null position code, and the leftmost

child of the root has a code of 1, but the code of any other

node is derived by appending 1 to the position code of its

parent, if this node is the leftmost child, or appending 10

to the position code of the parent if this node is the second

leftmost child, the third leftmost child has 100 appended,

etc. In general, for the nth leftmost child, the position

code is obtained by appending the binary number for

2n−1 to the parent’s code.

Property 2.1. A node α is an ancestor of another node β if

and only if the position code of α with “1” appended to its

end, equals the first x number of bits in the position code

o f β, where x is the ((number of bits in the position code

of α) + 1). For example, in figure 2(a), (p: 1:1110) is an

ancestor of (r: 1:111011) because the position code of (r:

1:1110) is 1110, and after appending 1 at the end of 1110,

we get 11101, which is equal to the first 5 (i.e., length of r

+ 1) bits of (r: 1:111011). On the other hand, (r: 1:1110) is

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

292

not the ancestor of (r: 1:101111), since after appending 1,

the code will be 11101 and is not equal to the first 5 bits

position code of (r: 1:101111). Not only can we use the

position code to find the ancestor and descendant

relationships between nodes, but we can also find whether

one node belongs to the right-tree or left-tree of another

node. From figure 2(a), it can be seen that node (r:

1:1111) and node (r: 1:111011) are two nodes that belong

to two sub trees, which are rooted at (p: 2:111) and (p:

1:1110) respectively. The node (p: 1:1111) belongs to a

left-tree of (p: 1:111011) since the fourth bit of (p:

1:111011) is 0, which means the node is extended from

the node with position code 1110. The node with position

code 1110 is a right sibling of node with 111, which is an

ancestor of node (p: 1:1111). Thus, (p: 1:111011) is a

right-tree of (p: 1:1111).

3.2 The Algorithm

Input: Access sequence database D (i), min support MS

(0< MS ≤ 1)

Output: frequent sequential patterns in D (i).

Variables: Cn stores total number of events in suffix trees,

A stores whether a node is ancestor in queue.

Begin

 1. Create a root node for T;

 2. For each access sequence S in the access sequence

database BC-WAT do

 a) Extract frequent subsequence S
1

=S1 S2 …...Sn ,

WHERE

 S1(1<=I<=n) are events in S
1
.Let current node

point to the root of T.

 b) for i=1 to n do ,

 if cuurent_node has a child labled Si by 1 and

make cuurent_node point Si ,

 else create anew childnode(S1:1),make

current_node point to the new node,and insert it into the

 Si queue

4. Experimental Results

This experiment uses fixed size database and different

minimum support .The datasets and algorithms are tested

with minimum supports between 0.8% and 10% against

the 60 thousand (60 K) database. From Table 2 and figure

3, it can be seen that.

The execution time of every algorithm decreases as the

minimum support increases. This is because when the

minimum support increases, the number of candidate

sequence decreases. Thus, the algorithms need less time to

find the frequent sequences. The modified WAP

algorithm always uses less runtime than the WAP

algorithm. WAP tree mining incurs higher storage cost

(memory or I/O). Even in memory only systems, the cost

of storing intermediated trees adds appreciably to the

overall execution time of the program. It is however, more

realistic to assume that such techniques are run in regular

systems available in many environments, which are not

memory only, but could be multiple processor systems

sharing memories and CPU’s with virtual memory

support. As the minimum support threshold decreases, the

number of events that meet minimum support increases.

This means that WAP-tree becomes larger and longer, and

the algorithm needs much more I/O work during mining

of WAP tree. As minimum support decreases, the

execution time difference between WAP-tree and

modified WAP increases.

Table 2. Execution times for dataset at different

Minimum supports.

 time in sec’s at different supports

Algorithm 2 3 4 5 10

WAP 750 510 330 280 150

mWAP 230 160 110 95 48

0

200

400

600

800

1 2 3 4 5

different Min support

ti
m

e
 i

n
 s

e
c
o

n
d

s

Figure 3. Execution times trend with different minimum

supports.

 Now, databases with different sizes from 20 K to 100 K

with the fixed minimum support of 7% are used.

