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Summary 
The Professional Staff Transportation Problem (PSTP) consists 
to build the vehicle routing for transporting the staff of one or 
several companies, in order to minimize the total cost of 
transport, and taking into account the level of service offered to 
users. In this paper, we care about the quality of service given by 
the professional transporter in addition to the transportation cost. 
The first section presents an overview of recent works on Dial-a-
Ride Problem (DARP) which is a generalization of our problem. 
The second section is dedicated to the mathematical modeling of 
the (PSTP) by introducing a measure of performance 
corresponding to the level of service provided to users. In the 
third section, we present two evolutionary metaheuristics to 
solve the problem, namely: Ant Colony Algorithm (ACO) and 
Genetic Algorithm (GA). The last section of this work is devoted 
to experimental results. 
Key words: 
Staff transportation, vehicle routing problem with time window, 
Dial-a-Ride problem, Ant Colony Algorithm, Genetic Algorithm. 

1. Introduction 

The professional staff transportation still attracts large and 
small companies for several reasons, mainly because it is a 
pledge of comfort, safety and punctuality. Thus, this type 
of transportation must respect logistics punctuality and 
comfort that the carrier must ensure with all means 
necessary to achieve it. We can define the staff transport as 
a system responding to a number of companies’ requests 
(or demands) via a fleet of vehicles under constraints of 
feasibility and quality. Each request is characterized by the 
number of users to transport; the origin, the destination and 
the destination latest time (working time). The problem is 
to build the routing of the available vehicles reconciling 
two objectives: 
 1) Minimizing the cost of transport 
 2) Providing a good quality of service. 
At first view, it appears some similarity between the PSTP 
and the Travelling Salesman Problem (TSP) [3, 11], which 
is to find a Hamiltonian cycle minimal of a Hamiltonian 

graph with a minimum total cost. However, the PSTP is 
much more complex; indeed, additional constraints must 
be taken account, such as,  the precedence between the 
origin and the destination, the working times which are not 
the same for all requests and the capacity of vehicle. 
      In this paper, we consider the static case where all 
transportation requests are known in advance. We define 
an upper limit on the number of vehicles available and 
assume that the requests cannot be rejected, and we 
consider that all vehicles have identical capacity. 
      We formulate the PSTP as combinatorial optimization 
problem, where we introduce the constraints on three 
categories: routing constraints, capacity constraints and 
scheduling constraints. The objective is to cooperate the 
transportation cost and the service quality expressed, in our 
formulation, in term of: 

− The waiting time of users before their working time. 
− The ride time of the users. 

We use two evolutionary approaches, Ant Colony 
Algorithm and Genetic Algorithm, to solve the problem. 
The Ant Colony Algorithm is applied in two steps (1) 
Repartition of requests into vehicles and (2) construction 
of routing for each vehicle. In the first step, we assign to 
each vehicle a subset of request in order to minimize the 
distances between origins, distances between destinations, 
the difference between the working times and respecting 
the capacities of vehicles. To apply the Ant Colony 
Algorithm, we consider a complete graph whose vertices 
represent all requests of the problem. In the second step, 
we apply for each vehicle an Ant Colony Algorithm in 
order to build a minimal routing for each vehicle by 
assigning to each request a time of service. 

Unlike the first approach, we apply the Genetic 
algorithm to solve the problem in one step. Each individual 
represents for all needed vehicles, the routings, the arrival 
times, the departure times and the transported loads in each 
location.  
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2. Literature review 

The problem studied in this paper belongs to the 
general class of Dial-a-Ride problems (DARP). The DARP, 
officially classified NP-Hard [2], is a particular case of the 
Vehicle Routing Problem with Pickup and Delivery 
(VRPPD) [14, 15, 19, 23]  arising in context where 
passengers are transported, either in groups or individually, 
from specified origins to specified destinations. The DARP 
distinguishes itself from the basic VRPPD by its focus on 
maximizing the level of service. This objective is often 
controlled by imposing a limit on the ride time of each user 
(i.e, the time spent by a user in a vehicle), on the waiting 
time and on deviations from the desired times for pickup 
and delivery. Maximizing service is weighted against 
minimizing the total cost of transportation [8]. 

In practice, dial a ride service can be operated 
according to one of two cases, static or dynamic. Static 
case is when all requests are known in advance. Static 
versions of DARP are described in [21]. In the dynamic 
case [6, 9, 16, 29], a request can arrive in a real time during 
the planning.  

