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Abstract 
In this paper, we explore a new sequence pattern technique 

called BC-WAPT (Binary coded  Web Access pattern Tree).it 

eliminates recursive reconstruction of intermediate WAP tree 

during the mining by assigning the binary codes to each node in 

the WAPTree. Sequential Pattern  mining is the process of 

applying data mining techniques to a sequential database for the 

purposes of discovering the correlation relationships that exist 

among an ordered list of events. Web access pattern tree (WAP-

tree) mining is a sequential pattern mining technique for web log 

access sequences, which first stores the original web access  

sequence database on a prefix tree, similar to the frequent 

pattern tree (FP-tree) for storing non-sequential data. WAP-tree 

algorithm then, mines the frequent sequences from the WAP-

tree by recursively re-constructing intermediate trees, starting 

with suffix sequences and ending with prefix sequences. An 

attempt has been made to modify WAP tree approach for 

improving efficiency. BCWAPT totally eliminates the need to 

engage in numerous reconstruction of intermediate WAP-trees 

during mining and considerably reduces execution time. 
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1. Introduction 

Sequential mining is the process of applying data mining 

techniques to a sequential database for the  purposes of 

discovering the correlation relationships that exist among 

an ordered list of events. The objective of this work is to 

apply data mining  techniques to a sequential database for 

the purposes of  discovering the correlation relationships 

that exist among an ordered list of events. Given a WASD 

(Web  Access Sequence Database), the problem to find  

frequently occurring Sequential patterns on the basis of 

minimum support provided. The application of  sequential 

pattern mining are in areas like Medical   treatment, 

science & engineering processes, telephone  calling 

patterns. Sequential pattern mining Web usage  mining for 

automatic discovery of user access patterns  from web 

servers. It is used by an e-commerce  company, this 

means detecting future customers likely  to make a large 

number of purchases, or predicting  which online visitors 

will click on what commercials or  banners based on 

observation of prior visitors who have  behaved either 

positively or negatively to the  advertisement banners. 

 

2. Background 

sequential Pattern Mining comes in Association rule  

mining. For a given transaction database T, an  

association rule is an expression of the form X Y,  

where X and Y are subsets of A and X Y holds with  

confidence t, if t % of transactions in D that support X  

also Y. The rule X Y has support δ in the transaction  

set T if t% of transactions in T support X U Y.Association 

rule mining can be divided into two steps.  Firstly, 

frequent patterns with respect to support  threshold min 

sup are mined. Secondly association rules  are generated 

with respect to confidence threshold  minimum 

confidence. Pattern Mining is of two types: 

 

[1]Non Sequential Pattern Mining: The items occurring 

in one transaction have no order. 

[2] Sequential Pattern Mining: The items occurring in  

one transaction  have an order between the items  (events) 

and an item may re-occur in the same sequence. WAP-

tree, which stands for web access pattern tree.  The main 

steps involved in this technique are  summarized next. 

The WAP-tree stores the web log data in a prefix tree 

format similar to the frequent pattern tree  (FP-tree) for 

non-sequential data. The algorithm first  scans the web log 

once to find all frequent individual  events. Secondly, it 

scans the web log again to construct  a WAP-tree over the 

set of frequent individual events of   each transaction. 

Thirdly, it finds the conditional suffix  patterns. In  the 

fourth step, it constructs the intermediate  conditional 

WAP-tree using the pattern found in  previous step. 

Finally, it goes back to repeat Steps 3 and  4 until the  

constructed conditional WAP-tree has only  one branch or 

is empty. 

 

Table 1. Sequence database for WAP-tree 

TID 
Web Access  

Sequence 

Frequent 

Subsequence 

100 Pqspr Pqpr 

200 Tptqrp Pqrp 

300 Opqupt Qpqp 

400 Puqrur Pqprr 
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Thus, with the WAP-tree algorithm, finding all frequent 

events in the web log entails constructing the WAP-tree 

and mining the access patterns from the WAP tree. The 

web log access sequence database in Table 1 is used to 

show how to construct the WAP-tree and do WAP-tree 

mining. Suppose the minimum support threshold is set   at 

75%, which means an access sequence, s should have a 

count of 3 out of 4 records in our example, to be 

considered frequent. Constructing WAP-tree entails first 

scanning database once, to obtain events that are frequent. 

When constructing the WAP-tree, the non frequent part of 

every sequence is discarded. Only the frequent sub-

sequences are used as input. For example, in Table 1, the 

list of all events is p, q, r, s, t, u and the  support of p is 4, 

q is 4, r is 3, s is 1, t is 2, and u is   2.With the minimum 

support of 3, only p, q, r are  frequent events. Thus, all 

non-frequent events (like s, t, u ) are deleted from each 

transaction sequence to obtain the frequent subsequence 

shown in column 3 of Table 1. With the frequent 

sequence in each transaction, the   WAP-tree algorithm 

first stores the frequent items as   header nodes so that 

these header nodes will be used to link all nodes of their 

type in the WAP-tree in the order the nodes are inserted. 