Table 3. Execution times trend with different data sizes

 Different changed transaction size

Algorithms

time in sec 20k 40k 60k 80k 100k

WAP 148 265 320 445 540

mWAP 50 75 97 145 179

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.6, June 2009

293

0

200

400

600

20k 40k 60k 80k 100k

different Data sizes

T
im

e
 i

n
 s

e
c
o

n
d

s

WAP

mWAP

Figure 4. Execution times trend with different data sizes.

5. Conclusion

In this paper, we analyze the problem of sequential pattern

mining. Here after discussing the two approached it is

clear that the modified version of binary coded WAPtree

is more efficient than the web access pattern tree approach.

This presents a discussion of the advantages and

disadvantages of both approaches conduced by comparing

the performance with help of graph. The modified

algorithm eliminates the need to store numerous

intermediate WAP trees during mining. Since only the

original tree is stored, it drastically cuts off huge memory

access costs, which may include disk I/O cost in a virtual

memory environment, especially when mining very long

sequences with millions of records. This algorithm also

eliminates the need to store and scan intermediate

conditional pattern bases for reconstructing intermediate

WAP trees. This algorithm uses the pre-order linking of

header nodes to store all events ei in the same suffix tree

closely together in the linkage, making the search process

more efficient. A simple technique for assigning position

codes to nodes of any tree has also emerged, which can be

used to decide the relationship between tree nodes without

repetitive traversals.

References
[1] Agrawal, R. and Srikant, R. Mining sequential

patterns. In Proc. 1995 Int. Conf. Data(ICDE’95),

p.3–14, March 1995.

[2] Agrawal, R. and Srikant, R.,. Fast algorithms for

mining association rules in large databases. In

Proceedings of the 20
th

 International Conference on

very Large Databases Santiago, Chile, p.487–

499,1994.

[3] A. Nanopoulos and Y. Manolopoulos. Mining

patterns from graph traversals. Data and Knowledge

Engineering, 37(3):243– 266, 2001.

[4] Etzioni, O. The world wide web: Quagmire or gold

mine. Communications of the ACM, p.65 – 68, 1996.

[5] Han, J., Pei, J. et al. FreeSpan: Frequent pattern

projected sequential pattern mining. In SIGKDD,

p.355–359, Aug. 2000.

[6] Han, J., Pei, J., Yin, Y. and Mao, R. Mining frequent

patterns without candidate generation: A frequent-

pattern tree approach. International Journal of Data

Mining and Knowledge Discovery, p.53– 87, Jan

2004.

[7] Srivastava, J., Cooley, R., Deshpande, M. and Tan, P.

Web usage mining: Discovery and applications of

usage patterns from web data. SIGKDD Explorations,

2000.

[8] Han, J., Pei, J., Mortazavi-Asl, B. and Pinto, H.

Prefixspan: Mining sequential patterns efficiently by

prefix-projected pattern growth. In Proceedings of

the 001 International Conference on Data

Engineering (ICDE 01), p.214–224, 2001.

[9] Han, J., Pei, J., Mortazavi-Asl, B. and Zhu, H.

Mining access patterns efficiently from web logs. In

Proceedings of the Pacific- Asia Conference on

Knowledge Discovery and Data Mining

(PAKDD’00) Kyoto Japan, 2000. Jian Pei, Jiawei

Han, Behzad Mortazavi-asl, and Hua Zhu

[10] Han, J., Pei, J., Mortazavi-Asl, B., and Pinto, H.

2001. PrefixSpan: Mining sequential patterns

efficiently by prefixprojected pattern growth. In

Proceedings of the 2001 International Conference on

Data Engineering (ICDE’01). Germany, Heidelberg,

p. 215– 224.

[11] Pujari, A. : Data Mining Techniques , Universities

Press, India, February 2001.

[12] Masseglia, F., Poncelet, P. and Cicchetti, R. An

efficient algorithm for web usage mining.

Networking and Information Systems Journal (NIS),

p.571–603, 1999.

[13] Zaki, M. SPADE: An efficient algorithm for mining

frequent sequences. Machine Learning, p.31–60,

2001.

[14] Ezeife, C. and Lu, Y. Mining web log sequential

patterns with position coded preorder linked wap-tree.

International Journal of Data Mining and Knowledge

Discovery (DMKD) Kluwer Publishers, p.5–38,

2005.

