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Summary 
This paper proposes a novel VLSI architecture for the 
demodulator for processing satellite data communication. The 
overall receiver algorithm is divided into two parts: one to be 
implemented on an FPGA and the other on a DSP processor. A 
new distributed arithmetic based architecture for implementing a 
Sampling Rate Converter is also proposed. The main advantage 
of this architecture is that it does not employ any MAC unit, 
whose operational speed is, generally, a bottleneck for high filter 
throughput. Instead, it makes extensive use of LUTs and hence is 
ideally suited for FPGA implementation. Architecture for Digital 
Frequency Synthesizer, which gives 60 dB spectral purity, is also 
presented. The developed FPGA core consists of a mixer and two 
numbers of 193 tap, RRC filters to accept modulated, 12-bit, 
signed ADC output at a sampling frequency of 1.536 MHz and 
convert it into In-phase (I) and Quadrature-phase (Q) channel 
outputs, each of size 16 bits, signed, at half the sampling 
frequency. The main design goals in this work were to maintain 
low system complexity and reduce power consumption and chip 
area requirements. These architectures were coded in Verilog 
HDL and implemented on Xilinx FPGA. The design was 
synthesized with XCV600-4 FPGA and occupies about 2360 
slices with an equivalent gate count of about 45000 and 
operating at a maximum frequency of 19.8 MHz. The entire 
modulator and demodulator have been coded in Matlab in order 
to validate the hardware results. The hardware and MATLAB 
results compare favorably.  
Key words: 
Algorithm, Demodulator, Linear algebra, Distributed Arithmetic 
Architecture, Sampling Rate Converter, Digital Frequency 
Synthesizer, Field Programmable Gate Arrays.  

1. Introduction 

World demand for communication facilities carrying many 
different types of real-time and non-real-time signals such 
as voice, data, facsimile, and video has been growing by 
leaps and bounds during the past few decades. The 
increasing demand and the resulting large amount of 
world-wide communication traffic naturally calls for links 
with very large transmission bandwidth.  

A number of demodulator algorithms for data 
communication have been reported by researchers       [1-
12]. Digital Frequency Synthesizer (DFS) Algorithm and 
Architecture developed are available in the literature [13-
15].  FPGA implementations of some of these 
architectures were also reported [16-18]. A two stage 
estimation scheme for demodulator for processing satellite 
data was proposed in our earlier work [19], where carrier 
frequency estimation was followed by timing recovery 
under training. Therein the receiver algorithm was 
partitioned into two parts, one to be implemented on 
FPGA and the other on DSP. An overview of the whole 
system architecture was also presented and its 
performance was evaluated. In this paper, we review the 
basic theory of distributed arithmetic and its modified 
versions to achieve a trade off between chip area and 
throughput. Then we present new architectures for 
sampling rate converter and digital frequency synthesizer, 
which results in the use of reduced memory. However, the 
DSP implementation of the remaining part, namely, 
frequency and timing offset, carrier recovery and LMS are 
out of scope of the present work.  
The rest of this paper is organized as follows: In the next 
section, sampling rate converter theory and optimization 
techniques for ROM are presented. This is followed by the 
detailed architecture of sampling rate converter.  The DFS 
architecture is developed in Section 3. Section 4 presents 
the implementation of mixer and RRC filters using 
Verilog targeted on Xilinx FPGA. So also the results. 
Conclusions are presented in the last section. 