When constructing the WAP tree, a virtual root (Root) is 

first inserted. Then, each frequent sequence in the 

transaction is used to construct a branch from the Root to 

a leaf node of the tree. Each event in a sequence is 

inserted as a node with count 1 from Root if that node 

type does not yet exist, but the count of the node is 

increased by 1 if the node type already exists. Also, the 

head link for the inserted event is connected (in broken 

lines) to the newly inserted node from the last node of its 

type that was inserted or from the header node of its type 

if it is the very first node of that event type inserted. For 

example, as shown in  figure 1(a), to insert the first 

frequent sequence pqpr of transaction ID 100 of the 

example database, since there  is no node labeled p yet, 

which is a direct child of the  Root, a left child of Root is 

created, with label p and  count 1. Then, the header link 

node for frequent event p is connected (in broken lines) to 

this inserted a node from the p header node. The next 

event q is inserted as the left child of node p with a count 

of 1 and linked to header node q, the third event p is 

inserted as the left child of the node q having a count of 1, 

and the p link is connected to this node from the inserted p. 

The fourth and last event of this sequence is r and it is 

inserted as the left child of the second p on this branch 

with a count of 1 and a connection to r header node. 

Secondly, insert the sequence pqrp of the next transaction 

with ID 200, starting from the virtual Root (figure 1(b)). 

Since the root has a child labeled p, the node p’s count is 

increased by 1 to obtain (p: 2). similarly, (q: 2) is also in  

the tree. The next event, r, does not match the next 

existing node p, and new node r: 1 is created and Inserted 

as another child of q node. The third sequence  qpqp of ID 

300 and the fourth sequence pqprr are inserted next to 

obtain figure 1(c) and (d) respectively. Once the 

sequential data is stored on the complete   WAP-tree 

(figure 1(d)), the tree is mined for frequent  patterns 

starting with the lowest frequent event in the header list, 

in our example, starting from frequent event r as the 

following discussion shows. From the WAP-tree of figure 

1(d), it first computes prefix sequence of the  base r or the 

conditional sequence base of c as: pqp:2; pq:1; pqpr:1; 

pqp:-1. The conditional sequence list of a suffix event is 

obtained by following the header link of the event and 

reading the path from the root to each node (excluding the 

node). The count for each conditional base path is the 

same as the count on the suffix node itself. The first 

sequence in the list above, pqp represents the path to the 

first r node in the WAP tree. When a conditional sequence 

in a branch of a WAP-tree, has a prefix subsequence that 

is also a conditional sequence of a node of the same base, 

the count of this new subsequence is subtracted because it 

has contributed before. Thus, the conditional sequence list 

above pqp with counts of -1. This is because, when    the 

subsequence, pqpr is added to the list, its subsequence pqp 

was already in the list. Thus, the count of pqp with -1 has 

to be added to prevent it from contributing twice. To 

qualify as a conditional frequent event, one event must 

have a count of 3. Therefore, after counting the events in 

sequences above, the conditional frequent events are p (4) 

and q (4) and r with a count of 1, which is less than the 

minimum support, is discarded. After discarding the non-

frequent part r in the above sequences, the conditional 

sequences based on r are listed as: pqp: 2; pq: 1; pqp: 1; 

pqp:-1. Using these conditional sequences, a conditional 

WAP tree, WAP-tree|r, is built using the same method as 

shown in figure 1. 

3 Related Works 

Sequential mining was proposed, using the main idea of 

association rule mining presented in Apriori algorithm of 

Agrawal and Srikant [2]. Later work on mining sequential 

patterns in web log include the GSP[2], the PSP[12], the 

G sequence and the graph traversal[11] algorithms. 

Agrawal and Srikant proposed three algorithms (Apriori, 

AprioriAll, AprioriSome) to handle sequential mining 

problem. Following this, the GSP (Generalized Sequential 

Patterns) [2] algorithm, which is 20 times faster than the 

Apriori algorithm in Agrawal and Srikant[1] was 

proposed. The GSP Algorithm makes multiple passes over 

data. The first pass determines the frequent 1-item 

patterns (L1). Each subsequent pass starts with a seed set: 

the frequent  sequences found in the previous pass (Lk-1). 

The seed set is used to generate new potentially frequent 

sequences, called candidate sequences (Ck).  
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Figure1. Construction of WAP tree 

 

Each candidate sequence has one more item than a seed 

sequence. In order to obtain k-sequence candidate Ck, the 

frequent sequence Lk-1 joins with itself Apriori-gen way. 