The DARP is classified an NP-hard, the proof is based 
on related NP-hard travelling salesman problem with time 
windows, into which the DARP can be classified [2]. 
The related works are most closely to our work in terms of 
problem definition and/or method of resolution. In 2003, 
Cordeau and Laporte [7] present a tabu search heuristic for 
the static multi-vehicle Dial-a-Ride problem with a specific 
case, where the users impose a time window of a pre-
specified width on the arrival time of their outbound trip 
and, similarly, a window on the departure time of their 
inbound trip. In addition to this there is also an upper limit 
of the ride time of any user as well as constraints regarding 
vehicle capacity and route duration. 
     In 2004 A. Attanasio et al. [1] describe and compare a 
number of implementations of tabu search heuristic 
previously developed for the static Dial-a-Ride problem. 
Indeed, the authors use the static tabu search of Cordeau & 
Laporte [7] to find a solution to the static problem of the 
requests known at the start of the planning horizon. The 
experiments made indicate that parallel computing can be 
beneficial to solve real-time DARP. 
     Other metaheuristics have been applied to the DARP. In 
1998 Baugh et al. [2] use simulated annealing to solve the 
DARP. A cluster-first, route-second approach is used. 
Simulated annealing is used for the clustering, and a 
greedy algorithm is used for the routing after that the 
clusters are made. 
      In 2007 K. B. Bergvinsdottir et al. [4] have applied a 
Genetic algorithm based on the "Cluster-first route-second 
" approach, in which the clustering is the most important 
phase. Customers are first clustered into feasible groups to 
be served by the same vehicle (cluster first) without regard 

to any preset ordering and then efficient routes are 
designed for each cluster (route second). In this approach, 
customers are first organized into clusters and then, the 
routes are developed for each individual cluster. The 
contribution of this paper is the demonstration that genetic 
algorithm can be effectively be implemented in a “Cluster-
first route-second” approach. Their algorithm was tested 
on the same data used by Cordeau & Laporte [7], the 
results are comparable. 
      Many authors have also used different forms of 
insertion heuristics to solve the DARP, this approach is to 
construct a feasible solution, i.e., a set of feasible routes, 
by a set of feasible routes, inserting customer (not yet 
served)  into a partially constructed feasible solution, the 
insertion decision is made based on the additional increase 
of the objective function. The insertion with the least 
incremental cost will be chosen 
      In 1995, Madsen et al. [20] use an algorithm based on 
an insertion heuristic to solve the DARP with multiple 
capacities and multiple objectives. The algorithm was 
developed to solve a real-life problem of scheduling 
transportation for elderly and disabled in Copenhagen, 
Denmark. 
      In 2004 Diana and Dessouky [10] presented a parallel 
regret insertion heuristic to solve large instances of the 
DARP. Data sets of 500 and 1000 requests have been 
tested.  
      Finally, Toth and Vigo in 1997 [31] developed a 
parallel insertion heuristic to be able to find good solutions 
for large instances within quite small computational times. 

3. Mathematical formulation 

Here, we propose a mathematical model of the problem, 
where we limit the work to the sense home→ workplace, 
the other sense will be similar. 

3.1 Parameters 

The following notation is used in the formulation: 
• Nd : number of requests 
• a0 : the depot  
• R = {r1, r2, …, rNd} set of requests 
 
Each request is characterized by: 
• i : Origin or domicile 
• i + Nd : Destination 
• qi :  Number of users to serve in the location i  
• ei : Working time 
• tij :   period of direct transport between the location i 

and j 
• Nv : number of vehicles  
• Qk : capacity of vehicle k 
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The decision variables are: 
• k

iq  : number of places occupied in the vehicle k at 
the location i 

• k
ib  : number of users taken by the vehicle k at the 

location i 
• k

id  : departure time of the vehicle k at the location i 

• k
ih  : arrival time of the vehicle k at the location i 

• 
⎩
⎨
⎧

=
Otherwise0

aathrough passesk   vehicle theif1 ji before
x k

ij

 

3.2 Objective functions 

We consider two different objectives:  

− Minimize the cost of transport  

− Maximize the level of service for users 
 
The relative cost of transport can be expressed by: 

f1: ∑ ∑∑
= = =
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i
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k
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Ideally, with one or more vehicles per request, each user 
could be transported directly from its origin station to its 
work place. As the number of vehicles available is limited, 
each user is imposing an additional route, because the 
vehicle must also pick up or deliver other people in his trip. 
For each request, the additional travel time is the 
difference between the ride time and duration of the 
shortest (direct) route between the origin and the 
destination. Moreover, it is possible that some requests 
arrive at their destinations too early, i.e. before the working 
time. The time that request will be at its destination until 
the beginning of work is called waiting time. 
The feature quality proposed is expressed in terms of 
additional travel time and the waiting time of all requests; 
these two functions are respectively expressed by the 
following functions: 
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The overall aim is therefore to achieve a compromise 
between these three objectives which can be formulated as 
a multi-objective function: 

Min (f1 , f2 , f3) 

3.2 Constraints 

We distinguish for our problem, three types of constraints: 
the routing constraints, capacity constraints and schedule 
constraints. 

