
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

22

Manuscript received July 5, 2009
Manuscript revised July 20, 2009

Population Metaheuristics to solve the Professional Staff
Transportation Problem

Rachida Abounacer †,††, Ghizlane Bencheikh†,††, Jaouad Boukachour††, Btissam Dkhissi†
and Ahmed Elhilali Alaoui†,

† Modelling and Scientific Computing Laboratory, Department of Mathematics, Sciences and Techniques Faculty of Fez.
B. P. 2202 Route of Imouzzer Fez Morocco

††CERENE Laboratory, ISEL, Quai Frissard B.P. 1137 76063 Le Havre Cedex France

Summary
The Professional Staff Transportation Problem (PSTP) consists
to build the vehicle routing for transporting the staff of one or
several companies, in order to minimize the total cost of
transport, and taking into account the level of service offered to
users. In this paper, we care about the quality of service given by
the professional transporter in addition to the transportation cost.
The first section presents an overview of recent works on Dial-a-
Ride Problem (DARP) which is a generalization of our problem.
The second section is dedicated to the mathematical modeling of
the (PSTP) by introducing a measure of performance
corresponding to the level of service provided to users. In the
third section, we present two evolutionary metaheuristics to
solve the problem, namely: Ant Colony Algorithm (ACO) and
Genetic Algorithm (GA). The last section of this work is devoted
to experimental results.
Key words:
Staff transportation, vehicle routing problem with time window,
Dial-a-Ride problem, Ant Colony Algorithm, Genetic Algorithm.

1. Introduction

The professional staff transportation still attracts large and
small companies for several reasons, mainly because it is a
pledge of comfort, safety and punctuality. Thus, this type
of transportation must respect logistics punctuality and
comfort that the carrier must ensure with all means
necessary to achieve it. We can define the staff transport as
a system responding to a number of companies’ requests
(or demands) via a fleet of vehicles under constraints of
feasibility and quality. Each request is characterized by the
number of users to transport; the origin, the destination and
the destination latest time (working time). The problem is
to build the routing of the available vehicles reconciling
two objectives:
 1) Minimizing the cost of transport
 2) Providing a good quality of service.
At first view, it appears some similarity between the PSTP
and the Travelling Salesman Problem (TSP) [3, 11], which
is to find a Hamiltonian cycle minimal of a Hamiltonian

graph with a minimum total cost. However, the PSTP is
much more complex; indeed, additional constraints must
be taken account, such as, the precedence between the
origin and the destination, the working times which are not
the same for all requests and the capacity of vehicle.
 In this paper, we consider the static case where all
transportation requests are known in advance. We define
an upper limit on the number of vehicles available and
assume that the requests cannot be rejected, and we
consider that all vehicles have identical capacity.
 We formulate the PSTP as combinatorial optimization
problem, where we introduce the constraints on three
categories: routing constraints, capacity constraints and
scheduling constraints. The objective is to cooperate the
transportation cost and the service quality expressed, in our
formulation, in term of:

− The waiting time of users before their working time.
− The ride time of the users.

We use two evolutionary approaches, Ant Colony
Algorithm and Genetic Algorithm, to solve the problem.
The Ant Colony Algorithm is applied in two steps (1)
Repartition of requests into vehicles and (2) construction
of routing for each vehicle. In the first step, we assign to
each vehicle a subset of request in order to minimize the
distances between origins, distances between destinations,
the difference between the working times and respecting
the capacities of vehicles. To apply the Ant Colony
Algorithm, we consider a complete graph whose vertices
represent all requests of the problem. In the second step,
we apply for each vehicle an Ant Colony Algorithm in
order to build a minimal routing for each vehicle by
assigning to each request a time of service.

Unlike the first approach, we apply the Genetic
algorithm to solve the problem in one step. Each individual
represents for all needed vehicles, the routings, the arrival
times, the departure times and the transported loads in each
location.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

23

2. Literature review

The problem studied in this paper belongs to the
general class of Dial-a-Ride problems (DARP). The DARP,
officially classified NP-Hard [2], is a particular case of the
Vehicle Routing Problem with Pickup and Delivery
(VRPPD) [14, 15, 19, 23] arising in context where
passengers are transported, either in groups or individually,
from specified origins to specified destinations. The DARP
distinguishes itself from the basic VRPPD by its focus on
maximizing the level of service. This objective is often
controlled by imposing a limit on the ride time of each user
(i.e, the time spent by a user in a vehicle), on the waiting
time and on deviations from the desired times for pickup
and delivery. Maximizing service is weighted against
minimizing the total cost of transportation [8].

In practice, dial a ride service can be operated
according to one of two cases, static or dynamic. Static
case is when all requests are known in advance. Static
versions of DARP are described in [21]. In the dynamic
case [6, 9, 16, 29], a request can arrive in a real time during
the planning.

The DARP is classified an NP-hard, the proof is based
on related NP-hard travelling salesman problem with time
windows, into which the DARP can be classified [2].
The related works are most closely to our work in terms of
problem definition and/or method of resolution. In 2003,
Cordeau and Laporte [7] present a tabu search heuristic for
the static multi-vehicle Dial-a-Ride problem with a specific
case, where the users impose a time window of a pre-
specified width on the arrival time of their outbound trip
and, similarly, a window on the departure time of their
inbound trip. In addition to this there is also an upper limit
of the ride time of any user as well as constraints regarding
vehicle capacity and route duration.
 In 2004 A. Attanasio et al. [1] describe and compare a
number of implementations of tabu search heuristic
previously developed for the static Dial-a-Ride problem.
Indeed, the authors use the static tabu search of Cordeau &
Laporte [7] to find a solution to the static problem of the
requests known at the start of the planning horizon. The
experiments made indicate that parallel computing can be
beneficial to solve real-time DARP.
 Other metaheuristics have been applied to the DARP. In
1998 Baugh et al. [2] use simulated annealing to solve the
DARP. A cluster-first, route-second approach is used.
Simulated annealing is used for the clustering, and a
greedy algorithm is used for the routing after that the
clusters are made.
 In 2007 K. B. Bergvinsdottir et al. [4] have applied a
Genetic algorithm based on the "Cluster-first route-second
" approach, in which the clustering is the most important
phase. Customers are first clustered into feasible groups to
be served by the same vehicle (cluster first) without regard