The GSP algorithm uses a hash tree to reduce the number 

of candidates that are checked for support in the database. 

The PSP [12] approach is much similar  

to the GSP algorithm[2]. At each step k, the database is 

browsed for  counting the support of current candidates. 

Then, the frequent sequence set, Lk is built. The only 

difference between the PSP algorithm and the GSP is that 

it  introduces the prefix-tree to handle the procedure. Any 

branch, from the root to a leaf stands for a candidate  

sequence, and a terminal node provides the support of the 

sequence from the root to the considered leaf  inclusive. 

The main idea of Graph Traversal mining which is  

proposed by Nanopoulos and Manolopoulos[11], is using 

a simple unweighted graph to reflect the relationship 

between the pages of web sites. Then, a graph traversal 

algorithm similar to Apriori algorithm, is used to traverse 

the graph in order to compute the kcandidate set from the 

(k - 1)-candidate sequences without performing the 

apriori-gen join. From the graph, if a candidate node is 

large, the adjacency list of the node is retrieved. The 

database still has to be scanned several times to compute 

the support of each candidate sequence although the 
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number of computed candidate sequences is drastically 

reduced from that of the GSP algorithm. 

3.1 Tree binary position code assignment algorithm  

Position code is a binary code used to indicate the position 

of the nodes in the WAP-tree.In data structure , when 

implementing a general tree data structure, a tree is 

usually transformed into its equivalent binary tree, which 

has a fixed number of child nodes. To convert a given 

general tree, T , with nodes at n levels, and root at level 0, 

the leaf nodes at level (n − 1), to a binary tree, the 

following rule is applied. The root of the binary tree is the 

leftmost child of the root of the general tree, T . Then, 

starting from level 1 of the general tree and working down 

to level n − 1 of  the tree, for every node: (1) the leftmost 

child of this node in the general tree is the left child of the 

node in the binary tree, and (2) the immediate right sibling 

of this node in the general tree is the right child of this 

node in the binary tree. For example, given a tree shown 

as  figure 2, it can be transformed into its binary tree 

equivalent shown in figure 2(b), where every node has at 

most two links, one is its left child, and the other is its 

sibling.  

 

 
Fig 2: Position code assignment with node position in its 

binary tree 

The position code is assigned to the nodes on the binary 

tree equivalent of the tree using the Huffman coding idea. 

Here, the code assignment rule, starts from the leftmost 

child of the root node of the general tree, which has a 

binary position code of 1 because this node is the root of 

the binary tree equivalent of the tree.  Thus, given the 

binary tree equivalent of a tree, with root node having a 

code of 1, the single temporary position code assignment 

rule assigns 1 to the left child of each node, and 0 is 

assigned to the right child of each node. These temporary 

position codes are used to define the actual binary 

position code for each node in the original general tree. 

The position code of a node on the WAP tree is defined as 

the concatenation of all temporary position codes of its 

ancestors from the root to the node itself (inclusive) in the 

transformed binary tree equivalent of the tree. For 

example, in figure 2(a), the position code of the rightmost 

leaf node (r: 1) is obtained by concatenating all temporary 

position codes from path (p: 3) to (r: 1) of the rightmost 

branch of figure 2(b) to obtain 101111. The 

transformation to binary tree equivalent is mainly used to 

come up with a technique for defining and assigning 

position codes (presented below as Rule 2.1) to nodes of 

the tree that will accomplish the identification task needed 

during PLWAP tree mining. It should be stressed that the 

PLWAP algorithm does not involve physical 

transformation of a WAP-tree to a binary tree before 

mining. The tree transformation technique presented in 

this section is mainly used to define a mechanism for 

assigning position codes straight to PLWAP tree nodes 

during their construction. After observing the position 

code assignment with nodes in figure 2(a), the following 

properties are defined.  

 

Rule 2.1. Given a WAP-tree with some nodes, the position 

code of each node can simply be assigned following the 

rule that the root has null position code, and the leftmost 

child of the root has a code of 1, but the code of any other 

node is derived by appending 1 to the position code of its 

parent, if this node is the leftmost child, or appending 10 

to the position code of the parent if this node is the second 

leftmost child, the third leftmost child has 100 appended, 

etc. In general, for the nth leftmost child, the position 

code is obtained by appending the binary number for 

2n−1 to the parent’s code. 