2. Implementation of Sampling Rate 
Converter 

2.1 Word-length issues 

Eye patterns are often employed in the qualitative 
evaluation of receiver performance. These patterns may be 
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obtained using the BPSK system. The output of the 
matched filter in the receiver is fed to the vertical input of 
an oscilloscope and the symbol clock is fed to the external 
trigger of the oscilloscope. The transmitted digital signal is 
recovered by sampling the received analog signal and then 
making a threshold decision. In the optimal case, the 
decision point or sampling point is the point where the eye 
is most open. While implementing the filter in a fixed-
point platform such as an FPGA, the effect of finite word 
length on the filter performance needs to be considered. 
Excessive word length increases the hardware cost and 
reduces the speed, whereas smaller word length reduces 
the precision of filter coefficients. For the present case of 
an RRC filter, we need to select the word length of the 
filter coefficients such that we get minimum inter-symbol 
interference at the output of matched filter at the receiver. 
The effects of the truncation of filter coefficients can be 
illustrated by way of an example. In this example there is 
no noise in the channel and a roll-off factor of 0.4 is used. 
The sample point is at t = 0.5. Fig. 1 a shows the eye 
pattern obtained using MATLAB, for infinite precision of 
RRC filter coefficients. It may be noted that at the 
sampling point, the ISI is negligible. We also plot the eye-
patterns for filter coefficient word lengths of 12 bits.  For 
8 bits and 10 bits, there exists a large amount of ISI at the 
sampling points. This is due to the presence of large 
quantization noise, which manifests itself in the form of 
ISI, in the present case.   Also,  due to the  finite  
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Figure 1 Effect of filter coefficient word length on eye-pattern 
a Eye-Pattern for infinite precision 
b Eye-Pattern for 12-bit precision 

word length of filter coefficients, the attenuation of the 
filter response in the stop-band reduces. As the word 
length for filter coefficients is increased, the ISI at the 
sampling points reduces.  It may be noted that as the 
number of bits is increased from 12 to 16 bits, the ISI at 
the sampling points remains approximately constant, close 
to that due to infinite precision in Fig.1 a. Thus, no major 
gain is evident in increasing the word length beyond 12 
bits. Therefore, we design our filter with the coefficient 
word length of 12 bits. 
 

2.2 Distributed Arithmetic (DA) 

Distributed Arithmetic is used to design bit-level 
architectures for vector to vector multiplications. In 
distributed arithmetic, each word in the vector is 
represented as a binary number; the multiplications are 
reordered and mixed, such that the arithmetic becomes 
“distributed” throughout the structure [11, 12]. Distributed 
arithmetic is commonly used for implementation of 
convolution operations and discrete cosine transform 
(DCT). 

2.2.1 Convolutional Distributed Arithmetic 

Let us consider the inner product of two length-N vectors 
C and X:  
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Substituting (2) in (1), we get 
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Therefore, by interchanging the summing order of i  
and j , the initial multiplications in equation (1) are 
distributed to another computation pattern. 
Since the term jC  depends upon j,ix , which has only 2N 

possible values, it is possible to pre-compute them and 
store them in a read only memory (ROM). An input set of 
N bits ( j,1Nj,1j,0 x,...,x,x − ) is used as the address to 

retrieve the corresponding jC  values. These intermediate 

results are accumulated in W clock cycles to produce one 
Y  value. This leads to multiplier-free realization of vector 
multiplication. Table 1 shows the contents of the ROM for 
N = 4. Fig. 2 shows a typical architecture for the 
computation of the inner product of two length-N vectors. 
The shift accumulator is a bit-parallel carry propagate 
adder that adds the ROM contents to the previously 
accumulated result. The inverter and the MUX are used 
for inverting the output of the ROM in order to 
compute 1−WC . The control signal S  is 1 when 
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1−=Wj  and, 0 otherwise. The computation runs from 
j = 0 to j  = 1−W  and the result is available in bit 

parallel form after W clock cycles. This approach 
corresponds to bit-serial distributed arithmetic.  

Table 1 Contents of ROM for N = 4 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 2 Architecture for computing inner product of two length - N  
vectors using Distributed Arithmetic 

2.2.2 Distributed Arithmetic with offset-binary 
coding (DA-OBC) 

In this section, the offset-binary coding (OBC) is 
introduced, which can reduce the ROM size by a factor of 
2, i.e., down to 2N-1.  
Equation (2) can be rewritten as 
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Equations (4) to (6) characterize the OBC scheme.  
It was observed that the contents of the ROM are mirrored 
across the line between the eighth and the ninth rows in 
the ROM table. Therefore, it is possible to reduce the 
ROM size by a factor of two. Table 2 illustrates the new 
ROM table.  
 

Table 2 Contents of ROM with DA – OBC Coding (N = 4) 
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2.3 Modified DA-OBC Architecture 

It can be observed from Table 2 that the ROM values 
except oc term are mirrored along the line between the 4th 
and the 5th rows. Therefore, the ROM table of OBC 
scheme can be further reduced by a factor of two [16].                                        
Table 3 illustrates the new ROM table and Fig. 3 shows 
the architecture for the computation of inner product using 
this method. By repeated application of this method, the 
ROM size can be reduced up to 2 words. 
To achieve the size reduction of the whole system, the 
reduction in the number of ROM cells and the decoder 
circuit inside the ROM should be larger than the hardware 
increase for control circuits. 