3.2.1 Routing constraints 
Constraints (4) and (5) ensure that each vehicle tour begins 
and ends at the depot. 

 1
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When a vehicle k arrives to a location ai, it has to pull 
through, which respect the law of Kirtchoff. 
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Constraints (7) (resp. (8)) ensures that on a given location 
ai, a vehicle k could arrive (resp. leave) from (resp. to) a 
single origin (resp. destination). 
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NdiNvk ,,1;.,1 KK =∀=∀    (9) 

Constraint (9) states that each request i should be served by 
a vehicle k without stop. 
 

{ }1,0∈k
ijx  

NdjiNvk 2,,1,;.,1 KK =∀=∀   

 

3.2.2 Capacity constraints 
The capacity of each vehicle k must not be exceeded 
throughout its travel 

k
k
ij

k
j

k
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Constraint (11) updates the load of vehicles after the visit 
of a location i 
 

( ) k
ij
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k
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We must ensure that if a vehicle k does not pass through a 
location j, then the number of users served by k in this 
location is zero. 
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Constraint (13) ensures that the load in a location i is equal 
to the sum of those served by all vehicles in this location. 

00 =kq , Nvk K.,1=∀    (14) 

0≥k
iq , NdiNvk ,,1;.,1 KK =∀=∀  (15) 

 
Constraints (14) and (15) respectively ensure that each 
vehicle leaves the depot empty and that his load is always 
positive. 
 
Constraint (16) keeps, for each vehicle, the number of 
users getting in at the origin and getting out at the 
destination of each request. 
 

k
i

k
Ndi bb −=+ , NdiNvk ,,1;.,1 KK =∀=∀  (16) 

0≥k
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3.2.3 Schedule constraints 

Each user must arrive at its destination before his working 
time: 
 i

k
Ndi eh ≤+ , NdiNvk ,,1;.,1 KK =∀=∀  (18) 

 
Constraint (19) updates the departure time of a vehicle k at 
a location ai. 

Thd k
i

k
i += , NdiNvk ,,1;.,1 KK =∀=∀  (19) 

 
Where T is the period of service made by users to get in or 
get out the vehicle. It can depend on the nature of the 
vehicle or on the number of users served in the location. 
 

The arrival time of a vehicle k to a location j must be equal 
or greater than its departure time from a location i plus the 
direct time between i and j. 
 

( ) k
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Constraint (21) respects the precedence between origin and 
destination of each request. 
 

k
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We note that our model is non-linear due to the constraints 
(7), (8), (10), (11) and (12).   

4. Ant Colony Algorithm for the Professional 
Staff Transportation Problem 

Ant Colony Algorithm was first proposed by Dorigo and 
Gambardella [12] as a muti-agent approach for difficult 
combinatorial optimization problems such as travelling 
salesman problem (TSP) [26] and the quadratic assignment 
problem (QAP) [17]. ACO has been applied to other 
problems such as graph coloring [24], job shop scheduling 
[32] and vehicle routing [27]. 
      The results obtained by Ant Colony Optimization are 
comparable to those with other general purpose heuristic 
algorithms [5]. A convergence proof for a generalized Ant 
System Algorithm is provided in [18]. This algorithm is 
inspired by the behaviour of real ants. Ants, when 
searching for food, mark the traversed paths with a 
pheromone quantity, which depends on the quality of the 
food source. Other ants observe these pheromone trails and 
are attracted to follow them, thus reinforcing the paths. 
Gradually, paths leading to rich food sources will be used 
more frequently. 
     To apply the Ant Colony Optimization to solve the 
professional staff transportation problem, we proceed in 
two steps, the first step is to distribute requests on vehicles 
within their capacities and the second step is to build the 
optimal routing for each vehicle. 

4.1 Distribution of requests on vehicles 

This step aims to distribute requests on vehicles, in order to 
assign to each vehicle a subset of requests, respecting its 
capacity and minimizing the distances between origins, 
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distances between destinations and the difference between 
the working times.  
For this, we consider the complete graph (A, U, V) where: 
• A= {r0, r1, r2, …, rNd } is a set of vertices, where r0 is a 

fictitious request corresponding to the depot and 
characterized by: 
- a0 = an where their coordinates are (0,0) 
- q0 =0 
- e0 =0 

• { }{ }ArrrU iji ∈=  /,  is a set of edges, at each one is 
associated a value  

     
),(),(  where),(  jiNdjNdiij eettjivVjiv −×=∈ ++  

 
Fig. 1  the graph structure for the problem of distribution 

of requests on vehicles. 
 
We apply the ACO to build an optimal path contained all 
vertices in order to minimizing the total cost depending on 
the couples (tij × t(i + Nd, j + Nd) , | ei-ej |). The obtained tour 
will then be divided according to vehicles’ capacities. 
     In some cases, a request may be assigned to two or 
more vehicles where each vehicle serves a set of users. 
This case can happen if the current vehicle can not bear the 
totality of users, and then the remainder of users is affected 
to following vehicles. 
 
