
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

137

Manuscript received July 5, 2009
Manuscript revised July 20, 2009

Development of Algorithm, Architecture and FPGA
Implementation of Demodulator for Processing Satellite Data

Communication

K. R. Nataraj *, Dr S. Ramachandran** and Dr B. S. Nagabushan ***

* M. G..R. University, Chennai, India
** National Academy of Excellence, Bangalore, 560060, India

*** Sanlab Technologies, Bangalore, 560038, India

Summary
This paper proposes a novel VLSI architecture for the
demodulator for processing satellite data communication. The
overall receiver algorithm is divided into two parts: one to be
implemented on an FPGA and the other on a DSP processor. A
new distributed arithmetic based architecture for implementing a
Sampling Rate Converter is also proposed. The main advantage
of this architecture is that it does not employ any MAC unit,
whose operational speed is, generally, a bottleneck for high filter
throughput. Instead, it makes extensive use of LUTs and hence is
ideally suited for FPGA implementation. Architecture for Digital
Frequency Synthesizer, which gives 60 dB spectral purity, is also
presented. The developed FPGA core consists of a mixer and two
numbers of 193 tap, RRC filters to accept modulated, 12-bit,
signed ADC output at a sampling frequency of 1.536 MHz and
convert it into In-phase (I) and Quadrature-phase (Q) channel
outputs, each of size 16 bits, signed, at half the sampling
frequency. The main design goals in this work were to maintain
low system complexity and reduce power consumption and chip
area requirements. These architectures were coded in Verilog
HDL and implemented on Xilinx FPGA. The design was
synthesized with XCV600-4 FPGA and occupies about 2360
slices with an equivalent gate count of about 45000 and
operating at a maximum frequency of 19.8 MHz. The entire
modulator and demodulator have been coded in Matlab in order
to validate the hardware results. The hardware and MATLAB
results compare favorably.
Key words:
Algorithm, Demodulator, Linear algebra, Distributed Arithmetic
Architecture, Sampling Rate Converter, Digital Frequency
Synthesizer, Field Programmable Gate Arrays.

1. Introduction

World demand for communication facilities carrying many
different types of real-time and non-real-time signals such
as voice, data, facsimile, and video has been growing by
leaps and bounds during the past few decades. The
increasing demand and the resulting large amount of
world-wide communication traffic naturally calls for links
with very large transmission bandwidth.

A number of demodulator algorithms for data
communication have been reported by researchers [1-
12]. Digital Frequency Synthesizer (DFS) Algorithm and
Architecture developed are available in the literature [13-
15]. FPGA implementations of some of these
architectures were also reported [16-18]. A two stage
estimation scheme for demodulator for processing satellite
data was proposed in our earlier work [19], where carrier
frequency estimation was followed by timing recovery
under training. Therein the receiver algorithm was
partitioned into two parts, one to be implemented on
FPGA and the other on DSP. An overview of the whole
system architecture was also presented and its
performance was evaluated. In this paper, we review the
basic theory of distributed arithmetic and its modified
versions to achieve a trade off between chip area and
throughput. Then we present new architectures for
sampling rate converter and digital frequency synthesizer,
which results in the use of reduced memory. However, the
DSP implementation of the remaining part, namely,
frequency and timing offset, carrier recovery and LMS are
out of scope of the present work.
The rest of this paper is organized as follows: In the next
section, sampling rate converter theory and optimization
techniques for ROM are presented. This is followed by the
detailed architecture of sampling rate converter. The DFS
architecture is developed in Section 3. Section 4 presents
the implementation of mixer and RRC filters using
Verilog targeted on Xilinx FPGA. So also the results.
Conclusions are presented in the last section.

2. Implementation of Sampling Rate
Converter

2.1 Word-length issues

Eye patterns are often employed in the qualitative
evaluation of receiver performance. These patterns may be

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

138

obtained using the BPSK system. The output of the
matched filter in the receiver is fed to the vertical input of
an oscilloscope and the symbol clock is fed to the external
trigger of the oscilloscope. The transmitted digital signal is
recovered by sampling the received analog signal and then
making a threshold decision. In the optimal case, the
decision point or sampling point is the point where the eye
is most open. While implementing the filter in a fixed-
point platform such as an FPGA, the effect of finite word
length on the filter performance needs to be considered.
Excessive word length increases the hardware cost and
reduces the speed, whereas smaller word length reduces
the precision of filter coefficients. For the present case of
an RRC filter, we need to select the word length of the
filter coefficients such that we get minimum inter-symbol
interference at the output of matched filter at the receiver.
The effects of the truncation of filter coefficients can be
illustrated by way of an example. In this example there is
no noise in the channel and a roll-off factor of 0.4 is used.
The sample point is at t = 0.5. Fig. 1 a shows the eye
pattern obtained using MATLAB, for infinite precision of
RRC filter coefficients. It may be noted that at the
sampling point, the ISI is negligible. We also plot the eye-
patterns for filter coefficient word lengths of 12 bits. For
8 bits and 10 bits, there exists a large amount of ISI at the
sampling points. This is due to the presence of large
quantization noise, which manifests itself in the form of
ISI, in the present case. Also, due to the finite

