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Summary 
For the last two decades, lot of research has been done on neural 

networks, resulting in many types of neural networks. These 

neural networks can be implemented in number of ways. Due to 

the revival of research interest in neural networks, some 

important technological developments have been made in VLSI. 

This paper discusses comparative study between analog 

implementation and digital implementation for neural networks. 

The discussion topics include power-consumption, area, 

robustness, and implementation efficiency of these 

implementation techniques respectively. It can be estimated 

whether an analog or digital neural network is optimum for a 

specific application. It is observed that the choice between analog 

and digital neural networks is application dependent. The goal is 

to estimate which type of implementation should be used for 

which class of applications. This work is based on the study of 

neural implementations restricted only to pattern classification 

and focuses on widely used layered feed-forward neural network. 
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1. Introduction 

NN (Neural network) is basically a system that performs a 

function roughly divided into pattern classification and 

function approximation. In other words neural network is 

another way of performing a function. A direct 

implementation of an existing algorithm outperforms a 

trained neural network in the field of performance. 

However, a neural network implementation may be 

smaller and/or faster than implementation of the exact 

algorithm. Though it is clear that neural network should 

not be used for a simple function for which an algorithm is 

already known, these networks can be valuable for 

complex and difficult algorithmic functions. This work is 

based on the VLSI design of neural networks for 

classification functions.  Neural networks can be 

implemented in large number of ways as seen in Figure 1.  
 

 
 

Figure 1: Neural Network Implementation Techniques 

The scope of this paper is electrical neural implementation. 

As an example, signal processing in neural networks is in 

principle in parallel, therefore, it is simply decided to 

implement neural networks in analog hardware or in 

parallel digital hardware. Software implementation can be 

flexible, but slower and not area as well as power efficient. 

Software implementation can be area and power efficient 

if the operating speed required for a function is low. This 

paper discusses the comparison between analog, digital, 

and mixed (i.e. analog and digital) implementation of 

neural networks in terms of power consumption, area and 

robustness. This is explained in the following sections. 

 

1.1 Neural Networks: General Description 

 
Neural networks typically consist of large number of 

simple processing units, called neurons. Each neuron has a 

multi-dimensional input signal, the input vector  and 

produces one signal output signal Y as shown in Fig. 2, 

where  is the weight vector. The output signal Y is 

typically a non-linear, saturating function. 

 

 
Figure 2: Single neuron of a neural network 

A neural network is made up of a number of artificial 

neurons and a huge number of interconnections between 

them. Fig. 3 shows a typical flow-diagram of feed-forward 

neural network [12].  

 

Analog VLSI implementation of artificial neural networks 

represents one of approaches to enhance the computational 

capabilities in real-time information processing. Character 

recognition, retrieval of data/image from fragments, 

pattern recognition and speech synthesis are some 

applications of artificial neural networks. These neural 

networks consist of massive parallel layers of neurons 

interconnected with synapses as shown in Figure 3. The 

main function of the synapse cell is to achieve linear 

multiplication of input and a weight. These synaptic 

connections are implemented using Analog multipliers. 

Applications like multi layer feed forward networks 
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require large number of interconnected neurons and 

synaptic connections (multipliers). Therefore careful 

design of multiplier is crucial in achieving compact silicon 

area, minimizing power consumption and improving input 

range. 

 

 
 

Figure 3: Flow graph of Neural Network [2] 

Over the past decade a huge diversity of hardware for 

ANNs has been designed. An investigation on neural 

network hardware devices proposed in the literature 

reveals that a functional block-level representation as 

shown in Fig. 4 is suitable for describing almost all neural 

network architecture [17]. The activation block, which 

evaluates the weighted sum of the inputs is always on the 

neuro-chip. Other blocks, i.e. the Neuron State Block, 

Weights Block, and the Transfer Function Block may be 

on the chip, or off the chip. A host computer may perform 

some of these functions and computations. 

 

 
 

Figure 4: Block level structure of Neural Network 

A lot of research on analog hardware neural networks is 

based on statements that can be found in neural network 

literature. The two most important ones are listed below: 

 the limited accuracy of analog components [for neural 

networks] is not a serious problem because neural 

networks are forgiving to component errors [25] 

 for neural networks, the need for precision and for 

large Signal-to-Noise-Ratio is replaced by that for 

real-time collective processing [24] 

 

These statements imply that neural networks can be built 

using inaccurate analog hardware, where the inaccuracy 

includes mismatch, noise, drift etc. The first statement is 

correct as far as relatively small static errors are concerned. 