     In the ACO, we define the trace’s initial intensity 

01τ which can be set to a small and positive arbitrary value. 
The heuristic information (visibility) ijη is defined as 

follows:  

1
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An ant k located in vertex i, selects the vertex j, k
iJj∈ (set 

of feasible vertices) to move to, according to a 
probabilistic decision rule:   
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The parameters α1 and β1 define the relative importance of 
the trace τij(t) with respect of the visibility ηij(t).  
 

)1( +tijτ is the trace intensity (pheromone in the case of 
real ants) associated to the edge (i, j) in the iteration t+1. 
This quantity satisfies the following equation:  
 

)()()1( 1 ttt ijijij ττρτ Δ+=+      (26) 

Where: 
- ρ1 is a coefficient of evaporation (it must be fixed to 

value < 1 to avoid an unlimited accumulation of trace) 
- Δτij(t) is the additional quantity of trace left on the edge 

(i, j) by the colony at the end of the iteration t. 
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Where M is the total number of ants and: 

⎩
⎨
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After a fixed number of iterations, we obtained the best 
path which contains all requests. This optimal path is then 
divided on sub-path according to vehicles’ capacities. Thus, 
each vehicle is assigned to a set of requests near in term of 
working time, origins’ distance and destinations’ distance.  
     This first step of the resolution is illustrated by the 
following instance where we consider 10 requests. 
Obtaining a minimal Hamiltonian path which contains all 
requests, we distribute these requests on 4 vehicles with 
respect to their fixed capacity limit of 12 places.  As shown 
in the following table, a request may be assigned to two 
vehicles. 

Table 1: Procedure of distribution of requests on vehicles 
Vehicles V1 V2 V3 V4 
Requests r5 r1 r7 r4 r2 r2 r9 r3 r6 r6 r10 r8

Charges 6 5 3 5 7 7 3 4 7 7 4 3
 

rN 

a0 

),(  jiNdjNdiij eett −× ++

r2 

r3 

r4 
r5 

rj 

r1 

ri 
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Ant Colony Algorithm for distribution of requests on 
vehicles 
 
1- Initialize the matrix of pheromone by the value τ0 
2- Repeat 
       For each ant k = 1, …, M do 
          Initialize the candidate list by the available requests 
          While (the candidate list is not empty) 

   Select a request according to decision rule (25) 
End 

       End For 
       Update the pheromone matrix according to (26) 
Until maximum number of iterations is reached 

 
3- /* Distribution of requests on vehicles */  
     a – Initialize the vehicle v  0 
     b – Initialize the charge of the vehicle qv  0 
     c – Initialize the request r by the first request of the 

path    given by the best ant 
     d – If (qv + qr < Vehicle Capacity) 

Affect the request r to the vehicle v 
Set the charge in the request r by the load qr 
Pass to the next request of the path 
Go to step 3 - d 

           Else 
Affect the request r to the vehicle v  
Set the charge in the request r by the load 
“Capacity – (qv + qr)” 
Update the load at the request r 
Pass to the next vehicle v  v + 1 
Go to step 3 – b 

          End If 

4.2 Construction of vehicles routing 

This step aims to assign, in parallel, for the available 
vehicles routings with a minimal cost, at each request a 
time of service. 
Based on the results of the first step, we consider for each 
vehicle k a graph ),,( kkkk VUAG =  where: 
 

• { }  ,U   ,  
ir

0
⎭
⎬
⎫

⎩
⎨
⎧= +

∈
Ndii

R
k aaaA

k

, Rk is the set of origins 

and destinations of all requests affected to the 
vehicle k. 

• { }{ }kijik AaaaU ∈=  /,  is the set of edges, at 

each one is associated a value   
),(),(  ),( jijk etjivwhereVjiv =∈  

 
In this second step, we apply the ACO for each vehicle; 
this consists to build, in parallel, routings which minimize 
the total cost of transport, the waiting time and the ride 

time of each user. These objectives are controlled by both 
heuristic and pheromone information. 
We express the heuristic information by the term: 
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This expression promotes the near location in term of 
distance and the earliest working time.  
 
In our Algorithm, we use a global pheromone update, 
according to the following formula:   
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best and bad are, respectively, the routings of the best and 
the bad ants. 
 
This expression promotes the routing with a minimal total 
waiting time and ride time.  
 
Our algorithm proceeds as follows: 
 
 
 
 
 
 
 
 
 
 
Ant Colony Algorithm for each vehicle k 
 
Initialization  
     Placement of ants on the depot  
     Initialization of the pheromone on all edges of the graph  
For each iteration t = 1,…, tmax  
     For each ant k = 1,…, M  
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       Initialize the list of candidates by all the origins of    
the graph  
Initialize the list taboo by depot  

        While the candidate’s list is not empty  
Choose a vertex j according to the probabilistic     
transition rule: 

          

⎪
⎪
⎩

⎪
⎪
⎨

⎧
∈

∑=
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else                                  0
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              Insert j in the list taboo.  
Update the times of arrival and departure from a 
visited location after the first destination chosen.  
if   j ≤ Nd   

                   then Replace j by j + Nd in the candidate’s list 
              End if 
         End while 
      End for              
End for        
Update pheromone according to the formula (30) 