to any preset ordering and then efficient routes are
designed for each cluster (route second). In this approach,
customers are first organized into clusters and then, the
routes are developed for each individual cluster. The
contribution of this paper is the demonstration that genetic
algorithm can be effectively be implemented in a “Cluster-
first route-second” approach. Their algorithm was tested
on the same data used by Cordeau & Laporte [7], the
results are comparable.
 Many authors have also used different forms of
insertion heuristics to solve the DARP, this approach is to
construct a feasible solution, i.e., a set of feasible routes,
by a set of feasible routes, inserting customer (not yet
served) into a partially constructed feasible solution, the
insertion decision is made based on the additional increase
of the objective function. The insertion with the least
incremental cost will be chosen
 In 1995, Madsen et al. [20] use an algorithm based on
an insertion heuristic to solve the DARP with multiple
capacities and multiple objectives. The algorithm was
developed to solve a real-life problem of scheduling
transportation for elderly and disabled in Copenhagen,
Denmark.
 In 2004 Diana and Dessouky [10] presented a parallel
regret insertion heuristic to solve large instances of the
DARP. Data sets of 500 and 1000 requests have been
tested.
 Finally, Toth and Vigo in 1997 [31] developed a
parallel insertion heuristic to be able to find good solutions
for large instances within quite small computational times.

3. Mathematical formulation

Here, we propose a mathematical model of the problem,
where we limit the work to the sense home→ workplace,
the other sense will be similar.

3.1 Parameters

The following notation is used in the formulation:
• Nd : number of requests
• a0 : the depot
• R = {r1, r2, …, rNd} set of requests

Each request is characterized by:
• i : Origin or domicile
• i + Nd : Destination
• qi : Number of users to serve in the location i
• ei : Working time
• tij : period of direct transport between the location i

and j
• Nv : number of vehicles
• Qk : capacity of vehicle k

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

24

The decision variables are:
• k

iq : number of places occupied in the vehicle k at
the location i

• k
ib : number of users taken by the vehicle k at the

location i
• k

id : departure time of the vehicle k at the location i

• k
ih : arrival time of the vehicle k at the location i

•
⎩
⎨
⎧

=
Otherwise0

aathrough passesk vehicle theif1 ji before
x k

ij

3.2 Objective functions

We consider two different objectives:

− Minimize the cost of transport

− Maximize the level of service for users

The relative cost of transport can be expressed by:

f1: ∑ ∑∑
= = =

Nd

i

Nd

j

Nv

k

k
ijij xt

2

0

2

0 1
. (1)

Ideally, with one or more vehicles per request, each user
could be transported directly from its origin station to its
work place. As the number of vehicles available is limited,
each user is imposing an additional route, because the
vehicle must also pick up or deliver other people in his trip.
For each request, the additional travel time is the
difference between the ride time and duration of the
shortest (direct) route between the origin and the
destination. Moreover, it is possible that some requests
arrive at their destinations too early, i.e. before the working
time. The time that request will be at its destination until
the beginning of work is called waiting time.
The feature quality proposed is expressed in terms of
additional travel time and the waiting time of all requests;
these two functions are respectively expressed by the
following functions:

f2: ∑ ∑
= =

++ −−
Nd

i

Nv

k
Ndiii

k
Ndi

k tdh
1 1

,)((2)

f3 : ∑ ∑
= =

+−
Nd

i

Nv

k
Ndi

k
i he

1 1
)((3)

The overall aim is therefore to achieve a compromise
between these three objectives which can be formulated as
a multi-objective function:

Min (f1 , f2 , f3)

3.2 Constraints

We distinguish for our problem, three types of constraints:
the routing constraints, capacity constraints and schedule
constraints.

3.2.1 Routing constraints
Constraints (4) and (5) ensure that each vehicle tour begins
and ends at the depot.

 1
2

1
0 ≤∑

=

Nd

j

k
jx , Nvk K.,1=∀ (4)

 1x
Nd2

1i

k
0i ≤∑

=
, Nvk K.,1=∀ (5)

When a vehicle k arrives to a location ai, it has to pull
through, which respect the law of Kirtchoff.

∑∑
==

=
Nd

j

k
ij

Nd

j

k
ji xx

2

1

2

1

, NdiNvk ,,1;.,1 KK =∀=∀ (6)

Constraints (7) (resp. (8)) ensures that on a given location
ai, a vehicle k could arrive (resp. leave) from (resp. to) a
single origin (resp. destination).

0.
2

'
1'

' =∑
≠
=

Nd

jj
j

k
ij

k
ij xx , NdjiNvk 2,,1,;.,1 KK =∀=∀ (7)

0.
2

'
1'

' =∑
≠
=

Nd

ii
i

k
ji

k
ij xx , NdjiNvk 2,,1,;.,1 KK =∀=∀ (8)

∑∑
=

+
=

=
Nd

j

k
iNdj

Nd

j

k
ij xx

2

1
,

2

1

NdiNvk ,,1;.,1 KK =∀=∀ (9)

Constraint (9) states that each request i should be served by
a vehicle k without stop.

{ }1,0∈k
ijx

NdjiNvk 2,,1,;.,1 KK =∀=∀

3.2.2 Capacity constraints
The capacity of each vehicle k must not be exceeded
throughout its travel

k
k
ij

k
j

k
i Qxbq ≤+ , NdjiNvk 2,,1,;.,1 KK =∀=∀ (10)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

25

Constraint (11) updates the load of vehicles after the visit
of a location i

() k
ij

k
j

k
i

k
j xbqq += , NdjiNvk 2,,1,;.,1 KK =∀=∀ (11)

We must ensure that if a vehicle k does not pass through a
location j, then the number of users served by k in this
location is zero.

() 0.1 =− k
j

k
ij bx , NdjiNvk 2,,1,;.,1 KK =∀=∀ (12)

∑
=

=
Nv

k

k
ii bq

1
, Ndi K.,1=∀ (13)

Constraint (13) ensures that the load in a location i is equal
to the sum of those served by all vehicles in this location.