However, non-static errors over the entire operating range 

are not compensated. Therefore, this statement is in 

general wrong. The second statement is stronger than the 

first one, and will also be shown to be incorrect in this 

paper.  

 

1.2 Implementation of Learning  

 
Learning implies that neural network is capable of 

changing its input/output behavior as a result of changes in 

the environment. Learning may be implemented in analog, 

digital or software. It can be calculated [9] that the 

resolution demand for weight adaptations during training 

is very high. Typical resolution figures for digital weight 

resolution during learning (training) are in the range of 12-

18 bits. For analog weight adaptation, the magnitude of the 

systematic errors in the weight adaptations is about the 

analog equivalent of the 12-18 bit digital resolution. These 

high resolution figures severely complicate implementing 

on-chip weight-adaptation circuits for neural networks. 

However, some possibly feasible alternative algorithms for 

on-chip analog learning are proposed [23]. 
 

To set the proper weights for not-learning analog neural 

network chips, two methods are generally applied: off-chip 

learning, and with-chip learning. With off-chip learning, 

the weights are typically calculated on a computer that 

runs a model of the neural network. After this offline 

learning, the weights are down-loaded to the neural 

network chips. With-chip learning incorporates the 

hardware neural network in the training and therefore 

ideally compensates both for static-errors in the hardware 

neural network and compensates for static mismatch 

between the simulated model and the actual hardware 

realisation. However, most errors are non-static over the 

entire operating range (including temperature range). 

 

2.  Comparison: Power Consumption 
 

2.1 Analog Neural Network 
 

It is well known from literature [1] that the minimum 

power consumption in analog hardware is completely 

determined by the achieved accuracy and operating 
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frequency. Usually, the accuracy of an analog circuit is 

expressed in terms of Signal-to-Noise-Ratio (SNR), which 

gives the ratio between signal power and noise-power. In 

actual circuits, the inaccuracy in the SNR is the sum of all 

noise, all mismatch, all drifts etc. In this paper, only 

thermal noise is assumed to be present.  

 

The linearity, supply voltage, power dissipation and noise 

are the main metrics of performance [3]. We try to design 

some specific structures or topologies for the analog 

multiplier that have low power dissipation while at the 

same time keeping good linearity, low supply voltage and 

low noise. 

 

2.2 Digital Neural Network 
 

For digital signal processing, the power consumption also 

depends on SNR requirements. The number of bits 

necessary to construct a certain bipolar range with 

accuracy SNR requires. Note that for digital neural 

networks, the inaccuracy is half the LSB-size. 

 

Neural networks require large numbers of multiplications, 

which may be multiplexed onto a few physical digital 

multipliers. In the extremes, one may either use N 

multipliers or one may multiplex the operations by a factor 

N on one single digital multiplier (as in software). The 

multiplexing has no effect on the summed power required 

for the multiplications (assuming negligibly small power 

required for the multiplexing itself).  

 

2.3 Analog vs Digital Neural Network 

 
In this work, it was observed that the power consumption 

in feed-forward neural networks is a function of: 

 

 the number of input signals 

 the number of first-layer neurons 

 the required resolution in input space for the 

classification tasks to be performed 

 

The neural network can be implemented in a few ways, 

depending on the domain of both the inputs and of the 

signal processing. For maximum power-efficiency: 

 

 digital signal processing on digital signals must be 

used if the input signals are available in the digital 

domain only 

 digital signal processing (incl. ADC) on analog 

signals must be used if both the number of first-layer 

neurons is over about 10 (dependent on the efficiency 

of analog, ADC and digital hardware) depending upon 

SNR (Signal-to-Noise Ratio) 

 analog neural network is to be preferred for maximum 

power efficiency for all other cases. 

 

 
 
Figure 5: Application for Analog NN in terms of ϵ and  

This work limits the class of useful applications for fully 

analog neural networks. Potentially useful applications for 

analog neural networks (from only a power consumption 

point of view) can hence be represented as shown in Fig. 5. 