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

time (second)

am
pl

itu
de

Eye pattern for infinite precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

time (second)

am
pl

itu
de

Eye pattern for wordlength = 12 bits

 a b

Figure 1 Effect of filter coefficient word length on eye-pattern
a Eye-Pattern for infinite precision
b Eye-Pattern for 12-bit precision

word length of filter coefficients, the attenuation of the
filter response in the stop-band reduces. As the word
length for filter coefficients is increased, the ISI at the
sampling points reduces. It may be noted that as the
number of bits is increased from 12 to 16 bits, the ISI at
the sampling points remains approximately constant, close
to that due to infinite precision in Fig.1 a. Thus, no major
gain is evident in increasing the word length beyond 12
bits. Therefore, we design our filter with the coefficient
word length of 12 bits.

2.2 Distributed Arithmetic (DA)

Distributed Arithmetic is used to design bit-level
architectures for vector to vector multiplications. In
distributed arithmetic, each word in the vector is
represented as a binary number; the multiplications are
reordered and mixed, such that the arithmetic becomes
“distributed” throughout the structure [11, 12]. Distributed
arithmetic is commonly used for implementation of
convolution operations and discrete cosine transform
(DCT).

2.2.1 Convolutional Distributed Arithmetic

Let us consider the inner product of two length-N vectors
C and X:

1

0

N

i i
i

Y c x
−

=

=∑ (1)

{ }
{ }

,
 ' tan ,

 ' 2' .
i

i

where
c s are M bit cons ts

x s are coded as W bit s complement numbers

−

−

No

w, ix can be written as
1

, 1 , 1
1

2 (2)
W

j
i i W i W j

j
x x x

−
−

− − −
=

= − +∑

Substituting (2) in (1), we get

1

1
0

2 (3)
W

j
W j

j
Y C

−
−

− −
=

= ∑

Therefore, by interchanging the summing order of i
and j , the initial multiplications in equation (1) are
distributed to another computation pattern.
Since the term jC depends upon j,ix , which has only 2N

possible values, it is possible to pre-compute them and
store them in a read only memory (ROM). An input set of
N bits (j,1Nj,1j,0 x,...,x,x −) is used as the address to

retrieve the corresponding jC values. These intermediate

results are accumulated in W clock cycles to produce one
Y value. This leads to multiplier-free realization of vector
multiplication. Table 1 shows the contents of the ROM for
N = 4. Fig. 2 shows a typical architecture for the
computation of the inner product of two length-N vectors.
The shift accumulator is a bit-parallel carry propagate
adder that adds the ROM contents to the previously
accumulated result. The inverter and the MUX are used
for inverting the output of the ROM in order to
compute 1−WC . The control signal S is 1 when

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

139

1−=Wj and, 0 otherwise. The computation runs from
j = 0 to j = 1−W and the result is available in bit

parallel form after W clock cycles. This approach
corresponds to bit-serial distributed arithmetic.

Table 1 Contents of ROM for N = 4

Figure 2 Architecture for computing inner product of two length - N
vectors using Distributed Arithmetic

2.2.2 Distributed Arithmetic with offset-binary
coding (DA-OBC)

In this section, the offset-binary coding (OBC) is
introduced, which can reduce the ROM size by a factor of
2, i.e., down to 2N-1.
Equation (2) can be rewritten as

1
(1)

, 1 , 1 , 1 , 1
1

1[()]
2
1 [() ()2 2] (4)
2

i i i

W
j W

i W i W i W j i W j
j

x x x

x x x x
−

− − −
− − − − − −

=

= − −

= − − + − −∑

where

1

(1)
, 1 , 1

1
 2 2

W
j W

i i W i W j
j

x x x
−

− − −
− − −

=

− = − + +∑

Defining

⎪⎩

⎪
⎨
⎧

−=−−
−≠−

=
−− 1

1

11 Wjfor),xx(
Wjfor,xx

d
W,iW,i

j,ij,i
j,i

and { }.,d j,i 11−∈
Equation (4) can be rewritten as

1
(1)

, 1
0

1 [2 2] (5)
2

W
j W

i i W j
j

x d
−

− − −
− −

=

= −∑

Using (5), (1) can be rewritten as

1 1 1
(1)

, 1
0 0 0

1 1 ()2 ()2
2 2

W N N
j W

i i W j i
j i i

c d c
− − −

− − −
− −

= = =

= −∑ ∑ ∑

Now defining

10
2
11

0
−≤≤= ∑

−

=
Wjfor,dcD

N

i
j,iij

and ∑
−

=
−=

1

02
1 N

i
iextra cD

we have,

1
(1)

1
0

2 2
W

j W
W j extra

j
Y D D

−
− − −

− −
=

= +∑ (6)

Equations (4) to (6) characterize the OBC scheme.
It was observed that the contents of the ROM are mirrored
across the line between the eighth and the ninth rows in
the ROM table. Therefore, it is possible to reduce the
ROM size by a factor of two. Table 2 illustrates the new
ROM table.