00 =kq , Nvk K.,1=∀ (14)

0≥k
iq , NdiNvk ,,1;.,1 KK =∀=∀ (15)

Constraints (14) and (15) respectively ensure that each
vehicle leaves the depot empty and that his load is always
positive.

Constraint (16) keeps, for each vehicle, the number of
users getting in at the origin and getting out at the
destination of each request.

k
i

k
Ndi bb −=+ , NdiNvk ,,1;.,1 KK =∀=∀ (16)

0≥k
ib , NdiNvk ,,1;.,1 KK =∀=∀ (17)

3.2.3 Schedule constraints

Each user must arrive at its destination before his working
time:
 i

k
Ndi eh ≤+ , NdiNvk ,,1;.,1 KK =∀=∀ (18)

Constraint (19) updates the departure time of a vehicle k at
a location ai.

Thd k
i

k
i += , NdiNvk ,,1;.,1 KK =∀=∀ (19)

Where T is the period of service made by users to get in or
get out the vehicle. It can depend on the nature of the
vehicle or on the number of users served in the location.

The arrival time of a vehicle k to a location j must be equal
or greater than its departure time from a location i plus the
direct time between i and j.

() k
ijij

k
i

k
j xtdh +≥ , NdiNvk 2,,1;.,1 KK =∀=∀ (20)

Constraint (21) respects the precedence between origin and
destination of each request.

k
i

k
Ndi hh ≥+ , NdiNvk ,,1;.,1 KK =∀=∀ (21)

0≥k
ih , NdiNvk 2,,1;.,1 KK =∀=∀ (22)

0≥k
id , NdiNvk 2,,1;.,1 KK =∀=∀ (23)

We note that our model is non-linear due to the constraints
(7), (8), (10), (11) and (12).

4. Ant Colony Algorithm for the Professional
Staff Transportation Problem

Ant Colony Algorithm was first proposed by Dorigo and
Gambardella [12] as a muti-agent approach for difficult
combinatorial optimization problems such as travelling
salesman problem (TSP) [26] and the quadratic assignment
problem (QAP) [17]. ACO has been applied to other
problems such as graph coloring [24], job shop scheduling
[32] and vehicle routing [27].
 The results obtained by Ant Colony Optimization are
comparable to those with other general purpose heuristic
algorithms [5]. A convergence proof for a generalized Ant
System Algorithm is provided in [18]. This algorithm is
inspired by the behaviour of real ants. Ants, when
searching for food, mark the traversed paths with a
pheromone quantity, which depends on the quality of the
food source. Other ants observe these pheromone trails and
are attracted to follow them, thus reinforcing the paths.
Gradually, paths leading to rich food sources will be used
more frequently.
 To apply the Ant Colony Optimization to solve the
professional staff transportation problem, we proceed in
two steps, the first step is to distribute requests on vehicles
within their capacities and the second step is to build the
optimal routing for each vehicle.

4.1 Distribution of requests on vehicles

This step aims to distribute requests on vehicles, in order to
assign to each vehicle a subset of requests, respecting its
capacity and minimizing the distances between origins,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

26

distances between destinations and the difference between
the working times.
For this, we consider the complete graph (A, U, V) where:
• A= {r0, r1, r2, …, rNd } is a set of vertices, where r0 is a

fictitious request corresponding to the depot and
characterized by:
- a0 = an where their coordinates are (0,0)
- q0 =0
- e0 =0

• { }{ }ArrrU iji ∈= /, is a set of edges, at each one is
associated a value

),(),(where),(jiNdjNdiij eettjivVjiv −×=∈ ++

Fig. 1 the graph structure for the problem of distribution

of requests on vehicles.

We apply the ACO to build an optimal path contained all
vertices in order to minimizing the total cost depending on
the couples (tij × t(i + Nd, j + Nd) , | ei-ej |). The obtained tour
will then be divided according to vehicles’ capacities.
 In some cases, a request may be assigned to two or
more vehicles where each vehicle serves a set of users.
This case can happen if the current vehicle can not bear the
totality of users, and then the remainder of users is affected
to following vehicles.

 In the ACO, we define the trace’s initial intensity

01τ which can be set to a small and positive arbitrary value.
The heuristic information (visibility) ijη is defined as

follows:

1
1

1
1

))((+−
×

+
=

++ jiNdjNdiij
ij

eett
η (24)

An ant k located in vertex i, selects the vertex j, k
iJj∈ (set

of feasible vertices) to move to, according to a
probabilistic decision rule:

⎪
⎪
⎩

⎪
⎪
⎨

⎧
∈

= ∑
∈

otherwise 0

Jj if
)()(

)()(

)(P

k
ik

ij
11

11

i
kJl

ilil

ijij

t
βα

βα

ητ

ητ

 (25)

The parameters α1 and β1 define the relative importance of
the trace τij(t) with respect of the visibility ηij(t).

)1(+tijτ is the trace intensity (pheromone in the case of
real ants) associated to the edge (i, j) in the iteration t+1.
This quantity satisfies the following equation:

)()()1(1 ttt ijijij ττρτ Δ+=+ (26)

Where:
- ρ1 is a coefficient of evaporation (it must be fixed to

value < 1 to avoid an unlimited accumulation of trace)
- Δτij(t) is the additional quantity of trace left on the edge

(i, j) by the colony at the end of the iteration t.

 ∑
=

=Δ
M

k

k
ij

M
tm

t
1

ij
)(

)(τ (27)

Where M is the total number of ants and:

⎩
⎨
⎧

=
otherwise 0

j)(i, edge thek takesant theif 1
)(tmk

ij (28)

After a fixed number of iterations, we obtained the best
path which contains all requests. This optimal path is then
divided on sub-path according to vehicles’ capacities. Thus,
each vehicle is assigned to a set of requests near in term of
working time, origins’ distance and destinations’ distance.
 This first step of the resolution is illustrated by the
following instance where we consider 10 requests.
Obtaining a minimal Hamiltonian path which contains all
requests, we distribute these requests on 4 vehicles with
respect to their fixed capacity limit of 12 places. As shown
in the following table, a request may be assigned to two
vehicles.