These estimations were derived for a special-purpose 

analog neural network for simple training sets. The class 

of useful applications for general purpose analog neural 

networks is a subclass of the one shown in Fig. 5. 

 

The applications corresponding to the white area in Fig. 5 

should either not be done using neural networks or should 

be implemented in digital hardware (with or without AD-

conversion of input signals). 

 

It follows from the (rough) estimations that the power 

efficiency of digital neural networks including ADC with 

few first-layer neurons is generally only somewhat lower 

than the power efficiency of fully analog neural networks. 

This is due to the fact that the analog part (the ADC) of 

this NN limits the power-efficiency. 

 

3. Comparison: Area 

 
In this section, some estimations and comparison on 

required chip area for fully analog implementations, digital 

realisations with AD-conversion for input signals, and for 

fully digital implementations of feed-forward neural 

networks are presented. In the estimations, only the first 

layer (and input-signal conversion where necessary) is 

taken into account because for the optimized neural 

network system, the second layer is identical. 

 

3.1 Multiplier Size 

 
In this sub-section, estimations on multiplier size in analog 

and digital hardware are given. 
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3.1.1 Analog Multiplier 

 

Fig. 6 gives some performance metrics of an analog 

multiplier. Neural network contain many multipliers, 

which consume large part of power dissipation. 

 

 
 

Figure 6: Metrics of Analog Multiplier 

 

Within the “Analog Neural Hardware” project a modified 

MOS resistive analog multiplier was proposed for usage in 

neural nets. For good matching of the four MOS 

transistors over the total operating range (including 

temperature range) and to prevent short-channel effects, 

the length and width of the transistors cannot be minimum. 

The MOS transistors are in fact floating-gate MOSTs 

(MOS Transistors), which are also used to store the 

weights. A certain minimum floating-gate capacitance is 

required in order to be able to accurately store and load the 

charge. 

 

It appears from simulations and calculations that if the 

W/L is ½  in the 130 nm process, the demands on matching, 

on noise, and minimum capacitance of the floating gate 

can be satisfied. 

 

Accuracy measurements on the multiplier cell are still to 

be performed. Note that circuitry to program the floating-

gate charge also takes a vast amount of chip area (on-chip 

charge-pumps or high-voltage selection transistors). 

Literature reports the following sizes, types and accuracy 

for neural multipliers: 

 
Table 1: Accuracy and area figures for analog multipliers 

Multiplier Equivalent 

Accuracy 

Area 

(um
2
) 

Author 

MDAC 5 bits 18,000 Coggins et 

al [14] 

Differential 

pair 

5-8 bits 3,600 Lont et al 

[18] 

Gilbert 

multiplier 

8 bits 4,500 Shima et al 

[19] 
 

 

 

3.1.2 Digital Multiplier 

 

According to a report on VHDL-synthesized digital 

multipliers in 130-nm technology, the area clearly is 

bigger than analog multiplier. 

 

The output of a NxM bits multiplication is (N+M) bits; if 

less output bits are required, the chip area decreases 

considerably. 

 

3.1.3 Analog vs Digital Area for the Multiplier 

 

Direct comparison of required area for analog and digital 

multipliers is clearly in favour of analog circuits. However, 

direct comparison cannot be done because the function of 

the digital multiplier may be multiplexed: one digital 

multiplier may be used to mimic N-multipliers. 

 

The required chip-area for digital must therefore be 

divided by the multiplexing-factor, which in turn depends 

on the ratio between maximum operating frequency of the 

multiplier and the operating frequency of multipliers 

without multiplexing. 

 

3.2 Adder Size 

 
3.2.1 Analog Adder 

 

In neural network with an analog first layer, the addition of 

the output signals of the multipliers (to obtain the weight 

input of the neuron) can be done by simply interconnecting 

the multiplier outputs. The addition of the individual 

output currents is then conform the Kirchhoff current law 

and uses almost no chip area: 

 

      (1) 

 

Note that the speed of the addition is determined by the 

capacitance at the output node and the output-resistance of 

all multipliers connected to the output node. 