5. Genetic Algorithm for the Professional 
Staff Transportation Problem 

Genetic Algorithm has been developed by John Holland in 
1975 [25] inspired by the Darwin’s theory of evolution. 
The main is to maintain a population which is a set of 
solutions (called in this context individuals), through a 
fixed number of iterations. To each individual is 
associated a numerical value called fitness depending on 
the objective function of this solution. At each iteration, a 
number of individuals are selected according to their 
fitness in order to create new ones by applying two 
operators: Crossover and Mutation. At the end of the 
iteration, a phase of replacement is applied to select the 
individuals which pass to the next iteration.  
 
 
The Genetic algorithm is organized as follows: 
     1. Coding the solutions 
     2. Generate the initial population 
     3. Repeat 
            a. Selection 
            b. Crossover 
            c. Mutation 
            d. Replacement 
         Until a fixed number of iterations    
 

     In our GA, an individual representation considers both 
the assignments of requests to the available vehicles and 
construction of the vehicles’ routings. 

5.1 Coding 

The coding is one of the most important steps of the GA, 
in this paper we represent an individual by a set of the 
required vehicles where each vehicle consists on four lists: 
- The trajectory  
- The arrival time at each location 
- The departure time at each location 
- The load corresponding of the number of people 

transported at each location 
 
Example of an individual, where the number of requests is 
4, 
We note that: 
    i1, …, i4 designate origin locations 
    i5, …, i8 designate destination locations 

Table2: Example of an individual 
Vehicles V1 V2 
Trajectory i4 i1 i5 i8 i3 i2 i7 i6
Arrival time 490 500 510 514 513 520 528 541
Departure time 493 504 512 516 515 521 531 543
Load 3 4 - 4 - 3 2 4 - 2 - 1
 
This individual consists on 2 vehicles where the first one 
pick up 3 employees of the request 4 at its origin location 
i4 on 490 min (8h10min), the vehicle leaves the location at 
493min to the location i1 which is the origin of request 1, 
the vehicle arrives at 500min and pick up 4 employees. 
The next station is the destination of the request 1, the 
number -4 shows that the employees whose get up the 
vehicle at the origin i1 are the same whose get down at the 
destination. 

5.2 Initial Population 

The initial population is generated by a local heuristic, 
which construct the routing of available vehicles 
beginning by the first one by inserting the request’s origin 
and destination in its trajectory. If the capacity of the 
vehicle is achieve, we pass to the second one, until all 
requests have been served. This local heuristic is based on 
the following steps: 
1. Create a candidate list which contains all the available   

requests with their load 
2. Initialize the number of vehicle at 1 
3. While the candidate list is not empty 

- Select randomly a request ri from the candidate list 
- Select the position “pos” of the origin randomly 

from {1, ... , Ncompt} where Ncompt is the number 
of locations affected to the current vehicle  and the 
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position of the destination “Pos_des” randomly 
from {pos + 1, ... , Ncomp}. 

- If all the available employees have been 
transported  

 Then delete the request ri from the candidate list 
Else 

 Update the charge of the request ri in the 
candidate list 

- Update the arrival and departure times  
- If the vehicle capacity is achieve  

Then increase the number of vehicles by 1 and 
pass to next vehicle and go to step 3 

Else 
Go to step 3 

5.3 Crossover 

The crossover aims to create new individuals (called 
children) from those (parents) selected according to their 
fitness. In this paper, we apply two different crossover 
operators: one-point (1X) [13] and Uniform [13]. The one 
point crossover consists on dividing the parent’s 
chromosomes according to one point, when the uniform 
crossover consists on creating the children’s chromosomes 
according to a binary vector which decides if the gene 
corresponded must be taken from the first or the second 
parent.  
      In both crossover operators, we are interested just by 
the first and second lists of the individuals, corresponding 
respectively to the vehicles and their trajectories. From 
these, we create (for each parent) a list containing the 
requests in the order of their apparition in the parents’ 
vehicles trajectory beginning by the first vehicle into the 
last one. As shown below: 

Let be the following parents: 

P1: 

V1 V2 V3 V4 V5 
3 8 18 13 10 20 2 12 4 10 1 11 20 14 6 9 1 19 11 16 7 17 9 19 8 5 15 18 
 

P2: 
V1 V2 V3 V4 V5 

3 2 5 12 15 13 9 6 3 16 13 19 7 1 8 9 19 11 17 18 4 8 18 14 8 10 18 20 

The request lists corresponding to P1 and P2 are as 
follows: 
 

P1 :      3   8   10   2   4   1   6   9   7   5    
P2 :      3   2   5     9   6   7   1   8   4   10 

 
The second step is to apply the crossover operator: 
In one-point crossover, the two lists are divided according 
to a crossover point: 
 