Table 1: Procedure of distribution of requests on vehicles
Vehicles V1 V2 V3 V4
Requests r5 r1 r7 r4 r2 r2 r9 r3 r6 r6 r10 r8

Charges 6 5 3 5 7 7 3 4 7 7 4 3

rN

a0

),(jiNdjNdiij eett −× ++

r2

r3

r4
r5

rj

r1

ri

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

27

Ant Colony Algorithm for distribution of requests on
vehicles

1- Initialize the matrix of pheromone by the value τ0
2- Repeat
 For each ant k = 1, …, M do
 Initialize the candidate list by the available requests
 While (the candidate list is not empty)

 Select a request according to decision rule (25)
End

 End For
 Update the pheromone matrix according to (26)
Until maximum number of iterations is reached

3- /* Distribution of requests on vehicles */
 a – Initialize the vehicle v 0
 b – Initialize the charge of the vehicle qv 0
 c – Initialize the request r by the first request of the

path given by the best ant
 d – If (qv + qr < Vehicle Capacity)

Affect the request r to the vehicle v
Set the charge in the request r by the load qr
Pass to the next request of the path
Go to step 3 - d

 Else
Affect the request r to the vehicle v
Set the charge in the request r by the load
“Capacity – (qv + qr)”
Update the load at the request r
Pass to the next vehicle v v + 1
Go to step 3 – b

 End If

4.2 Construction of vehicles routing

This step aims to assign, in parallel, for the available
vehicles routings with a minimal cost, at each request a
time of service.
Based on the results of the first step, we consider for each
vehicle k a graph),,(kkkk VUAG = where:

• { } ,U ,
ir

0
⎭
⎬
⎫

⎩
⎨
⎧= +

∈
Ndii

R
k aaaA

k

, Rk is the set of origins

and destinations of all requests affected to the
vehicle k.

• { }{ }kijik AaaaU ∈= /, is the set of edges, at

each one is associated a value
),(),(),(jijk etjivwhereVjiv =∈

In this second step, we apply the ACO for each vehicle;
this consists to build, in parallel, routings which minimize
the total cost of transport, the waiting time and the ride

time of each user. These objectives are controlled by both
heuristic and pheromone information.
We express the heuristic information by the term:

1

1
1

1

)()(+
×

+
=

++ jNdjNdiij
ij ett

η (29)

This expression promotes the near location in term of
distance and the earliest working time.

In our Algorithm, we use a global pheromone update,
according to the following formula:

)()()1(2 ttt ijijij ττρτ Δ+=+ (30)

Where

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∉
+−−

×

+−

∈
+−−

×

+−

=Δ

∑∑

∑∑

∈
++

∈

∈
++

∈

bestj)(i, if
1)(

1

1

1

bestj)(i, if
1)(

1

1

1

,

,

badi
NdiiiNdi

badi
ii

besti
NdiiiNdi

besti
ii

ij

tdh
he

tdh
he

τ

 (31)

best and bad are, respectively, the routings of the best and
the bad ants.

This expression promotes the routing with a minimal total
waiting time and ride time.

Our algorithm proceeds as follows:

Ant Colony Algorithm for each vehicle k

Initialization
 Placement of ants on the depot
 Initialization of the pheromone on all edges of the graph
For each iteration t = 1,…, tmax
 For each ant k = 1,…, M

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

28

 Initialize the list of candidates by all the origins of
the graph
Initialize the list taboo by depot

 While the candidate’s list is not empty
Choose a vertex j according to the probabilistic
transition rule:

⎪
⎪
⎩

⎪
⎪
⎨

⎧
∈

∑=
∈

else 0

Jj if
)()(

)()(

)(P
k

ik
ij

22

22

ikJl
ilil

ijij

t
βα

βα

ητ

ητ

 Insert j in the list taboo.
Update the times of arrival and departure from a
visited location after the first destination chosen.
if j ≤ Nd

 then Replace j by j + Nd in the candidate’s list
 End if
 End while
 End for
End for
Update pheromone according to the formula (30)

5. Genetic Algorithm for the Professional
Staff Transportation Problem

Genetic Algorithm has been developed by John Holland in
1975 [25] inspired by the Darwin’s theory of evolution.
The main is to maintain a population which is a set of
solutions (called in this context individuals), through a
fixed number of iterations. To each individual is
associated a numerical value called fitness depending on
the objective function of this solution. At each iteration, a
number of individuals are selected according to their
fitness in order to create new ones by applying two
operators: Crossover and Mutation. At the end of the
iteration, a phase of replacement is applied to select the
individuals which pass to the next iteration.

The Genetic algorithm is organized as follows:
 1. Coding the solutions
 2. Generate the initial population
 3. Repeat
 a. Selection
 b. Crossover
 c. Mutation
 d. Replacement
 Until a fixed number of iterations

 In our GA, an individual representation considers both
the assignments of requests to the available vehicles and
construction of the vehicles’ routings.

5.1 Coding

The coding is one of the most important steps of the GA,
in this paper we represent an individual by a set of the
required vehicles where each vehicle consists on four lists:
- The trajectory
- The arrival time at each location
- The departure time at each location
- The load corresponding of the number of people

transported at each location

Example of an individual, where the number of requests is
4,
We note that:
 i1, …, i4 designate origin locations
 i5, …, i8 designate destination locations

Table2: Example of an individual
Vehicles V1 V2
Trajectory i4 i1 i5 i8 i3 i2 i7 i6
Arrival time 490 500 510 514 513 520 528 541
Departure time 493 504 512 516 515 521 531 543
Load 3 4 - 4 - 3 2 4 - 2 - 1

This individual consists on 2 vehicles where the first one
pick up 3 employees of the request 4 at its origin location
i4 on 490 min (8h10min), the vehicle leaves the location at
493min to the location i1 which is the origin of request 1,
the vehicle arrives at 500min and pick up 4 employees.
The next station is the destination of the request 1, the
number -4 shows that the employees whose get up the
vehicle at the origin i1 are the same whose get down at the
destination.

5.2 Initial Population

The initial population is generated by a local heuristic,
which construct the routing of available vehicles
beginning by the first one by inserting the request’s origin
and destination in its trajectory. If the capacity of the
vehicle is achieve, we pass to the second one, until all
requests have been served. This local heuristic is based on
the following steps:
1. Create a candidate list which contains all the available

requests with their load
2. Initialize the number of vehicle at 1
3. While the candidate list is not empty

- Select randomly a request ri from the candidate list
- Select the position “pos” of the origin randomly

from {1, ... , Ncompt} where Ncompt is the number
of locations affected to the current vehicle and the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

29

position of the destination “Pos_des” randomly
from {pos + 1, ... , Ncomp}.