 
Table 3 Modified DA-OBC ROM Contents (N = 4) 

 

 

 

 

 

 

 

 

 

2.4 ROM Decomposition for Distributed Arithmetic  

The ROM size of the conventional distributed arithmetic 
increases exponentially with N. Generally, ROM access 
time can be a bottleneck for the speed of the whole system, 
especially when the ROM size is large. Therefore, 
reducing the ROM size is very important and is of great 
practical concern. Exploiting the linearity of equation (3), 
one possible solution to this problem is to divide the N 
address bits of the ROM into N/K groups of K bits, i.e., to 
implement the ROM of size 2N with N/K ROMs of size 2K 
and add the outputs of these ROMs using a multi-input 
accumulator. Fig. 4 illustrates the architecture for 
computing an N-input inner product using conventional 

distributed arithmetic with ROM decomposition. The total 
size of storage is now reduced from 2N to (N/K)2K which 
increases linearly with N. The ROM access time is also 
reduced along with the ROM size. This reduction of the 
storage size is balanced by a linear increase of the 
computational complexity of the accumulator.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 Decomposing 2N sized ROM into N/K ROMs of size 2K 

2.5 Sampling Rate Converter Architecture 

Having reviewed various distributed arithmetic based 
techniques for vector inner product implementation, we 
will now discuss the hardware architecture of sampling 
rate converter, which makes use of these techniques 
extensively. The input to the sampling rate converter is the 
output of the mixer, which then gets multiplied by 
cos(nπ /2) and sin(nπ /2) to bring the signal to baseband 
[19]. Then the image signals are removed by the following 
LPF, which in the present case is the RRC filter. After that, 
the signal is down-sampled by a factor of two, so as to 
make it suitable for carrier recovery. 
Mathematically, the output of the RRC, in the I-channel, 
can be written as 
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Effectively, the input data is decimated by two and sign 
changes are applied to alternate remaining samples.  The 
resulting data stream is filtered by a new low-pass filter.  
The impulse response of the new in-phase low-pass filter 
hLPI(n) is given by 

)n(h)n(h LPLPI 2=        for n = 0,1,2,…, KI              (8)                  
It may be noted that the new filter processing speed is half 
of the input data rate. Similarly,  
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where hLPQ = hLP(2n+1).  
Effectively, the input data is decimated by two and sign 
changes are applied to alternate remaining samples. It may 
be noted that there is one sample relative delay between 
the in-phase and quadrature channels. The resulting data 
stream is filtered by a new low-pass filter. The impulse 
response of the new quadrature low-pass filter hLPQ(n) is 
given by 
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Figure 5 Combined Simplified Structure 

 

Again, the processing rate is half of the input data rate. 
The overall digital quadrature demodulator is shown in Fig. 
5. 
It may be noted that all samples are not passed to both 
digital filters. The "even" samples are passed to the in-
phase filter with every other sample undergoing a sign 
change. Similarly, the "odd" samples are passed to the 
quadrature filter, and again, every other sample also 
undergoes a sign change. The two blocks are very similar 
from the hardware architectural point of view. Therefore, 
we will discuss the hardware architecture of only one of 
these blocks in the next section. 

2.5.1 Detailed design description of I-channel Block  

Substituting values for n in equation (7), we get  
 

I(0)  = h(0)y(0) 
 
I(2)  = - h(0)y(2) + h(2)y(0) 
. 
. 

I(200)  = ∑
=

96

0k

 h(2k) y(200-2k) (-1)100-k 

  = h(0)y(200) -  h(2)y(198) + h(4)y(196) 
- …                + h(96)y(104) -…    
                + h(188)y(12) - h(190)y(10) + 
h(192)y(8) 
 
  = h(0)[y(8) + y(200)] - h(2)[y(10) + 
y(198)] + h(4)[y(12) + y(196)] - …        + 
h(96)y(104)  
 
I(202)   = - h(0)[y(10) + y(202)] + h(2)[y(12) + 
y(200)] - h(4)[y(14) + y(198)] +  
                … - h(96)y(106) 
 