 

P1 :      3   8   10   2   4   1   6   9   7   5    
P2 :      3   2   5     9   6   7   1   8   4   10 

 
The first (resp. second) child’s list contains the first part of 
the first parent (resp. second) and completed by the 
missing requests in the same order of the second (resp. 
first) parent’s list 
 

Child1 :      3   8   10   2   4   5   9   6   7   1    
Child2 :      3   2   5     9   6   8   10   4   1   7 
 

In uniform crossover, the children’s lists are constructed 
according to a binary vector which is randomly generated 
and characterized by a size equal to the parents' one, this 
vector decides if the gene must be taken from the first or 
the second parent as shown below: 
 

 
P1 :      3   8   10   2   4   1   6   9   7   5    
P2 :      3   2   5     9   6   7   1   8   4   10 

 
       Binary list :      1   0   0     1   0   1   1   0   0   0  
 
The number 0 in a position i, indicates that the request in 
this position of the first parent must be inserted in the first 
child list (if this request is not already inserted) and the 
request in the same position of the second parent must be 
inserted in the second child list. For the number 1 we 
permute the parent’s roles. Finally, we complete the child 
list by missing requests. 
The result candidate lists are as follows: 
 

Child1 :      3   8   10   9   4   7   1   5       
Child 2 :      3   2   5     6   1   8   4   10 

             

Requests in red are those taken from parent 2. 
 
To complete the lists, we insert requests 2 and 6 into the 
first list and requests 7 and 9 into the second list. Finally, 
we have the following children 1 and 2: 
 
 Child 1:   3 8 10 9 4 7 1 5 2 6 
             Child 2:   3 2 5 6 1 8 4 10 7 9 

5.4 Mutation 

The mutation operator ensures the diversity of individuals 
in the GA. The objective is to create a new individual by 
modification one or more components of an individual 
even this modification causes a deterioration of the 
objective function. We applied two mutation operators in 
our work. The first one consists in permuting the position 
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of two requests by exchange their origins and destinations 
in the trajectory of a given vehicle: 
 

V1 V2 V3 V4 V5 
3 8 18 13 10 20 2 12 4 10 1 11 20 14 6 9 1 19 11 16 7 17 9 19 8 5 15 18 

 
V1 V2 V3 V4 V5 

3 8 18 13 10 20 2 12 4 10 1 11 20 14 9 6 1 16 11 19 7 17 9 19 8 5 15 18 

 
The second mutation operator changes the assignment 
order of the requests to vehicles. We construct a request 
list by adding the first request of each vehicle, then the 
second one, and so on: 
 
Example: 

V1 V2 V3 V4 V5 
3 8 18 13 10 20 2 12 4 10 1 11 20 14 6 9 1 19 11 16 7 17 9 19 8 5 15 18 

 
The request list is: 
      3   10   4   6   9   8   2   1   5   7    
 
The new individual is created by inserting the request in 
the list order. 

5.5 Fitness 

For each individual, we associate a fitness function 
corresponding to a weighting of the three objective 
functions: transportation cost, the total waiting time and 
total ride time. We represent the fitness function as follow: 
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Where α1, α2 and α3 represent the importance of each cost 

6. Experiment results 

In this experiment, we used a 1.6 GHz Intel Pentium M 
processor, 1 Go RAM. 

6.1 Generation of Instances 

We generated randomly a set of instances of 10 to 500 
requests, each request is characterized by: 

- A number between 1 and 11 users to be served. 
- A working time ei between 06h00 and 08h00.  
- A homogenous fleet of vehicles, each one includes a 

fixed capacity. 
- An origin’s and a destination’s coordinates taken in the 

square [-20 Km, 20 Km], where the depot is localized 
in the origin (0, 0). 

- An Euclidean distance between two locations ai and aj. 
- An average speed of vehicles fixed at 60 km/h. 
- A service period T (the period made by a user to get in 

or get out the vehicle) is fixed at 0.15 minutes. 

6.1 Setting parameters 

To maximize the performance of an algorithm it is 
essential to optimize the choice of its parameters. In this 
work, we used the experimental design method whose 
goal is generally, to define for each parameter, its effect on 
the objective function, by several tests [28]. For this, we 
use the following terminology [24]: 

- Response: function to optimize (y), 
- Factors: parameters (x1, x2 … xn), 
- Levels: the possible values of a factor in experiments. 
- Effect of a factor xi on a response y, is the variation of 

y with respect to the levels of a factor. 
- Interaction: two factors x1 and x2 are in interaction, if 

the effect of x1 depends on the level of x2. 
 
Among the different experimental designs that exist, we 
choose to use the factorial design at two levels 2n which 
consists to define two levels for each factor (higher level 
« +1 » and lower level « -1 »). In these designs, any 
combination of the two levels is present during the 
experiment, and the goal is to define the effects of each 
factor on the response (y). An example of a factorial model 
22 (n=2) is given by the equation:  

y= a0+a1x1+a2x2+a12x1x2 
 
With: a0, a1 and a2 the coefficients of the model. They are 
called the effects of factors. 
 