- If all the available employees have been
transported

 Then delete the request ri from the candidate list
Else

 Update the charge of the request ri in the
candidate list

- Update the arrival and departure times
- If the vehicle capacity is achieve

Then increase the number of vehicles by 1 and
pass to next vehicle and go to step 3

Else
Go to step 3

5.3 Crossover

The crossover aims to create new individuals (called
children) from those (parents) selected according to their
fitness. In this paper, we apply two different crossover
operators: one-point (1X) [13] and Uniform [13]. The one
point crossover consists on dividing the parent’s
chromosomes according to one point, when the uniform
crossover consists on creating the children’s chromosomes
according to a binary vector which decides if the gene
corresponded must be taken from the first or the second
parent.
 In both crossover operators, we are interested just by
the first and second lists of the individuals, corresponding
respectively to the vehicles and their trajectories. From
these, we create (for each parent) a list containing the
requests in the order of their apparition in the parents’
vehicles trajectory beginning by the first vehicle into the
last one. As shown below:

Let be the following parents:

P1:

V1 V2 V3 V4 V5
3 8 18 13 10 20 2 12 4 10 1 11 20 14 6 9 1 19 11 16 7 17 9 19 8 5 15 18

P2:
V1 V2 V3 V4 V5

3 2 5 12 15 13 9 6 3 16 13 19 7 1 8 9 19 11 17 18 4 8 18 14 8 10 18 20

The request lists corresponding to P1 and P2 are as
follows:

P1 : 3 8 10 2 4 1 6 9 7 5
P2 : 3 2 5 9 6 7 1 8 4 10

The second step is to apply the crossover operator:
In one-point crossover, the two lists are divided according
to a crossover point:

P1 : 3 8 10 2 4 1 6 9 7 5
P2 : 3 2 5 9 6 7 1 8 4 10

The first (resp. second) child’s list contains the first part of
the first parent (resp. second) and completed by the
missing requests in the same order of the second (resp.
first) parent’s list

Child1 : 3 8 10 2 4 5 9 6 7 1
Child2 : 3 2 5 9 6 8 10 4 1 7

In uniform crossover, the children’s lists are constructed
according to a binary vector which is randomly generated
and characterized by a size equal to the parents' one, this
vector decides if the gene must be taken from the first or
the second parent as shown below:

P1 : 3 8 10 2 4 1 6 9 7 5
P2 : 3 2 5 9 6 7 1 8 4 10

 Binary list : 1 0 0 1 0 1 1 0 0 0

The number 0 in a position i, indicates that the request in
this position of the first parent must be inserted in the first
child list (if this request is not already inserted) and the
request in the same position of the second parent must be
inserted in the second child list. For the number 1 we
permute the parent’s roles. Finally, we complete the child
list by missing requests.
The result candidate lists are as follows:

Child1 : 3 8 10 9 4 7 1 5
Child 2 : 3 2 5 6 1 8 4 10

Requests in red are those taken from parent 2.

To complete the lists, we insert requests 2 and 6 into the
first list and requests 7 and 9 into the second list. Finally,
we have the following children 1 and 2:

 Child 1: 3 8 10 9 4 7 1 5 2 6
 Child 2: 3 2 5 6 1 8 4 10 7 9

5.4 Mutation

The mutation operator ensures the diversity of individuals
in the GA. The objective is to create a new individual by
modification one or more components of an individual
even this modification causes a deterioration of the
objective function. We applied two mutation operators in
our work. The first one consists in permuting the position

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

30

of two requests by exchange their origins and destinations
in the trajectory of a given vehicle:

V1 V2 V3 V4 V5
3 8 18 13 10 20 2 12 4 10 1 11 20 14 6 9 1 19 11 16 7 17 9 19 8 5 15 18

V1 V2 V3 V4 V5

3 8 18 13 10 20 2 12 4 10 1 11 20 14 9 6 1 16 11 19 7 17 9 19 8 5 15 18

The second mutation operator changes the assignment
order of the requests to vehicles. We construct a request
list by adding the first request of each vehicle, then the
second one, and so on:

Example:

V1 V2 V3 V4 V5
3 8 18 13 10 20 2 12 4 10 1 11 20 14 6 9 1 19 11 16 7 17 9 19 8 5 15 18

The request list is:
 3 10 4 6 9 8 2 1 5 7

The new individual is created by inserting the request in
the list order.

5.5 Fitness

For each individual, we associate a fitness function
corresponding to a weighting of the three objective
functions: transportation cost, the total waiting time and
total ride time. We represent the fitness function as follow:

∑∑

∑∑

∑∑∑

= =
+

= =
++

= = =

−+

−−+

Nd

i

Nv

k
Ndi

k
i

Nd

i

Nv

k
Ndiii

k
Ndi

k

Nd

i

Nd

j

Nv

k

k
ijij

he

tdh

xt

1 1
3

1 1
,2

2

0

2

0 1
1

)(

)(

.

α

α

α

 (32)

Where α1, α2 and α3 represent the importance of each cost

6. Experiment results

In this experiment, we used a 1.6 GHz Intel Pentium M
processor, 1 Go RAM.

6.1 Generation of Instances

We generated randomly a set of instances of 10 to 500
requests, each request is characterized by:

- A number between 1 and 11 users to be served.
- A working time ei between 06h00 and 08h00.
- A homogenous fleet of vehicles, each one includes a

fixed capacity.
- An origin’s and a destination’s coordinates taken in the

square [-20 Km, 20 Km], where the depot is localized
in the origin (0, 0).

- An Euclidean distance between two locations ai and aj.
- An average speed of vehicles fixed at 60 km/h.
- A service period T (the period made by a user to get in

or get out the vehicle) is fixed at 0.15 minutes.