I(204)   = h(0)[y(12) + y(204)] - h(2)[y(14) + 
y(202)] + h(4)[y(16) + y(200)] - …        + 
h(96)y(108) 

 
and so on. 
It can be seen that the sign of all the terms containing 
coefficients h(0), h(4), h(8), … , h(96) is the same. 
Similarly, all the terms containing coefficients h(2), h(6), 
h(10), … , h(94) bear the same sign. Again, the signs get 
inverted in each succeeding even value of I(2n). Also, due 
to the symmetry of the FIR filter, the number of filter 
coefficients reduces to 49 from 97, effectively. However, 
implementing these 49 coefficients with Distributed 
arithmetic will take a huge amount of memory (249 words). 
Thus, on breaking the ROM into smaller parts, using 
improved form of modified DA-OBC and taking into 
consideration the symmetry of coefficients and the 
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inversion of their sign in every succeeding value of I(2n), 
we get the I – channel filter architecture  as shown in Fig. 
6. An extra signal sgn_pos is introduced to take care of 
sign inversion. A high on sgn_pos gives a positive sign for 
the terms containing the coefficients h(0), h(4), h(8), 
… ,h(96), whereas a low on this signal produces a negative 
sign for terms containing coefficients h(2), h(6), h(10), 
… ,h(94). These terms are then appropriately mixed to 
produce values of I(2n). 
The coefficients of the smaller modules are as follows: 
 

A1 : h(0), h(4), h(8), h(12), h(16), h(20) 
A2 : h(2), h(6), h(10), h(14), h(18), h(22) 
A3 : h(24), h(28), h(32), h(36), h(40), h(44) 
A4 : h(26), h(30), h(34), h(38), h(42), h(46) 
A5 : h(48), h(52), h(56), h(60), h(64), h(68) 
A6 : h(50), h(54), h(58), h(62), h(66), h(70) 
A7 : h(72), h(76), h(80), h(84), h(88), h(92) 
A8 : h(74), h(78), h(82), h(86), h(90), h(94) 

Thus, the total ROM size needed reduces to 8*24 + 1 words 
instead of 249 words, as in the case of the simple DA.  

2.6 Results 

To verify the arithmetic based architectural design, we 
compare the impulse response of the design implemented 
in VERILOG with that coded in MATLAB. A random 
input sequence is fed to the functional block and results of 
MATLAB and VERILOG implementations are presented 
in Fig. 7a and b for comparison. It can be seen that the two 
outputs closely follow each other. The main advantage of 
this architecture is that it does not employ any MAC unit, 
whose operational speed is, generally, a  
                                                              

 

 

 

Figure 7 Response of I-Channel Block in MATLAB and VERILOG 
a Impulse input    b Random Input Sequence 

 
bottleneck in filter throughput. Again, it makes extensive 
use of LUTs and hence is ideally suited for FPGA 
implementation. 

3. Implementation of Digital Frequency 
Synthesizer 

We use a digital frequency synthesizer in our system to 
generate a sampled sinusoidal wave of frequency 71 KHz 
±  estimated carrier frequency offset.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6 Telescopic View of I-Channel Block Implementation 

3.1 Introduction 

The major advantage of Digital Frequency Synthesizer is 
that its output frequency, phase and amplitude can be 
precisely and rapidly manipulated under the control of a 
DSP. Other inherent DFS attributes include the ability to 
tune with extremely fine frequency and phase resolution 
and to rapidly “hop” between the frequencies. These 
combined characteristics have made this technology 
popular in military, radar and communications systems. 

3.2 Analysis 

Various techniques are available in the literature for 
quarter wave memory compression, such as Sine-phase 
difference algorithm, Taylor series expansion, Modified 
Sunderland Architecture, Nicholas’ Architecture, 
CORDIC (Coordinate Rotation Digital Computer) 
Algorithm, etc. The implicit goal of these phase-to-sine 
conversion techniques is to reduce the maximum 
amplitude error for any phase angle, in effect mimicking 
the behavior of a LUT. In pursuing this goal, all 
architectures become complex in one way or the other. 
Also, the ROM size becomes fairly large as it grows 
exponentially with the width of the phase accumulator, 
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whereas a large phase accumulator width is desirable in 
order to achieve fine frequency tuning. Truncating the 
phase accumulator output, on the other hand, introduces 
spurious harmonics.  