Table 2 Contents of ROM with DA – OBC Coding (N = 4)

 Contents of ROM

0 0

00

00

0

0

000

00

000

0

0

0 0

0

0 0

00

0

00

00

0

0

1

11

1

11

1

1

1

1

111

1

1

1

1

1

1

1

11

1

11

1

11

0

111

1

j,0x j,1x j,2x j,3x

0c

1c

2c

3c

0c

0c

0c
0c

0c

0c

0c

1c

1c

1c

1c

1c

1c

1c

2c

2c

2c

2c
2c

2c

2c

3c

3c

3c

3c

3c

3c

3c

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

wordswith

ROM
N 2

j,x0 j,x1

••••

j,Nx 1−

+ D

rightshift

S

Y1

0

ROMofContents

0

0

00

0

00

0

00

0

0

1

11

1

11

1

1

111

1

j,1x j,2x j,3x

0c 1c 2c 3c+ + +−() 2/

0c 3c+ +− 2/(1c 2c)−

0c 3c+ +− 2/(1c 2c)−

−0c 3c+− 2/(1c 2c)−

0c 3c++− 2/(1c 2c)−

0c 3c+− 2/(1c 2c)−−

0c 3c+− 2/(1c 2c)−−

0c 3c− 2/(1c 2c)− −−

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

140

2.3 Modified DA-OBC Architecture

It can be observed from Table 2 that the ROM values
except oc term are mirrored along the line between the 4th
and the 5th rows. Therefore, the ROM table of OBC
scheme can be further reduced by a factor of two [16].
Table 3 illustrates the new ROM table and Fig. 3 shows
the architecture for the computation of inner product using
this method. By repeated application of this method, the
ROM size can be reduced up to 2 words.
To achieve the size reduction of the whole system, the
reduction in the number of ROM cells and the decoder
circuit inside the ROM should be larger than the hardware
increase for control circuits.

Table 3 Modified DA-OBC ROM Contents (N = 4)

2.4 ROM Decomposition for Distributed Arithmetic

The ROM size of the conventional distributed arithmetic
increases exponentially with N. Generally, ROM access
time can be a bottleneck for the speed of the whole system,
especially when the ROM size is large. Therefore,
reducing the ROM size is very important and is of great
practical concern. Exploiting the linearity of equation (3),
one possible solution to this problem is to divide the N
address bits of the ROM into N/K groups of K bits, i.e., to
implement the ROM of size 2N with N/K ROMs of size 2K
and add the outputs of these ROMs using a multi-input
accumulator. Fig. 4 illustrates the architecture for
computing an N-input inner product using conventional

distributed arithmetic with ROM decomposition. The total
size of storage is now reduced from 2N to (N/K)2K which
increases linearly with N. The ROM access time is also
reduced along with the ROM size. This reduction of the
storage size is balanced by a linear increase of the
computational complexity of the accumulator.

Figure 4.6 Decomposing 2N sized ROM into N/K ROMs of size 2K

2.5 Sampling Rate Converter Architecture

Having reviewed various distributed arithmetic based
techniques for vector inner product implementation, we
will now discuss the hardware architecture of sampling
rate converter, which makes use of these techniques
extensively. The input to the sampling rate converter is the
output of the mixer, which then gets multiplied by
cos(nπ /2) and sin(nπ /2) to bring the signal to baseband
[19]. Then the image signals are removed by the following
LPF, which in the present case is the RRC filter. After that,
the signal is down-sampled by a factor of two, so as to
make it suitable for carrier recovery.
Mathematically, the output of the RRC, in the I-channel,
can be written as

1

0

() () () cos()
2

 () () cos(())
2

LP

N

LP
m

I n h n y n n

h m y n m n m

π

π−

=

⎡ ⎤= ⊗ ⋅⎢ ⎥⎣ ⎦

= ⋅ − ⋅ −∑

 Decimating by 2,

1

0
(2) (). (2).cos((2))