6.1 Setting parameters

To maximize the performance of an algorithm it is
essential to optimize the choice of its parameters. In this
work, we used the experimental design method whose
goal is generally, to define for each parameter, its effect on
the objective function, by several tests [28]. For this, we
use the following terminology [24]:

- Response: function to optimize (y),
- Factors: parameters (x1, x2 … xn),
- Levels: the possible values of a factor in experiments.
- Effect of a factor xi on a response y, is the variation of

y with respect to the levels of a factor.
- Interaction: two factors x1 and x2 are in interaction, if

the effect of x1 depends on the level of x2.

Among the different experimental designs that exist, we
choose to use the factorial design at two levels 2n which
consists to define two levels for each factor (higher level
« +1 » and lower level « -1 »). In these designs, any
combination of the two levels is present during the
experiment, and the goal is to define the effects of each
factor on the response (y). An example of a factorial model
22 (n=2) is given by the equation:

y= a0+a1x1+a2x2+a12x1x2

With: a0, a1 and a2 the coefficients of the model. They are
called the effects of factors.

Example:
For an instance of 10 requests, we use Minitab software
tool [22] to fix different parameters of our GA. The
influential factors results, in our study, are defined as
follows:

- x1 Populations size (Np)
- x2 Mutations probability (Pm)
- x3 Type of crossover (Cr)
- x4 Type of mutation (mut)
- x5 Crossovers probability (Pc)
- x6 Maximal Number of generations (Ngmax)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

31

We define below a 2-level (-1, +1) of values x1, x2, x3, x4,
x5 and x6.

Table3: Levels of the GA parameters
Factors

x1 x2 x3 x4 x5 x6 Levels
Pc Pm Crossover Mutation Np Ng

-1 0.6 0.1 1X Permutation 50 500

+1 0.9 0.4 Uniform Exchange 100 1000

The figure 2 below shows that the best results are obtained
using the following values of different parameters of the
algorithm:
- Pc=0.6
- Pm=0.4
- Crossover: one-point (1X)
- Mutation: PERMUTATION
- Np=100
- Ng=1000

Fig. 2 graphic of main effects

We precede similarly for the others instances and we
obtained the results represented in the following table:

Table 4: The values of the GA parameters
Benchmarks Ngmax Np Pc Pm Cr Mut

1 100 10 0.6 0.4 1X Permutation
2 200 10 0.7 0.3 1X Permutation
3 500 100 0.9 0.4 1X Permutation
4 1000 100 0.9 0.4 1X Permutation
5 1000 100 0.5 0.4 1X Permutation
6 1000 100 0.9 0.4 1X Permutation
7 1000 100 0.9 0.5 1X Permutation
8 1000 100 0.6 0.4 1X Permutation
9 1000 100 0.9 0.4 1X Permutation

10 1000 100 0.9 0.4 1X Permutation
The table bellow shows the best values of different
parameters of the ACO:

Table 5: The values of the ACO parameters

Bk.
Number

of
iteration

Nb.
ants α1 β1 α2 β2 τ01 τ02 ρ1 ρ2

1 100 5 1 1 3 3 0.5 1 0.2 0.8
2 200 10 3 0.5 1 2.5 0.3 0.3 0.9 0.5
3 500 10 1 0.5 1.5 1 0.5 0.3 0.5 0.6
4 500 20 0.8 3 4 4 1 0.8 0.4 0.9
5 500 20 1 1.5 4 1 1 1 0.7 0.5
6 1000 30 1 3 4 1 0.5 0.5 0.8 0.9
7 1000 30 1 4 3 3 1 0.3 0.5 0.9
8 1000 30 1 1 3 0.5 1 1 0.5 0.9
9 1000 30 1 4 3 0.5 0.3 1 0.9 0.9

10 1000 30 1 4 3 3 0.3 0.3 0.9 0.5

6.3 Computational results

Firstly, we present detailed results obtained for the first
instance which contained 10 requests.
The following table shows the best routing found for each
vehicle:

Table 6: Best vehicles routings

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

32

 Vehicle Routing
V1 (0, 6, 10, 20, 5, 16, 15, 0)
V2 (0, 6, 2, 4, 16, 14,12, 0)
V3 (0, 3, 7, 13, 2, 17, 12, 0)
V4 (0, 3, 9, 8, 19, 13, 18, 0)

ACO

V5 (0, 8, 1, 11, 18, 0)
V1 (0, 1, 11, 9, 19, 0)
V2 (0, 6, 16, 2, 12, 0)
V3 (0, 7, 3, 17, 2, 13, 8,18, 0)
V4 (0, 3, 4, 14, 13, 0)

GA

V5 (0, 10, 5, 15, 20, 0)

Table 7 shows the assignments of requests to the required
vehicles, the number of users of each request i served by
the vehicle k, the ride time (RT), the waiting time (WT) and
the transportation cost of all vehicles. We can see that the
transportation costs are close for the GA and ACO.

Table 7: Results obtained by both the ACO and the GA for the instance
of 10 requests

 Vehicles Requests

k
ib

RT
(min)

WT
(min)

Transport
cost
(Km)

6 3 8.58 23.27
10 10 0.59 17.43 V1
5 2 3.70 0.29
6 3 8.58 23.27
2 1 13.78 13.44 V2
4 10 4.93 6.22
3 7 5.11 19.06
7 1 10.63 2.48 V3
2 7 2.75 1.04
3 2 9.93 0.29
9 8 6.37 2.24 V4
8 5 5.64 39.24
8 5 9.77 105.69

A
C

O

V5 1 7 2.32 1.04

74.63

1 7 2.32 1.04 V1 9 8 4.50 62.99
6 7 4.26 1.04 V2 2 8 2.52 12.19
7 1 2.79 0.15
3 4 4.63 1.09 V3
8 10 3.64 31.98
3 5 14.75 15.96 V4 4 10 4.02 1.50

10 10 7.32 6.94

G
A

V5 5 2 2.30 0.29

79.71

The following graph gives a comparison between the
waiting time for each request given by ACO and GA.

Fig. 3 Waiting time given by ACO compared with waiting

time given by GA

As we can see from the graph, GA results are better than
those given by ACO for 90% of the requests. For 10%,
ACO results are better than those given by GA.
The following figure shows a comparison between the ride
time of a request calculated by ACO and GA and the
direct ride time corresponding to the time which takes a
vehicle to transport a request from the origin to the
destination without stop.