3.3 Concept of the Architecture used  

Instead of a ROM LUT, a hardware-optimized phase-to-
sine amplitude converter approximates the first quadrant 
of the sine function with eight equal-length piecewise 
linear segments [8]. The main goal is to maintain low 
system complexity and reduce power consumption and 
chip area requirements. The second aim is to achieve a 
specified spectral purity, which is defined as the ratio of 
the power in the desired frequency to the power in the 
greatest harmonic, across the synthesizer’s tuning 
bandwidth. Spectral purity is an essential design parameter 
for synthesizer used in communication systems, ensuring 
that undesired in-band signals remain below a given 
threshold and are not detected. 
In order to achieve the first goal, we approximate a 
sinusoid as a series of eight equal-length piecewise 
continuous linear segments,  

[0,7] i       ,y)ix(m)x(s iii ∈+−×=
8

 

where mi is the slope of each segment and is carefully 
selected to eliminate the requirement for multiplication by 
representing each one as a sum of at the most two powers 
of two. This is well known and often used technique [15]. 
We also restrict the precision of slope representation, i.e., 
the difference between the smallest and the largest powers 
of two used; in effect putting an upper bound on the 
adder’s width. Equal length segments are selected to 
reduce the control system circuitry costs. In order to 
achieve a desired spectral purity, different sets of im  and 

iy coefficients are evaluated and the best one meeting the 
requirements is selected. 

3.4 Description of the architecture 

The new DFS architecture is shown in Fig. 8. It 
corresponds to a set of coefficients yielding 60dB purity. 
The coefficients are given in Table 4. 
The phase to sine amplitude converter block includes a 1’s 
complement to exploit quarter wave symmetry, as 
previously seen in other structures. Clearly, this 
architecture is significantly less complex than those of the 
other methods discussed previously. It does not include a 
ROM. No multipliers or squaring circuits are required. 
Equal length segments are used to simplify the control 
circuitry. Only three integers need to be added and 
multiplexers shown in Fig. 8 have been optimized by 

combining similar inputs and implemented in 
combinational logic.  
The phase accumulator is 20 bits wide, truncated to 12 bits. 
The two MSBs are used for quadrant symmetry. The next 
three bits identify the segment. The remaining seven bits 
identify different sub-angles. The two upper multiplexers 
shift these remaining seven bits according to the slopes im , 
listed in Table 4. 
In Fig. 8, the notation {>>n} signifies a right shift by n 
bits, or equivalently, division by 2n. The lower multiplexer 
selects the appropriate iy  approximation listed in the 
table. The output from the multiplexers is 13 bits wide, to 
account for the whole dynamic range of possible values. 
The three-operand adder sums the multiplexer outputs 
together and rounds the result to 7 bits. 
 

Table 4 Linear segment coefficients for 60 dB purity 
i mi yi 

0 1 + ½ 2/1024 

1 1 + ½ 191/1024 

2 1 + ¼ 384/1024 

3 1 + 1/8 552/1024 

4 1 697/1024 

5 ½ + ¼ 819/1024 

6 ½ 909/1024 

7 1/8 971/1024 

3.5 Results of DFS 

To verify the architecture, the design was coded in Verilog. 
The spectrum was obtained by taking the DFT of one 
grand repetition of the system output data. It can be easily 
seen that all the spurs are at least approx. 60 dB below the 
fundamental. Spectra for other odd frequency control 
words are similar, with spurs no greater than those shown 
here. It has been shown [13] that the spectrum 
corresponding to two frequency control words that are 
relatively prime to the phase accumulator’s overflow 
values are permutations of each other. The amplitudes 
shown in the spectra of Fig. 9 are, therefore, exact in 
amplitude to the spurs for any other odd frequency control 
word. Only their locations change. The spectral purity of 
the DFS output is sufficient for the present system 
requirement.
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Figure 8  DFS Architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 Output Spectrum 
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4. Implementation of FPGA part of the   
demodulator  

4.1 Introduction 

In our earlier paper [19], synchronization techniques and 
receiver structure were discussed. Also, the task of 
partitioning the receiver algorithm into two parts, one to 
be implemented on FPGA and the other on DSP, was 
performed. We presented a new architecture for sampling 
rate converter implementation in Section 2, which results 
in the use of reduced memory utilization. The DSP 
implementation of the remaining part is out of scope of the 
present work.  In this section, we will describe the 
hardware implementation details of the FPGA part of the 
demodulator. 