2

N

LP
m

I n h m y n m n mπ−

=

= − −∑

Substituting m by ,k2 we get

ROMofContents

0 00

00

0

00

11

1

1

j,1x j,2x j,3x

0c 1c 2c 3c+ + +− () 2/

0c 3c+ +− 2/(1c 2c)−

0c 3c+ +− 2/(1c 2c)−

−0c 3c+− 2/(1c 2c)−

wordswith

ROM
N 2

2−

j,x1j,x2

••••

+ D

rightshift

1

extraD1

0

1

+

2
oc

−

2S

1Sj,x 0

0 0

Figure 3 Modified DA-OBC Architecture (N=4)

j,x3 j,Nx 1−

Y
D

•
•
•

words

ROM
k2

•
•
•

•
•
•

+

0 0 01 1 1

D shift

j,1Nx −

j,x 0
j,x1

j,1kx −

j,kx

j,kx 12 −

 •••

S

words

ROM
k2

words

ROM
k2

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

141

1

1

0

1

1

0

(2) (2). (2 2).cos((2 2))
2

 (1) / 2,
 (/ 2) 1,

 (2). (2()).cos(())

K

LP
k

K

LP
k

I n h k y n k n k

where K N if N is odd
and K N if N is even

h k y n k n k

π

π

=

=

= − −

= −
= −

= − −

∑

∑
1

()

0

1

 (2). (2()).(1)

 () [(1) (2)], (2),
 0,1, 2,3,4....

K
n k

LP
k

n
LPI LPI LP

h k y n k

h n y n where h h n
for n K

−

=

= − −

= ⊗ − =
=

∑

 (7)
Effectively, the input data is decimated by two and sign
changes are applied to alternate remaining samples. The
resulting data stream is filtered by a new low-pass filter.
The impulse response of the new in-phase low-pass filter
hLPI(n) is given by

)n(h)n(h LPLPI 2= for n = 0,1,2,…, KI (8)
It may be noted that the new filter processing speed is half
of the input data rate. Similarly,

 1

0

 () () [(). sin()]
2

 (). ().sin(())
2

LP

N

LP
m

Q n h n y n n

h m y n m n m

π

π−

=

= ⊗ −

= − − −∑

and
 ,)]1n2(y)1[()n(h)n2(Q n

LPQ −−⊗=

where hLPQ = hLP(2n+1).
Effectively, the input data is decimated by two and sign
changes are applied to alternate remaining samples. It may
be noted that there is one sample relative delay between
the in-phase and quadrature channels. The resulting data
stream is filtered by a new low-pass filter. The impulse
response of the new quadrature low-pass filter hLPQ(n) is
given by

)n(h)n(h LPLPQ 12 += for n = 0,1,2,…, KQ
 (9)

Figure 5 Combined Simplified Structure

Again, the processing rate is half of the input data rate.
The overall digital quadrature demodulator is shown in Fig.
5.
It may be noted that all samples are not passed to both
digital filters. The "even" samples are passed to the in-
phase filter with every other sample undergoing a sign
change. Similarly, the "odd" samples are passed to the
quadrature filter, and again, every other sample also
undergoes a sign change. The two blocks are very similar
from the hardware architectural point of view. Therefore,
we will discuss the hardware architecture of only one of
these blocks in the next section.

2.5.1 Detailed design description of I-channel Block

Substituting values for n in equation (7), we get

I(0) = h(0)y(0)

I(2) = - h(0)y(2) + h(2)y(0)
.
.

I(200) = ∑
=

96

0k

 h(2k) y(200-2k) (-1)100-k

 = h(0)y(200) - h(2)y(198) + h(4)y(196)
- … + h(96)y(104) -…
 + h(188)y(12) - h(190)y(10) +
h(192)y(8)

 = h(0)[y(8) + y(200)] - h(2)[y(10) +
y(198)] + h(4)[y(12) + y(196)] - … +
h(96)y(104)

I(202) = - h(0)[y(10) + y(202)] + h(2)[y(12) +
y(200)] - h(4)[y(14) + y(198)] +
 … - h(96)y(106)

I(204) = h(0)[y(12) + y(204)] - h(2)[y(14) +
y(202)] + h(4)[y(16) + y(200)] - … +
h(96)y(108)

and so on.
It can be seen that the sign of all the terms containing
coefficients h(0), h(4), h(8), … , h(96) is the same.
Similarly, all the terms containing coefficients h(2), h(6),
h(10), … , h(94) bear the same sign. Again, the signs get
inverted in each succeeding even value of I(2n). Also, due
to the symmetry of the FIR filter, the number of filter
coefficients reduces to 49 from 97, effectively. However,
implementing these 49 coefficients with Distributed
arithmetic will take a huge amount of memory (249 words).
Thus, on breaking the ROM into smaller parts, using
improved form of modified DA-OBC and taking into
consideration the symmetry of coefficients and the