Example: 
For an instance of 10 requests, we use Minitab software 
tool [22] to fix different parameters of our GA. The 
influential factors results, in our study, are defined as 
follows: 
 
- x1 Populations size (Np)  
- x2 Mutations probability (Pm) 
- x3 Type of crossover (Cr)   
- x4 Type of mutation (mut) 
- x5  Crossovers probability (Pc)  
- x6 Maximal Number of generations (Ngmax) 
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We define below a 2-level (-1, +1) of values x1, x2, x3, x4, 
x5 and x6. 

Table3: Levels of the GA parameters 
Factors 

x1 x2 x3 x4 x5 x6 Levels 
Pc Pm Crossover Mutation Np Ng 

-1 0.6 0.1 1X Permutation 50 500 

+1 0.9 0.4 Uniform Exchange 100 1000

 

The figure 2 below shows that the best results are obtained 
using the following values of different parameters of the 
algorithm: 
- Pc=0.6  
- Pm=0.4 
- Crossover: one-point (1X) 
- Mutation: PERMUTATION 
- Np=100 
- Ng=1000 
 

 

 

Fig. 2 graphic of main effects

We precede similarly for the others instances and we 
obtained the results represented in the following table: 

Table 4: The values of the GA parameters 
Benchmarks Ngmax Np Pc Pm Cr Mut 

1 100 10 0.6 0.4 1X Permutation
2 200 10 0.7 0.3 1X Permutation
3 500 100 0.9 0.4 1X Permutation
4 1000 100 0.9 0.4 1X Permutation
5 1000 100 0.5 0.4 1X Permutation
6 1000 100 0.9 0.4 1X Permutation
7 1000 100 0.9 0.5 1X Permutation
8 1000 100 0.6 0.4 1X Permutation
9 1000 100 0.9 0.4 1X Permutation

10 1000 100 0.9 0.4 1X Permutation
The table bellow shows the best values of different 
parameters of the ACO: 
 
 
 
 
 
 

 

Table 5: The values of the ACO parameters 

Bk.
Number

of 
iteration

Nb. 
ants α1 β1 α2 β2 τ01 τ02 ρ1 ρ2

1 100 5 1 1 3 3 0.5 1 0.2 0.8 
2 200 10 3 0.5 1 2.5 0.3 0.3 0.9 0.5 
3 500 10 1 0.5 1.5 1 0.5 0.3 0.5 0.6 
4 500 20 0.8 3 4 4 1 0.8 0.4 0.9 
5 500 20 1 1.5 4 1 1 1 0.7 0.5 
6 1000 30 1 3 4 1 0.5 0.5 0.8 0.9 
7 1000 30 1 4 3 3 1 0.3 0.5 0.9 
8 1000 30 1 1 3 0.5 1 1 0.5 0.9 
9 1000 30 1 4 3 0.5 0.3 1 0.9 0.9 

10 1000 30 1 4 3 3 0.3 0.3 0.9 0.5 

6.3 Computational results 

Firstly, we present detailed results obtained for the first 
instance which contained 10 requests. 
The following table shows the best routing found for each 
vehicle: 
 

Table 6: Best vehicles routings 
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 Vehicle Routing 
V1 (0, 6, 10, 20, 5, 16, 15, 0) 
V2 (0, 6, 2, 4, 16, 14,12, 0) 
V3 (0, 3, 7, 13, 2, 17, 12, 0) 
V4 (0, 3, 9, 8, 19, 13, 18, 0) 

ACO 

V5 (0, 8, 1, 11, 18, 0) 
V1 (0, 1, 11, 9, 19, 0) 
V2 (0, 6, 16, 2, 12, 0) 
V3 (0, 7, 3, 17, 2, 13, 8,18, 0)
V4 (0, 3, 4, 14, 13, 0) 

GA 

V5 (0, 10, 5, 15, 20, 0) 
 
Table 7 shows the assignments of requests to the required 
vehicles, the number of users of each request i served by 
the vehicle k, the ride time (RT), the waiting time (WT) and 
the transportation cost of all vehicles. We can see that the 
transportation costs are close for the GA and ACO. 

Table 7: Results obtained by both the ACO and the GA for the instance 
of 10 requests 

 
 Vehicles Requests 

k
ib

 

RT 
(min) 

WT 
(min) 

Transport 
cost 
(Km) 

6 3 8.58 23.27 
10 10 0.59 17.43 V1 
5 2 3.70 0.29 
6 3 8.58 23.27 
2 1 13.78 13.44 V2 
4 10 4.93 6.22 
3 7 5.11 19.06 
7 1 10.63 2.48 V3 
2 7 2.75 1.04 
3 2 9.93 0.29 
9 8 6.37 2.24 V4 
8 5 5.64 39.24 
8 5 9.77 105.69 

A
C

O
 

V5 1 7 2.32 1.04 

74.63 

1 7 2.32 1.04 V1 9 8 4.50 62.99 
6 7 4.26 1.04 V2 2 8 2.52 12.19 
7 1 2.79 0.15 
3 4 4.63 1.09 V3 
8 10 3.64 31.98 
3 5 14.75 15.96 V4 4 10 4.02 1.50 

10 10 7.32 6.94 

G
A

 

V5 5 2 2.30 0.29 

79.71 

 
The following graph gives a comparison between the 
waiting time for each request given by ACO and GA. 
 