Fig. 4 Comparison of the Ride time given by both ACO

and GA with the direct ride time

For 80% of requests, the requests are directly transported
from the origin to the destination by applying the GA,
since for ACO, there are just 40% of requests that are
directly transported. But, we can see from the following
table, that the transport cost calculated by ACO is better
than transport cost calculated by GA.
 In the second part of this section, we evaluate results
obtained for the 10 different instances of 10 to 500
requests.
 The following table resumes results obtained for all
instances involving up to 500 requests,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

33

Table 8: Results obtained for the 10 instances

Nb.
of vehicles

Total
Waiting time

Total
Ride time

Transport cost
(Km) Times(s)

Bk Nd
Nb
of

users ACO GA ACO GA ACO GA ACO GA ACO GA

1 10 72 5 5 255 135.17 92.98 53.05 74.63 79.71 0.05 0.01

2 30 180 9 9 750.00 589.85 222.11 173.71 416.16 645.39 1.24 0.11

3 60 363 19 19 849.26 1274.75 465.55 438.89 830.92 1167.73 10.95 19.08

4 100 535 18 18 2083.12 3664.65 1234.90 1535.13 940.54 1890.16 67.13 31.89

5 150 770 26 26 2261.82 5730.61 2104.24 2897.17 1428.93 2894.39 180.56 27.86

6 200 1045 35 35 2627.13 7455.21 2519.99 4074.95 1844.01 3610.57 475.65 82.90

7 250 1363 46 46 2951.23 18952.35 3178.47 4773.67 2450.65 5021.03 119.56 108.76

8 300 1713 58 58 3449.48 7455.21 3830.61 4074.95 3034.47 3610.57 192.32 104.08

9 400 2204 74 74 4190.93 16445.79 4507.53 5907.23 3747.60 8082.64 430.95 306.83

10 500 2725 91 91 4370.73 19340.02 5572.96 8738.37 4553.88 9992.58 1584.26 470.54

We observe that ACO and GA provide the same number
of vehicles for all the instances. For the first one
involving 10 requests, the results given by GA are better
that those given by ACO, but, when we increase the
number of requests, the ACO provides much better
results than GA as shown in the following figures.

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

Benchmarks

Ti
m

e(
m

in
)

ACO
GA

Fig. 5 Comparison between the Waiting time given by ACO and GA

The fact that results given by ACO is much better than
those given by GA owes to the first step of ACO. In this
step, we construct a global routing containing all
requests such as the distance between origins, destination
and difference between work times of requests, is
minimal. Therefore, requests which are close are served
by the same vehicle.

0

2000

4000

6000

8000

10000

1 3 5 7 9

Benchmarks

Ti
m

e(
m

in
)

ACO
GA

Fig. 6 Ride time

The constructive aspect of the ACO, has a large effect on
results because, each ant during its path construction,
selects stations which optimize the objective function.
Thus, ACO is more guided than GA.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

34

0

2000

4000

6000

8000

10000
12000

1 2 3 4 5 6 7 8 9 10

Benchmarks

Tr
an

sp
or

ta
tio

n
 c

o
st

 (k
m

)

ACO

GA

Fig. 7 Transport cost

However, if we compare the two algorithms in term of
CPU time, we observe that ACO is very expensive than
GA. Unlike GA which inserts station randomly in the
trajectory, each ant makes several tests before selecting
the next station.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

Benchmarks

C
PU

 T
im

e
(s

)

ACO
GA

Fig. 8 CPU Time

7. Conclusion

 In this paper, we have proposed a mathematical
formulation for the PSTP and adapted two population
heuristics, namely, ACO and GA to resolve it. Our model
takes into account the optimization of service’s quality
adding to the cost transportation. So, we aim to minimize
the ride time and the waiting time in the working place
for each user.
 To evaluate our approaches and a comparison
between them, we have tested them on several sizes of
random generated data. The two approaches seem to be
consistent with different generated instances.

The experiments presented in this paper, shows
clearly that the constructive aspect of the ACO has an
important role in the generation of efficient solutions in
term of the solutions quality comparing with GA. And
that, through the insertion decision of the current request
to the partial solution is made according to the objective
function. i.e, the insertion with the best cost will be
chosen.

References
[1] Attanasio, A., J.-F. Cordeau, G. Ghiani, G. Laporte,

Parallel tabu search heuristics for the dynamic multi-
vehicle dial-a-ride problem, Parallel Computing , 30 377–
387, 2004.

[2] Baugh J.W.Jr., Kakivaya, D.K.R., Stone, J.R.,
Intractability of the dial-a-ride problem and a multi
objective solution using simulated annealing, Engineering
Optimization, 30(2):91-124, 1998.

[3] M. Bellmore, G.L. Nemhauser, The traveling salesman
problem: a survey, Operations Research 16, 538–558,
1968.

[4] Bergvinsdottir, K.B., J. Larsen, R. Jørgensen, Solving the
dial-a-ride problem using genetic algorithms. Journal of
the Operational Research Society, forthcoming, vol. 58,
pp. 1321-1331, 2007.

[5] Bonabeau, Dorigo, Theraulaz, From nature to artificial
swarm intelligence. New York: Oxford University Press,
1999.

[6] Colorni, A., Righini, G., Modelling and optimizing
dynamic dial-a-ride problems, International transactions in
operational research, 8, 155–166, 1999.

[7] Cordeau, J.-F., G. Laporte, A tabu search heuristic for the
static multi-vehicle dial-a-ride problem, Transportation
Research Part, 37 579–594, 2003.

[8] Cordeau, J.-F., Laporte, G., The dial-a-ride problem
(DARP): Variants, modelling issues and algorithms. 4OR:
A Quarterly journal of operations research 1 89-101, 2003.

[9] Coslovich, L., Pesenti, R., Ukovich, W, A two-phase
insertion technique of unexpected customers for a
dynamic dial-a-ride problem. European Journal of
Operational Research, 175, Issue 3, 16, 1605-1615, 2006.

[10] Diana, M., Dessouky, M., A new regret insertion heuristic
for solving large scale dial-a-ride problems with time
windows, Transportation Research Part B, 38, 539–557,
2004.