1−z 2

2
n)(1− LPIh

1 LPF

LPQh
2 LPF

Mixerfrom

qx

ix

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

142

inversion of their sign in every succeeding value of I(2n),
we get the I – channel filter architecture as shown in Fig.
6. An extra signal sgn_pos is introduced to take care of
sign inversion. A high on sgn_pos gives a positive sign for
the terms containing the coefficients h(0), h(4), h(8),
… ,h(96), whereas a low on this signal produces a negative
sign for terms containing coefficients h(2), h(6), h(10),
… ,h(94). These terms are then appropriately mixed to
produce values of I(2n).
The coefficients of the smaller modules are as follows:

A1 : h(0), h(4), h(8), h(12), h(16), h(20)
A2 : h(2), h(6), h(10), h(14), h(18), h(22)
A3 : h(24), h(28), h(32), h(36), h(40), h(44)
A4 : h(26), h(30), h(34), h(38), h(42), h(46)
A5 : h(48), h(52), h(56), h(60), h(64), h(68)
A6 : h(50), h(54), h(58), h(62), h(66), h(70)
A7 : h(72), h(76), h(80), h(84), h(88), h(92)
A8 : h(74), h(78), h(82), h(86), h(90), h(94)

Thus, the total ROM size needed reduces to 8*24 + 1 words
instead of 249 words, as in the case of the simple DA.

2.6 Results

To verify the arithmetic based architectural design, we
compare the impulse response of the design implemented
in VERILOG with that coded in MATLAB. A random
input sequence is fed to the functional block and results of
MATLAB and VERILOG implementations are presented
in Fig. 7a and b for comparison. It can be seen that the two
outputs closely follow each other. The main advantage of
this architecture is that it does not employ any MAC unit,
whose operational speed is, generally, a

Figure 7 Response of I-Channel Block in MATLAB and VERILOG
a Impulse input b Random Input Sequence

bottleneck in filter throughput. Again, it makes extensive
use of LUTs and hence is ideally suited for FPGA
implementation.

3. Implementation of Digital Frequency
Synthesizer

We use a digital frequency synthesizer in our system to
generate a sampled sinusoidal wave of frequency 71 KHz
± estimated carrier frequency offset.

Figure 6 Telescopic View of I-Channel Block Implementation

3.1 Introduction

The major advantage of Digital Frequency Synthesizer is
that its output frequency, phase and amplitude can be
precisely and rapidly manipulated under the control of a
DSP. Other inherent DFS attributes include the ability to
tune with extremely fine frequency and phase resolution
and to rapidly “hop” between the frequencies. These
combined characteristics have made this technology
popular in military, radar and communications systems.

3.2 Analysis

Various techniques are available in the literature for
quarter wave memory compression, such as Sine-phase
difference algorithm, Taylor series expansion, Modified
Sunderland Architecture, Nicholas’ Architecture,
CORDIC (Coordinate Rotation Digital Computer)
Algorithm, etc. The implicit goal of these phase-to-sine
conversion techniques is to reduce the maximum
amplitude error for any phase angle, in effect mimicking
the behavior of a LUT. In pursuing this goal, all
architectures become complex in one way or the other.
Also, the ROM size becomes fairly large as it grows
exponentially with the width of the phase accumulator,

0 50 100 150 200 250
-4

-3

-2

-1

0

1

2

3

4
M A TLA B RE S P O N S E
 V E R ILO G R E S P O NS E

0 50 100 150
-0 .1

0

0.1

0 .2

0 .3

0 .4

0 .5

M A TLA B R E S P O N S E
 V E R ILO G R E S P O N S E

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

A1

A 2

A3

A4

A5

A6

A7

A8

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

SCALING
ACCUMULATOR

I(2n)

12

14

14

14

14

14

14

14

1

1

 h(96)
 2

0 sgn_pos

S1

_ h(96)
 2

1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

143

whereas a large phase accumulator width is desirable in
order to achieve fine frequency tuning. Truncating the
phase accumulator output, on the other hand, introduces
spurious harmonics.

3.3 Concept of the Architecture used

Instead of a ROM LUT, a hardware-optimized phase-to-
sine amplitude converter approximates the first quadrant
of the sine function with eight equal-length piecewise
linear segments [8]. The main goal is to maintain low
system complexity and reduce power consumption and
chip area requirements. The second aim is to achieve a
specified spectral purity, which is defined as the ratio of
the power in the desired frequency to the power in the
greatest harmonic, across the synthesizer’s tuning
bandwidth. Spectral purity is an essential design parameter
for synthesizer used in communication systems, ensuring
that undesired in-band signals remain below a given
threshold and are not detected.
In order to achieve the first goal, we approximate a
sinusoid as a series of eight equal-length piecewise
continuous linear segments,

[0,7] i ,y)ix(m)x(s iii ∈+−×=
8

where mi is the slope of each segment and is carefully
selected to eliminate the requirement for multiplication by
representing each one as a sum of at the most two powers
of two. This is well known and often used technique [15].
We also restrict the precision of slope representation, i.e.,
the difference between the smallest and the largest powers
of two used; in effect putting an upper bound on the
adder’s width. Equal length segments are selected to
reduce the control system circuitry costs. In order to
achieve a desired spectral purity, different sets of im and

iy coefficients are evaluated and the best one meeting the
requirements is selected.