 

Property 2.1. A node α is an ancestor of another node β if 

and only if the position code of α with “1” appended to its 

end, equals the first x number of bits in the position code 

o f β, where x is the ((number of bits in the position code 

of α) + 1). For example, in figure 2(a), (p: 1:1110) is an 

ancestor of (r: 1:111011) because the position code of (r: 

1:1110) is 1110, and after appending 1 at the end of 1110, 

we get 11101, which is equal to the first 5 (i.e., length of r 

+ 1) bits of (r: 1:111011). On the other hand, (r: 1:1110) is 
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not the ancestor of (r: 1:101111), since after appending 1, 

the code will be 11101 and is not equal to the first 5 bits 

position code of (r: 1:101111). Not only can we use the 

position code to find the ancestor and descendant 

relationships between nodes, but we can also find whether 

one node belongs to the right-tree or left-tree of another 

node. From figure 2(a), it can be seen that node (r: 

1:1111) and node (r: 1:111011) are two nodes that belong 

to two sub trees, which are rooted at (p: 2:111) and (p: 

1:1110) respectively. The node (p: 1:1111) belongs to a 

left-tree of (p: 1:111011) since the fourth bit of (p: 

1:111011) is 0, which means the node is extended from 

the node with position code 1110. The node with position 

code 1110 is a right sibling of node with 111, which is an 

ancestor of node (p: 1:1111). Thus, (p: 1:111011) is a 

right-tree of (p: 1:1111). 

3.2 The Algorithm 

Input: Access sequence database D (i), min support MS 

(0< MS ≤ 1) 

Output: frequent sequential patterns in D (i). 

Variables: Cn stores total number of events in suffix trees, 

A stores whether a node is ancestor in queue. 

Begin 

 

 1. Create a root node for T; 

 2. For each access sequence S in the access sequence 

database BC-WAT do 

     a) Extract frequent subsequence S
1 

=S1 S2 …...Sn   , 

WHERE 

            S1(1<=I<=n) are events in S
1
.Let current node 

point to the root of T. 

     b) for i=1 to n do , 

            if cuurent_node has a child labled Si   by 1 and 

make cuurent_node point Si   , 

               else  create anew childnode(S1:1),make 

current_node point to the new node,and insert it into the  

               Si queue 

4. Experimental Results 

This experiment uses fixed size database and different 

minimum support .The datasets and algorithms are tested 

with minimum supports between 0.8% and 10% against 

the 60 thousand (60 K) database.  From Table 2 and figure 

3, it can be seen that. 

The execution time of every algorithm decreases as the 

minimum support increases. This is because when the 

minimum support increases, the number of candidate 

sequence decreases. Thus, the algorithms need less time to 

find the frequent sequences. The modified WAP 

algorithm always uses less runtime than the WAP 

algorithm. WAP tree mining incurs higher storage cost 

(memory or I/O). Even in memory only systems, the cost 

of storing intermediated trees adds appreciably to the 

overall execution time of the program. It is however, more 

realistic to assume that such techniques are run in regular 

systems available in many environments, which are not 

memory only, but could be multiple processor systems 

sharing memories and CPU’s with virtual memory 

support. As the minimum support threshold decreases, the 

number of events that meet minimum support increases. 

This means that WAP-tree becomes larger and longer, and 

the algorithm needs much more I/O work during mining 

of WAP tree. As minimum support decreases, the 

execution time difference between WAP-tree and 

modified WAP increases. 

 

Table 2. Execution times for dataset at different 

Minimum supports. 

 time in sec’s at different supports 

Algorithm 2 3 4 5 10 

WAP 750 510 330 280 150 

mWAP 230 160 110 95 48 
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Figure 3. Execution times trend with different minimum 

supports. 

 

 Now, databases with different sizes from 20 K to 100 K 

with the fixed minimum support of 7% are used.  

 

Table 3. Execution times trend with different data sizes 

 Different changed transaction size  

Algorithms 

time in sec 20k 40k 60k 80k 100k 

WAP 148 265 320 445 540 

mWAP 50 75 97 145 179 
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Figure 4. Execution times trend with different data sizes. 

5. Conclusion 

In this paper, we analyze the problem of sequential pattern 

mining. Here after discussing the two approached it is 

clear that the modified version of binary coded WAPtree 

is more efficient than the web access pattern tree approach. 

This presents a discussion of the advantages and 

disadvantages of both approaches conduced by comparing 

the performance with help of graph. The modified 

algorithm eliminates the need to store numerous 

intermediate WAP trees during mining. Since only the 

original tree is stored, it drastically cuts off huge memory 

access costs, which may  include disk I/O cost in a virtual 

memory environment, especially when mining very long 

sequences with millions of records. This algorithm also 

eliminates the need to store and scan intermediate 

conditional pattern bases for reconstructing intermediate 

WAP trees. This algorithm uses the pre-order linking of 

header nodes to store all events ei in the same suffix tree 

closely together in the linkage, making the search process 

more efficient. A simple technique for assigning position 

codes to nodes of any tree has also emerged, which can be 

used to decide the relationship between tree nodes without 

repetitive traversals. 
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