 

3.2.2 Digital Adder 

 

For neural networks, the result of multiplications is 

summed to obtain a weighted input signal. To implement 

this, one may use separate multipliers (which include 

adders) and a separate adder, or one may use a Multiply 

ACcumulate block (MAC). In the MAC the addition block 

is shared by the multiplier and the adder. The MAC 

requires about 50% more chip area than a multiplier, while 

an N-bits adder has about the same size as an NxN bit 

multiplier. 
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3.3 Analog vs Digital Area for the Adder 

 

As a rough approximation, the size of an analog neural 

network is completely determined by the network 

structure; there is no dependency on the operating 

frequency and no multiplexing can be done. For digital 

neural networks, various functions may be multiplexed. 

The multiplexing rate is dependent on the ratio between 

maximum operating frequency of the digital circuits and 

the required operating frequency of the neural network. 

This means that the size of a digital neural network 

depends among others on the operating frequency. 

 

The total required chip area for a neural network with 

inputs, first-layer neurons is then approximately given by: 

 

     (2) 

 

where the overhead consists of ADCs in case of an analog-

digital neural network; the number of ADCs also depends 

on the operating frequency of the neural network and on 

the maximum conversion frequency of the ADC.  

 

In the estimations for the size of a digital neuron, it is 

assumed that a MAC block (Multiply and ACcumulate) 

was used. It follows that for high operating frequencies 

analog neural networks occupy less chip area than their 

digital counterparts. With every new process generation, 

the break-even frequency shifts towards higher frequencies 

because the area of digital systems scale down, whereas 

the area required for analog circuits hardly scale. 

 

4.  Comparison: Weights  

 
Categorized by storage types, there are five kinds of 

synapse circuits [5]: capacitor only [10]–[11], capacitor 

with refreshment [13]–[20], capacitor with EEPROM [4], 

digital [15], [16], and mixed D/A [17] circuits.  

 

Capacitor weights are compact, but they have leakage 

problems and large in size to prevent unwanted weight-

decay. Capacitor weights with refreshment can solve 

leakage problem, but they need off chip memory.  

 

EEPROM weights are compact nonvolatile memories 

(permanent storage), but they are process sensitive and 

hard to program. Digital weights are usually large, 

requiring around 16-bit precision to implement learning. 

The mixed D/A weight storage [17] is a balanced solution 

when permanent storage is necessary. It will be shown that 

to set an analog weight, much more chip area is required 

than for setting a binary value in an EEPROM. 

Furthermore, the robustness of analog EEPROMs is far 

worse than the robustness of binary EEPROMs. Although 

normal EEPROMs are assumed, the same results hold for 

flash EEPROMs. 

 

4.1.1 Charge-trapping in analog EEPROMs [8] 

 

Programming an analog value in an EEPROM cell 

requires that the floating-gate charge be set accurately. 

During programming, the floating-gate charge value can 

be set accurately incorporating the Vt change due to 

charge-trapping. However, after programming a part of the 

oxide-trapped charges is de-trapped which generally 

results in a net change of the transconductance of the 

EEPROM. Clearly, the carefully set function of the 

EEPROM drifts away. 

 

In neural networks using EEPROMs to store analog 

weights, the inaccuracy margins ultimately determine the 

sensitivity for these initial weight changes. Therefore, the 

initial weight-change decreases the inaccuracy-margin 

available for other types of inaccuracies. 

 

This implies that due to charge-trapping power 

consumption increases. 

 

4.1.2 Charge-trapping in digital EEPROMs 

 

If EEPROMs are used to store binary values, the 

inaccuracy margin for each EEPROM cell is about 50% of 

the maximum programmed floating-gate charge. This 

margin is usually large enough not to notice de-trapping of 

oxide-charges. 

 

Both for analog and for digital neural networks, weight are 

needed. This section discusses some basic problems that 

occur when storing weights in EEPROM structures. After 

this discussion, weight-set-circuits for on-chip setting of 

the weight in EEPROM are presented. It will be shown 

that to set an analog weight, much more chip area is 

required than for setting a binary value in an EEPROM. 

Furthermore, the robustness of analog EEPROMs is far 

worse than the robustness of binary EEPROMs. Although 

normal EEPROMs are assumed, the same results hold for 

flash EEPROMs. 