3.4 Description of the architecture

The new DFS architecture is shown in Fig. 8. It
corresponds to a set of coefficients yielding 60dB purity.
The coefficients are given in Table 4.
The phase to sine amplitude converter block includes a 1’s
complement to exploit quarter wave symmetry, as
previously seen in other structures. Clearly, this
architecture is significantly less complex than those of the
other methods discussed previously. It does not include a
ROM. No multipliers or squaring circuits are required.
Equal length segments are used to simplify the control
circuitry. Only three integers need to be added and
multiplexers shown in Fig. 8 have been optimized by

combining similar inputs and implemented in
combinational logic.
The phase accumulator is 20 bits wide, truncated to 12 bits.
The two MSBs are used for quadrant symmetry. The next
three bits identify the segment. The remaining seven bits
identify different sub-angles. The two upper multiplexers
shift these remaining seven bits according to the slopes im ,
listed in Table 4.
In Fig. 8, the notation {>>n} signifies a right shift by n
bits, or equivalently, division by 2n. The lower multiplexer
selects the appropriate iy approximation listed in the
table. The output from the multiplexers is 13 bits wide, to
account for the whole dynamic range of possible values.
The three-operand adder sums the multiplexer outputs
together and rounds the result to 7 bits.

Table 4 Linear segment coefficients for 60 dB purity
i mi yi

0 1 + ½ 2/1024

1 1 + ½ 191/1024

2 1 + ¼ 384/1024

3 1 + 1/8 552/1024

4 1 697/1024

5 ½ + ¼ 819/1024

6 ½ 909/1024

7 1/8 971/1024

3.5 Results of DFS

To verify the architecture, the design was coded in Verilog.
The spectrum was obtained by taking the DFT of one
grand repetition of the system output data. It can be easily
seen that all the spurs are at least approx. 60 dB below the
fundamental. Spectra for other odd frequency control
words are similar, with spurs no greater than those shown
here. It has been shown [13] that the spectrum
corresponding to two frequency control words that are
relatively prime to the phase accumulator’s overflow
values are permutations of each other. The amplitudes
shown in the spectra of Fig. 9 are, therefore, exact in
amplitude to the spurs for any other odd frequency control
word. Only their locations change. The spectral purity of
the DFS output is sufficient for the present system
requirement.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

144

Figure 8 DFS Architecture

Figure 9 Output Spectrum

Phase
accumulator 1s

comp.

>>1

>>1

>>3

>>2

0

0

7

6

5

4

3

2

1

0

y
y
y
y
y
y
y
y

ω̂

MSB1 MSB2
3 MSBs

m
u
x
1

m
u
x
2

16

12 10

7

7

7

7

7

13

13

13

15 15

16 PΔ

Format
converter

m
u
x
3

DFS o/p

f (Relative to clock)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-40

-20

00

40

60

80

100

120

140

160

f (Relative to clock)

Amplitude
(dB)

16384=ΔP

20

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

145

4. Implementation of FPGA part of the
demodulator

4.1 Introduction

In our earlier paper [19], synchronization techniques and
receiver structure were discussed. Also, the task of
partitioning the receiver algorithm into two parts, one to
be implemented on FPGA and the other on DSP, was
performed. We presented a new architecture for sampling
rate converter implementation in Section 2, which results
in the use of reduced memory utilization. The DSP
implementation of the remaining part is out of scope of the
present work. In this section, we will describe the
hardware implementation details of the FPGA part of the
demodulator.

4.2 Implementation of mixer and RRC filters using
Verilog on Xilinx FPGA

A block diagram of the FPGA part of the demodulator as
implemented using Verilog is shown in Fig. 10. The
developed core consists of a mixer and two numbers of
193 tap, RRC filters to accept modulated, 12-bit, signed
ADC output at a sampling frequency of 1.536 MHz and
convert it into in-phase (I) and quadrature-phase (Q)
channel outputs, each of size 16 bits, signed, at half the
sampling frequency. It may be noted that the core requires
two input clocks for successful operation: ‘clk_bit’ must
be 8.5 times the frequency of ‘clk_word’ frequency. These
clocks may be easily generated from the sampling
frequency, ‘clk_word’ (1.536 MHz) using a PLL and three
numbers of frequency dividers.
Fig. 11 shows the RTL View of FPGA part of the
demodulator after running the synthesis using Synplify.
The synchronous clock, ‘clk_wordby2’, for the output
channels, I and Q, is generated by the core and, the
outputs may be registered at the positive edge of this clock
when I_Q_valid is high. EDF file generated by Synplify
tool is input to the Xilinx place and route and the results
for the same are tabulated in Table 5. This was followed
by running Xilinx back annotation and simulation using
Modelsim. The results obtained after back annotation were
verified to be correct.