[11] Dorigo M, Gambardella L M., Ant colonies for the
traveling salesman problem, Bio Systems, 43(2): 73-81,
1997.

[12] Dorigo, M., Gambardella, L.M, Ant Colony System: A
cooperative learning approach to the travelling salesman
problem, IEEE Transaction on Evolutionary Computation.
I(1), 53-66, 1997.

[13] J. Dréo, A. Pétrowski, P. Siarry and E. Taillard :
Métaheuristiques pour l’optimisation difficile, Eryolles
2003.

[14] Dumas, Y. , Desrosiers, J., Soumis, F., The pickup and
delivery problem with time windows, European Journal of
Operational Research 54, 7-22, 1991.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

35

[15] Ferman, A., Tang, M., Diéguez Galvão, R., A tabu search
algorithm for the vehicle routing problem with
simultaneous pick-up and delivery service, Computers &
Operations Research, 33, pp 595-619, 2006.

[16] Feuerstein, E., Stougie, L., On-line single-server dial-a-
ride problems, Theoretical Computer Science, 268, 91–
105, 2001.

[17] Gambardella, L.M, Taillard, E.D., Dorigo, M., Ant
colonies for the quadratic assignment problem, Journal of
the Operational Research Society, Volume 5, pp. 167-
176(10), 1999.

[18] Gutjahr, W.J, A graph –based Ant System and its
convergence, Future Generation Computing System 16,
873-888, 2000.

[19] Kalantari, B., Hill, A.V., Arora, S.R., An algorithm for the
traveling salesman problem with pickup and delivery
customers, European Journal of Operational Research 22,
377-386, 1985.

[20] Madsen, O., Ravn, H., Rygaard, J. M, A heuristic
algorithm for a dial-a-ride problem with time windows,
multiple capacities, and multiple objectives, Annals of
Operations Research, 60, 193–208, 1995.

[21] Melachrinoudis, E., Ilhan, A., Min, H, A dial-a-ride
problem for client transportation in a health-care
organization, Computers and Operations Research, Vol.
34, Issue 3, 742-759, 2007.

[22] Minitab, ''Introduction à Minitab version 14'',
Septembre 2003

[23] Nagy, G., Salhi, S., Heuristic algorithms for single and
multiple depot vehicle routing problems with pickups and
deliveries, European Journal of Operational Research
Volume 162, Pages 126-141, 2005.

[24] Pillet M. (Ed), Le Plans d'expériences par la méthode
Taguchi, Les Editions d'organisation, Paris, 1997.

[25] Reeves, C.R., Modern Heuristic Techniques for
Combinatorial Problems, McGraw-Hill International
Limited UK, 151 - 188, 1995.

[26] Shang, G., Lei, Z., Fengting, Z, Fengting, Z., Solving
Traveling Salesman Problem by Ant Colony Optimization
Algorithm with Association Rul, Computer
Society Washington, DC, USA. Pages 693-698, ISBN:0-
7695-2875-9, IEEE, 2007.

[27] Stutzle, T., Dorigo, M., Evolutionary Algorithms in
Engineering and computer science: Recent Advances in
Genetic Programming. Genetic Programming and
industrial Applications, Chapter ACO Algorithms for the
travelling Salesman problem. Tohn Wiley and Sons, 1999.

[28] Tagushi G., System of Experimental Design, Kraus
International Publication, 1987.

[29] Teodorovich, D. Radivojevic, G., A fuzzy logic approach
to dynamic dial-a- ride problem, Fuzzy sets and systems,
116, 23–33, 2000.

[30] Thang N. Bui, ThanhVu H. Nguyen , Chirag M. Patel ,
Kim-Anh T. Phan, An ant-based algorithm for coloring
graphs, Elsevier Science Publishers B. V. Amsterdam,
The Netherlands Volume 156 , Pages 190-200, 2008.

[31] Toth, P., Vigo, D., Heuristic algorithms for the
handicapped person’s transportation problem,
Transportation Science, 31, 60–71.

[32] Zhang, J., Hu, X., Tan, X., Zhong, J.H., Huang, Q.,
Implementation of an Ant Colony Optimization technique
for job shop scheduling problem, Transactions of the
Institute of Measurement and Control, Vol. 28, No. 1, 93-
108, 2006.

Rachida Abounacer is a PhD student of
the Laboratory of Modeling and
Scientific Calcul and CERENE
laboratory, she is a member of
Operational Research and Computer
group at the Faculty of Sciences and
Techniques of Fez, Morocco. She works
on scheduling problems and
metaheuristics.

Ghizlane Bencheikh is a PhD student of
the Laboratory of Modeling and
Scientific Calcul and CERENE
laboratory, she is a member of
Operational Research and Computer
group at the Faculty of Sciences and
Techniques of Fez, Morocco. She works
on scheduling problems and
metaheuristics.

Jaouad Boukachour is an Associate
Professor of Computer Sciences at Le
Havre University, France. His research
interests include: Scheduling Problems,
Operational Research, and Supply Chain
Management. He has supervised a
number of PhD researchers in areas such
as logistics and scheduling aircraft
landings. Currently, he is supervising six
PhD students working on traceability,

modelling road traffic, job shop scheduling, scheduling aircraft
landings and vehicle routing. He has published more than 30
referred research papers. Within the French CPER 2006 (State-
Region Project Contract), he was responsible for Modelling
Optimisation and Simulation of physical and information flows
in an industrial logistics project. Currently, he heads two
projects about tracking container shipments, funded by French
National Research Agency (ANR) and CPER 2008.

Btissam Dkhissi is a PhD student of the
Laboratory of Modeling and Scientific
Calcul at the Faculty of Sciences and
Techniques of Fez, Morocco, she is a
member of Operational Research and
Computer group. She works on staff
scheduling, timetabling problems, vehicle
routing and metaheuristics methods.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

36

Ahmed Elhilali Alaoui is a PhD of
Operational Research at the Faculty
of Sciences and Techniques of Fez,
Morocco. His research interests
include: Scheduling Problems and
Operational Research. He is
responsible for the operational
research and computer group, and he
is supervising 10 PhD students

working on job shop scheduling, scheduling aircraft landings,
vehicle routing and optimization algorithms. He is member of
the La Société Marocaine de Recherche Opérationnelle
(SOMARO).