 

4.2 Retention 

 
4.2.1 Digital retention 

 

It is well known from literature that EEPROMs used in 

digital applications have a certain retention time. This 

retention-time is the time period in which the stored charge 

drops by 50%. For digital EEPROMs, this retention-time 

is about: 
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     (3) 

 

4.2.2 Analog retention 

 

Some estimations on analog retention time have been 

reported in literature. To estimate the retention time for 

any accuracy, we assume a linear decay of the stored 

charge. Because leakage through gate-oxide is strongly 

dependent on the field across the gate-oxide, it is fair to 

assume that the actual decay of stored charge is a function 

that at first is stronger than linear with time, and eventually 

saturating at some level. To estimate a best-case retention 

time for any accuracy, we assume a linear decay of the 

stored charge. Then, with every additional bit of accuracy, 

the retention time drops by about by a factor 2. 10 Years 

retention of 5-bits accuracy or the same figures have been 

reported [6], [7]. It follows that using these values  

 

 (4) 

 

If lower accuracy is required, in number of bits, the 

greater-than-or-equal-to must be reversed. Using the 

digital retention time as a starting-point in the calculation 

of the analog retention- time, a more pessimistic analog 

retention-time results. Assuming a linear drop in stored 

charge at the floating-gate (a best-case situation): 

 

  (5) 

 

which estimation is significantly different from the 

previous one. Measurements are required to determine the 

actual retention-time for EEPROMs storing analog values. 

 

4.3 Ease of programming 

 
In fully analog neural networks, the analog weights are 

stored as analog charges on floating gates. To minimize 

the effects of for example mismatch and drift, feed-back is 

required for proper programming of the weights. This 

means that each individual EEPROM must incrementally 

be charged until the correct weight is set; this correct 

weight must somehow be measured during programming. 

It can be concluded that programming time is relatively 

long and that the circuit overhead is large for proper 

adjustment of the analog weights in analog neural nets. 

 

In digital neural networks (with or without AD-

conversion), the weights can be down-loaded directly. to 

the binary EEPROMs. Virtually no feed-back is required 

because the digital neural network does not suffer from 

effects such as mismatch and drift; only for effects such as 

window-closing [21] some simple verify scheme is 

required. Therefore, programming a digital neural network 

requires almost no extra circuits nor significant 

programming time. 

 

4.4 On-chip weight-set circuits 
 

EEPROMs can be programmed in two ways: the 

programming voltages can be applied externally or can be 

generated on-chip. In this section, some statements on on-

chip weight-setting circuits for analog and digital storage 

in EEPROMs are given; an extensive discussion of 

circuitry is beyond the scope of this report. 

 

4.4.1 Digital weight loading circuit 

 

In digital circuits, binary values may be stored on the 

floating-gate of an EEPROM-like device in a standard 

double-poly process. The on-chip weight setting circuit 

only has to make high-voltage pulses to tunnel through the 

gate-oxide. Although for reliability issues it is best to use a 

variable programming voltage, this appears not to be 

needed for neural networks because the EEPROMs are not 

likely to be programmed as many times as ordinary 

EEPROMs. 

 

The programming circuit therefore only has to provide a 

high-enough voltage.  

 

4.4.2 Analog weight loading circuit 

 

Programming analog weights at the floating gate of an 

EEPROM requires that the charge on the floating-gate be 

set accurately. This means that for accurately setting the 

floating-gatecharge, direct feed-back of this charge is 

required: the programming voltage must be pulsed. 

Because furthermore the variance on the tunnelling-

voltage is not negligibly small, it may be clear that the 

programming voltage must be ramped. 

 

4.5 Conclusions 
 

Non-volatile storage of weight in neural networks requires 

some kind of E(E)PROM memory. These weight-values 

can both be stored as analog values and as digital words. 

Storing analog values on floating-gate devices has several 

problems concerning retention, robustness and difficult 

programming. Digital storage of words in relatively 

simple; it is inherently robust, retention does not seem to 

be a problem for neural applications, and programming is 

relatively simple. 

 

For volatile storage of neural weights, storing analog 

weights is also much more difficult than storing binary 

values. Volatile storage of analog values required some 

kind of periodical refresh of the stored value, whereas 

digital volatile storage can be done in for example flipflops. 
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It is noted that then the stored value is destroyed only 

when the power-supply is turned off: no periodical refresh 

is therefore required. 