4.2 Implementation of mixer and RRC filters using 
Verilog on Xilinx FPGA 

A block diagram of the FPGA part of the demodulator as 
implemented using Verilog is shown in Fig. 10. The 
developed core consists of a mixer and two numbers of 
193 tap, RRC filters to accept modulated, 12-bit, signed 
ADC output at a sampling frequency of 1.536 MHz and 
convert it into in-phase (I) and quadrature-phase (Q) 
channel outputs, each of size 16 bits, signed, at half the 
sampling frequency. It may be noted that the core requires 
two input clocks for successful operation: ‘clk_bit’ must 
be 8.5 times the frequency of ‘clk_word’ frequency. These 
clocks may be easily generated from the sampling 
frequency, ‘clk_word’ (1.536 MHz) using a PLL and three 
numbers of frequency dividers.  
Fig. 11 shows the RTL View of FPGA part of the 
demodulator after running the synthesis using Synplify. 
The synchronous clock, ‘clk_wordby2’, for the output 
channels, I and Q, is generated by the core and, the 
outputs may be registered at the positive edge of this clock 
when I_Q_valid is high. EDF file generated by Synplify 
tool is input to the Xilinx place and route and the results 
for the same are tabulated in Table 5. This was followed 
by running Xilinx back annotation and simulation using 
Modelsim. The results obtained after back annotation were 
verified to be correct. 
 

Table 5 FPGA Implementation details 

 

* Maximum operating frequency 
# 1.536 MHz and $ 13.056 MHz are what is 
required for normal operation. 

4.3 Verification 
Fig. 12 shows the blocks of the part of the demodulator 
implemented using Verilog and, the necessary Matlab 
modules required for its verification. Matlab generates the 
input signal for the Modulator. For the sake of testing, two 
sine wave frequencies, 2 KHz and 20 KHz, one at a time, 
are used as input. The Matlab Modulator output is signed, 
16 bits wide. This serves as the input for both the Matlab 
and Verilog demodulators as shown. 

 
Figure 10 Block diagram of FPGA part of the demodulator 
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Fig. 11 Synthesis (Synplify) RTL View of FPGA part of the demodulator 
 
It may be noted that the input to the Verilog demodulator 
is MSB 12 bits (and not the entire 16 bits) so as to keep 
the same precision as the ADC output in the existing 
ADSP implementation. 16-bit precision has been retained 
for the input to the Matlab demodulator since it serves as a 
better standard reference for verifying the Verilog 
implementation. The modulated signal, thus produced, is 
applied to both the Matlab and Verilog demodulators. The 

PERFORMANCE
(MHz) * FPGA DEVICE LOGIC 

GATES 
clk_word clk_bit 

Xilinx Virtex 
XCV600hq240-4 44,652 54.3 #        19.8 $ 
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I and Q channels are the required outputs, and are each of 
width 16 bits, signed. The Verilog design requires two 
clocks, clk_bit (13.056 MHz) and  clk_word (1.536 MHz) 
for its operation. The I and Q outputs from Verilog 
demodulator compare favorably with the corresponding 
outputs of Matlab demodulator, which has served as the 
reference for verification of the hardware implemented on 
FPGA. I and Q results are shown in Fig. 13 for 20 KHz as 
an example. 

 
Fig. 12    Blocks of the part of the demodulator implemented using 

Verilog and the Matlab modules for its verification 

5. Conclusions 
This paper proposed a new distributed arithmetic based 
architecture for implementing a Sampling Rate Converter. 
The main advantage of this architecture is that it does not 
employ any MAC unit, whose operation speed is, 
generally, a bottleneck for high filter throughput. It makes 
extensive use of LUTs and hence is ideally suited for 
FPGA implementation. An architecture for Digital 
Frequency Synthesizer, which gives 60 dB spectral purity 
was also presented. Both the architectures were coded in 
Verilog HDL and implemented on XILINX FPGA. The 
hardware and MATLAB results compare favorably. 
 

 

 
Figure 13  Matlab and Verilog responses of  

I and Q channels at 20 KHz 
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