Table 5 FPGA Implementation details

* Maximum operating frequency
1.536 MHz and $ 13.056 MHz are what is
required for normal operation.

4.3 Verification
Fig. 12 shows the blocks of the part of the demodulator
implemented using Verilog and, the necessary Matlab
modules required for its verification. Matlab generates the
input signal for the Modulator. For the sake of testing, two
sine wave frequencies, 2 KHz and 20 KHz, one at a time,
are used as input. The Matlab Modulator output is signed,
16 bits wide. This serves as the input for both the Matlab
and Verilog demodulators as shown.

Figure 10 Block diagram of FPGA part of the demodulator

reset_n
clk_word clk_wordby2

clk
reset_n

[15:0] inword[15:0]

[15:0]outword[15:0]

clk
reset_n

[15:0] inword[15:0]

[15:0]outword[15:0]

reset_n
clk
clk_bit
dtin_valid
freq_offset_valid

[11:0] inword[11:0]
[14:0] freq_offset[14:0]

filtout_valid
filtin_valid

[15:0]outword_i[15:0]
[15:0]outword_q[15:0]

clk_gen

cg1

fil193_Q

fil193_Q_1

fil193_I

fil193_I_1

mixer

mixer_1

I_Q_valid

Q_out[15:0][15:0]

I_out[15:0][15:0]

clk_wordby2

clk_word
clk_bit

freq_offset_valid

freq_offset[14:0] [14:0]

dtin_valid

dtin[11:0] [11:0]

reset_n

Fig. 11 Synthesis (Synplify) RTL View of FPGA part of the demodulator

It may be noted that the input to the Verilog demodulator
is MSB 12 bits (and not the entire 16 bits) so as to keep
the same precision as the ADC output in the existing
ADSP implementation. 16-bit precision has been retained
for the input to the Matlab demodulator since it serves as a
better standard reference for verifying the Verilog
implementation. The modulated signal, thus produced, is
applied to both the Matlab and Verilog demodulators. The

PERFORMANCE
(MHz) * FPGA DEVICE LOGIC

GATES
clk_word clk_bit

Xilinx Virtex
XCV600hq240-4 44,652 54.3 # 19.8 $

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

146

I and Q channels are the required outputs, and are each of
width 16 bits, signed. The Verilog design requires two
clocks, clk_bit (13.056 MHz) and clk_word (1.536 MHz)
for its operation. The I and Q outputs from Verilog
demodulator compare favorably with the corresponding
outputs of Matlab demodulator, which has served as the
reference for verification of the hardware implemented on
FPGA. I and Q results are shown in Fig. 13 for 20 KHz as
an example.

Fig. 12 Blocks of the part of the demodulator implemented using

Verilog and the Matlab modules for its verification

5. Conclusions
This paper proposed a new distributed arithmetic based
architecture for implementing a Sampling Rate Converter.
The main advantage of this architecture is that it does not
employ any MAC unit, whose operation speed is,
generally, a bottleneck for high filter throughput. It makes
extensive use of LUTs and hence is ideally suited for
FPGA implementation. An architecture for Digital
Frequency Synthesizer, which gives 60 dB spectral purity
was also presented. Both the architectures were coded in
Verilog HDL and implemented on XILINX FPGA. The
hardware and MATLAB results compare favorably.

Figure 13 Matlab and Verilog responses of

I and Q channels at 20 KHz

References

[1] G. Strang: Introduction to Applied Mathematics, Wellesly
Cambridge Press (1986).

[2] J. M. Tribolet: A New Unwrapping Algorithm, IEEE Trans.
on Acoustic, Speech and Signal Processing, Vol. ASSP-25,
No-2, pp. 170-177 (1977).

[3] Mathew P. Joseph: DSP Algorithms for On-Board Satellite
Trans-multiplexer and Receiver, MS Thesis, IIT Madras,
India (2000).

[4] S. Haykin: Adaptive Filter Theory, Prentice-Hall, 2nd
Edition (1991).

[5] M. E. Frerking: Digital Signal Processing in
Communication Systems, Van Nostrand Reinhold, NY
(1993).

[6] E. A. Lee and D. G. Messerschmitt, Digital
Communication, Second Edition, Allied Publishers Limited,
1994.

[7] J. Proakis: Digital Communications, Third Edition,
International Edition, McGraw Hill (1995).

[8] J.M.P. Langlois, D. Al-Khalili, R.J. Inkol: A High
Performance, Wide bandwidth, Low cost FPGA based
Quadrature Demodulator, Proceedings of IEEE Canadian
Conference on Electrical and Computer Engineering (1999).