 

5. Comparison: Other Parameters 

 
In this chapter, some pros and cons of analog, digital and 

mixed AD neural networks that have not been discussed 

earlier in this report are discussed. The topics in this 

chapter include general pointers concerning robustness, 

scaling of circuits, and ease-of-design. 

 

5.1 Robustness 
 

In analog hardware, special precautions must be taken to 

minimize the effects of e.g. substrate-noise, power-supply 

variations, radiation, temperature variations, mobility 

reduction, matching, drift, leakage a.s.o. At the cost of 

increased chip-area and increased power consumption, 

analog hardware can be made relatively insensitive for 

these effects. Leakage and radiation effects in 

E(E)PROMS that store analog weights directly affect the 

classification performance of the neural network. Some 

EEPROM-specific issues were discussed in more detail in 

section 4. 

 

Digital circuits are inherently very robust for the effects 

listed in the previous paragraph. As digital circuits have 

only two states, the inherent inaccuracy margin is about 

half the supply voltage. Moreover, effects of for example 

radiation and leakage are typically negligibly small for 

digital weight storage on EEPROMs. 

 

5.2 Scaling properties with new processes 
 

Digital circuits scale down very well with new processes, 

because digital down-scaling is the main drive for new 

processes. With the scaling down many issues in signal 

integrity, leakage and noise margin arises. With scaling of 

digital circuits, usually only limited design effort is 

required. 

 

New processes are designed to optimize the 

implementation of digital circuits. This means that only the 

points that are important to minimize power and area 

consumption for digital circuits are optimized. Because of 

this, with new processes: 

 the power supply voltage is decreased 

 the performance of transistors is optimized for digital 

circuits 

 

As new processes are designed to optimize the 

implementation of digital circuits, implementation of 

analog circuits in CMOS in future processes is not 

automatically improved. On the contrary, for example the 

lower supply voltage, the increased 1/f noise of transistors, 

the worsened transistor behavior etc. at least complicate 

the implementation of analog circuits in future processes. 

If analog neural networks can still be made in scaled-down 

processes, transferring an existing analog neural network 

circuit to newer processes requires complete redesigns. 

 

6. Overall conclusions 

 
It follows that for classification problems, digital neural 

networks (with or without AD-conversion of input signals) 

are to be preferred. Furthermore, a digital neural network 

(with or without ADC) always outperforms the analog 

neural network at a large number of other points: 

 

 a digital neural network is inherently robust for effects 

such as drift, mismatch, noise, etc. An analog neural 

network is not inherently robust 

 a digital network can be (almost automatically) 

generated from a logic description of its function; an 

analog neural network must be a full custom design 

 loading digital weights is relatively easy, no feed-back 

is required; loading analog weights does require feed-

back to compensate for example for mismatch, and 

suffers from effects such as leakage and charge-

trapping in the oxide 

 digital circuits scale very well with new processes, 

and virtually no redesign is required. Analog neural 

networks hardly scale, require a total redesign and, 

worse, may not be implementable in future processes 

a digital neural network requires only standard inaccurate 

circuits; if A-to-D conversion is required, the only accurate 

circuit is this ADC which is nowadays a standard building 

block. An analog neural network requires that every sub-

circuit satisfies specific accuracy demands, which are non-

minimum. 

 

Further, it is observed, that for minimum power 

consumption an analog feed-forward neural network is to 

be preferred for a number of classification problems (over 

digital neural nets). Analog neural networks are power-

efficient if: 

 

 the number of first-layer neurons is small. In this case 

the power consumption of the analog network is the 

lowest (note that a digital neural network with AD-

conversion of input signals is only somewhat less 

power-efficient for not-very-low spatial resolution 

tasks) 

 the number of first-layer neurons is arbitrary, but with 

low spatial resolution required for the classification 

task. In this case also the power dissipation of analog 
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neural networks is the lowest, and the required spatial 

distance between different classes (in the N-

dimensional input space) must be larger than 10%-

100% of the magnitude of the input signals 

 the operation speed must be very high. Analog feed-

forward neural networks can be smaller than digital 

ones. This is because digital functions then can not be 

multiplexed; the chip area required for elementary 

neural operations such as multiplications and 

additions is then relatively small in analog hardware 
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