 
Fig. 3 Waiting time given by ACO compared with waiting 

time given by GA 
 
As we can see from the graph, GA results are better than 
those given by ACO for 90% of the requests. For 10%, 
ACO results are better than those given by GA. 
The following figure shows a comparison between the ride 
time of a request calculated by ACO and GA and the 
direct ride time corresponding to the time which takes a 
vehicle to transport a request from the origin to the 
destination without stop. 
 

 
Fig. 4 Comparison of the Ride time given by both ACO 

and GA with the direct ride time 
 
For 80% of requests, the requests are directly transported 
from the origin to the destination by applying the GA, 
since for ACO, there are just 40% of requests that are 
directly transported. But, we can see from the following 
table, that the transport cost calculated by ACO is better 
than transport cost calculated by GA. 
     In the second part of this section, we evaluate results 
obtained for the 10 different instances of 10 to 500 
requests. 
     The following table resumes results obtained for all 
instances involving up to 500 requests, 
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Table 8: Results obtained for the 10 instances

Nb. 
of vehicles 

Total  
Waiting time 

Total  
Ride time 

Transport cost  
(Km) Times(s) 

Bk Nd 
Nb 
of  

users ACO GA ACO GA ACO GA ACO GA ACO GA 

1 10 72 5 5 255 135.17 92.98 53.05 74.63 79.71 0.05 0.01 

2 30 180 9 9 750.00 589.85 222.11 173.71 416.16 645.39 1.24 0.11 

3 60 363 19 19 849.26 1274.75 465.55 438.89 830.92 1167.73 10.95 19.08

4 100 535 18 18 2083.12 3664.65 1234.90 1535.13 940.54 1890.16 67.13 31.89

5 150 770 26 26 2261.82 5730.61 2104.24 2897.17 1428.93 2894.39 180.56 27.86 

6 200 1045 35 35 2627.13 7455.21 2519.99 4074.95 1844.01 3610.57 475.65 82.90

7 250 1363 46 46 2951.23 18952.35 3178.47 4773.67 2450.65 5021.03 119.56 108.76

8 300 1713 58 58 3449.48 7455.21 3830.61 4074.95 3034.47 3610.57 192.32 104.08

9 400 2204 74 74 4190.93 16445.79 4507.53 5907.23 3747.60 8082.64 430.95 306.83

10 500 2725 91 91 4370.73 19340.02 5572.96 8738.37 4553.88 9992.58 1584.26 470.54

 
 
 
We observe that ACO and GA provide the same number 
of vehicles for all the instances. For the first one 
involving 10 requests, the results given by GA are better 
that those given by ACO, but, when we increase the 
number of requests, the ACO provides much better 
results than GA as shown in the following figures. 
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Fig. 5 Comparison between the Waiting time given by ACO and GA 

The fact that results given by ACO is much better than 
those given by GA owes to the first step of ACO. In this 
step, we construct a global routing containing all 
requests such as the distance between origins, destination 
and difference between work times of requests, is 
minimal. Therefore, requests which are close are served 
by the same vehicle.       
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Fig. 6 Ride time 

The constructive aspect of the ACO, has a large effect on 
results because, each ant during its path construction, 
selects stations which optimize the objective function. 
Thus, ACO is more guided than GA.  
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Fig. 7 Transport cost 

However, if we compare the two algorithms in term of 
CPU time, we observe that ACO is very expensive than 
GA. Unlike GA which inserts station randomly in the 
trajectory, each ant makes several tests before selecting 
the next station. 
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Fig. 8 CPU Time 

7. Conclusion 

      In this paper, we have proposed a mathematical 
formulation for the PSTP and adapted two population 
heuristics, namely, ACO and GA to resolve it. Our model 
takes into account the optimization of service’s quality 
adding to the cost transportation. So, we aim to minimize 
the ride time and the waiting time in the working place 
for each user. 
      To evaluate our approaches and a comparison 
between them, we have tested them on several sizes of 
random generated data. The two approaches seem to be 
consistent with different generated instances.  

The experiments presented in this paper, shows 
clearly that the constructive aspect of the ACO has an 
important role in the generation of efficient solutions in 
term of the solutions quality comparing with GA. And 
that, through the insertion decision of the current request 
to the partial solution is made according to the objective 
function. i.e, the insertion with the best cost will be 
chosen.   
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