[9] Henry Samueli, Bennet C. Wong: A VLSI Architecture for
a High Speed, All Digital, Quadrature Modulator and
Demodulator for Digital Radio Applications, IEEE Journal
on Selected Areas in Communication , Vol. 8, No. 8
(1990).

[10] Sanjeev Dua: Algorithms and Architectural Design of an
Onboard Satellite QPSK Receiver. MS Thesis, IIT Madras,
India (2003).

[11] P.P. Vaidyanathan: Multirate Systems and Filter Banks,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

147

Prentice Hall Inc., Eagle-woods Cliffs, N.J. (1993).
[12] Keshab K. Parhi: VLSI Digital Signal Processing Systems,

John Wiley & Sons Inc. (1999).
[13] H. T. Nicholas, H. Samueli , and B. Kim, The Optimization

of Direct Digital Frequency Synthesizer in the Presence of
Finite Word Length Effects Performance, in Proc. Of 42nd
Annual Frequency Control Symposium, June 1988, pp.
357-363.

[14] J. M. P Langlois and D. Al-Khalili, Hardware Optimized
Direct Digital Frequency Synthesizer Architecture with 60
dB Spectral Purity, Proc. IEEE
International Symposium On Circuits and Systems, May
2002.

[15] S. I. Liu, T. B. Yu and H. W. Tsao, Pipelined Direct Digital
Frequency Synthesizer Using Decomposition Method, IEEE
Proceedings on Circuits, Devices and Systems, Vol. 148,
No. 3, June 2001, pp. 141-144.

[16] Fubing Yu: FPGA implementation of a fully digital FM
demodulator, Communications Systems (ICCS), The Ninth
International Conference, pp. 446-450 (2004).

[17] Charoensak, C., Abeysekera, S. S.: FPGA implementation
of efficient Kalman band-pass sigma-delta filter for
application in FM demodulation, SOC Conference
Proceedings, IEEE International Volume, pp. 137-138, 12-
15 Sept. (2004).

[18] Zarifi, M.H.; Frounchi, J.; Asgarifar, S.; Baradaran Nia, M,
FPGA implementation of a fully digital demodulation
technique for biomedical application, Proceedings of IEEE
Canadian Conference on Electrical and Computer
Engineering, pp. 1265-1268, 4-7 May (2008).

[19] K. R. Nataraj, S. Ramachandran, B. S. Nagbushana,
Development of Algorithm for Demodulator for Processing
Satellite Data Communication, IJCSNS, Vol. 9, No. 6, June
30, 2009, pp. 233-243.

K. R. Nataraj obtained his ME degree
from Bangalore University, India in
2000. He worked as Professor and Head
of the Department during 2000-2008
and currently he is the Post Graduate
Coordinator in the Department of
Electronics and Communication in SJB
Institute of Technology, Bangalore.
Presently, he is pursuing his Ph. D.

degree in Dr MGR University, Chennai. His research interests
include Wireless communication, FPGA implementation,
Microcontroller and Embedded systems design. He is a member
of MIE, MISTE and IETE.

Dr S. Ramachandran obtained his M.
Tech. and Ph. D. degrees from the
Indian Institute of Technology, Kanpur
and Madras respectively. He has wide
academic as well as industrial
experience of over 30 years, having
worked as Professor in various
engineering colleges as well as design
engineer in industries in India and

USA, designing systems and teaching/guiding students. His
research interests include developing algorithms, architectures

and implementations on FPGAs/ASICs for Video Processing,
DSP applications, reconfigurable computing, open loop control
systems, etc. He is the recipient of the Best Design Award at
VLSI Design 2000, International Conference held at Calcutta,
India and the Best Paper Award of the Session at WMSCI 2006,
Orlando, Florida, USA. He has completed a video course on
Digital VLSI System Design at the Indian Institute of
Technology Madras, India for broadcast on TV by National
Programme on Technology on Enhanced Learning (NPTEL) and
is being broadcast in You Tube as well. He has also written a
book on Digital VLSI Systems Design, published by Springer
Verlag, Netherlands (www.springer.com).

Dr B. S. Nagabushana obtained
his M. Tech. and Ph. D. degrees
from Mysore University and Indian
Institute of Science, Bangalore
respectively. He has wide academic as
well as software industrial experience
for over 25 years. He has worked as
Professor invarious engineering
colleges as well as consultant to

software industries like OMED (Software), Japan, BFL, CG-
Smith Software Pvt. Ltd, KPIT Cummins Infosystems
(Bangalore), Pvt. Limited, San Lab Technologies etc. His
research interests include Wireless Communication, Neural
Network, Fuzzy Logic and Embedded systems. He is the
recipient of NRDC Independence Day award for the year 1992,
Best Project Execution award for the year 2000 from M/s BMC
Software, USA.

