
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

178

Manuscript received July 5, 2009
Manuscript revised July 20, 2009

Design and FPGA Implementation of Fast Variable Length
Coder for a Video Encoder

N. Venugopal * and Dr S. Ramachandran**

* M. G. R. University, Chennai, India
** National Academy of Excellence, Bangalore, 560-060, India

Summary
This paper proposes a novel implementation of one of the core
processors of a video encoder, the variable length coder using
single FPGA. The processor is implemented on a Xilinx Virtex –
II Pro XUPVP30 FPGA. The gate count of the implementation is
approximately 690,000 including an output FIFO of size 128 Kb.
It can process 1600x1200 pixels color motion pictures in 4:2:0
format at over 30 frames per second as per MPEG-2 standard.
The compression effected is about 38 and the reconstructed
picture is of good quality with a PSNR values of 33 dB or more.
Key words:
DCTQ, Encoder, RLE, FIFO, VLC.

1. Introduction

Video compression coding is the enabling technology
behind a new wave of communication applications. From
streaming Internet video to broadcast digital television and
digital cinema, the video codec is a key building block for
a host of new multimedia applications and services.
Certain applications, such as medical diagnostics, space
exploration etc. requires high resolution image/video at
high frame rate which necessitates huge bandwidths and
storage space. For example, one hour of color motion
picture of frame size 1024x768 pixels at 25 frames per
second in the raw format will require about 210 GB of
memory and 470 Mbps channel speed for effective
communication. Video Compression is, therefore,
essential to bring down the storage requirements to
manageable levels and to transmit data with the existing
channel capacities.
Moving Pictures Experts Group (MPEG) is a compression
standard group established by the ITU and ISO. MPEG is
a generic means of compactly representing digital image,
video and audio signals. The MPEG-1 standard,
established in 1992, is designed to produce reasonable
quality images and sound at low bit rates at 1.5 M bits/sec.
The MPEG-2 standard [1] is designed to produce
broadcast quality video at higher bit rates up to 100 Mbps.
Over the years, many attempts have been made to
implement different functional modules of the Video
Codec in VLSI [2-6]. H. Park et al. [3] and H.C. Chang et

al. [4] have proposed VLSI architectures for Variable
Length Coder (VLC) for MPEG-1 and JPEG respectively
with limited throughputs and hence not suitable for high
resolution motion pictures. One of the present authors
developed earlier a fast algorithm for the DCTQ and
implemented the same on FPGA [5]. This module is used
in the present implementation for generating the DCTQ
coefficients for testing a video sequence. The same author
had also developed VLC module [6], which was slow in
comparison with the DCTQ processor by about 40%. As
an ongoing project for space application for processing
very high resolution color pictures in the order of
1600x1200 pixels, the proposed VLC Processor has been
completely re-designed resulting in higher throughput by
at least 30% over Ref. [6]. In the recent years, few more
VLC/VLD implementations have been reported [7-11].
This paper is organized as follows: The next section
presents the basic architecture of video encoder followed
by the detailed architecture of the VLC and RLE
implemented and the principles involved therein. Results
are discussed in Section 4 and Conclusions are presented
in Section 5.

2. Architecture of Video Encoder

A video sequence that needs to be compressed is applied
at the input of a Discrete Cosine Transform (DCT) module
as shown in Fig. 1. The DCT prepares the ground for
compression by packing the picture information in as few
coefficients as possible. This is followed by quantization
(Q), which succeeds in converting the DCT coefficients
into many zeros which need not be coded in the next stage,
the variable length coder. The VLC assigns shortest
possible codes of varying lengths to the DCTQ
coefficients, thus bringing about compression of the
motion picture. The compression effected in VLC is much
greater than that achieved during quantization. The VLC
compression is lossless, whereas quantization is lossy. A
brief description of various modules of the video encoder
as implemented by one of the authors is as follows.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

179

Figure 1 Architecture of Variable Length Coder of Video Encoder Implemented

2.1 Discrete Cosine Transform

A 2-D DCT is performed on 8x8 pixel blocks. The
magnitude of DCT coefficient signifies the combination of
horizontal and vertical spatial frequencies to the original
picture block. In most natural pictures, most of the energy
is concentrated in the DC and low frequency terms. Thus
these coefficients are much higher in magnitude than the
other coefficients and the subsequent quantization reduces
most of the higher frequency terms to zero.

2.2 Quantization

Quantization forms the lossy part of the MPEG
compression. Most of the high frequency terms are
rounded to zero upon quantization. Also the degree of
quantization for the higher frequency terms is more as
compared to that of low frequency terms. Thus,
quantization reduces the possible values to be transmitted
and leads to compression.

2.3 Run Level Encoding and DC Differential

Run Level Encoding (RLE) exploits the presence of many
zeros in the DCTQ output by scanning the DCTQ output
in a zigzag manner and thus reducing the physical size of
repeating strings of zeros. The numbers of zeros traversed

before reaching a non-zero AC coefficient is called the
Run length and the AC coefficient is called the

Level. Thus, the AC coefficients are encoded as Run-
Level while the DC term is coded as differential DC.

2.4 Variable Length Code

The list of values produced by scanning (RLE) is entropy
coded using a variable length code. Each VLC code word
denotes a run of zeros followed by a non- zero coefficient
of a particular level. The differential DC is also encoded
as variable length code.

2.5 Buffer

A consequence of using different picture types and
variable length coding is that the overall data rate is
variable. In applications that involve a fixed-rate channel,
a FIFO buffer may be used to match the encoder output to
the channel. This was also developed in the present work.
In the present work, all the modules except DCTQ module
shown in Fig. 1 have been developed. Detailed
descriptions of the designed modules are as follows.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

180

3. Run Length Encoding

In this section, the fundamentals of DC differential and
Run Length Encoding are discussed. The RLE module
operates on the DCTQ output to calculate the DC
differential and the Run-Level combinations. RLE reads
its input from a Dual RAM as shown in Fig. 1 and writes
its output in a FIFO1. The Verilog HDL implementation
of the RLE module is discussed in the next sub section.
The coding of the quantized DCT coefficients exploits the
likely clustering of energy into the low-frequency
coefficients and frequent occurrence of zero-value
coefficients. The block is scanned in a diagonal zigzag
scanning pattern starting at the DC coefficient to produce
a list of quantized coefficient values, ordered according to
the zigzag scan pattern. The number of zeros is counted
before a non-zero AC coefficient is reached. The count of
zeros is called run length and the non-zero AC coefficient
is called the level. For example, consider the quantized
DCT output shown in Table 1. The run length encoding in
zigzag order for the above mentioned quantized
coefficients is shown alongside.
Apart from run-length encoding, the RLE module also
calculates the differential DC. To calculate differential DC,
a predictor is subtracted from the input DC term. For this
purpose, three predictors are maintained, one each for the
3 color components (Y, Cb and Cr). The predictor is set to
the value equal to the last DC term encoded. To begin with,
the predictors are reset to a value of 256 since the
precision implemented in the present work is 9 bits for
DCTQ coefficients as per MPEG-2 standard. The
predictors are also reset at the beginning of each slice.

Table 1 A Sample Block of DCTQ Coefficients and its Run Length
Encoding

3.1 Architecture of Run Length Encoder

RLE processor reads from the Dual RAM shown in Fig. 1,
in which the DCTQ coefficients are stored by the DCTQ
processor. Dual RAM serves as double buffer, thus
maintaining continuous processing of RLE. The RLE
processor writes the Run length and Level outputs
computed (such as the sample block presented in Table 1)

into FIFO1. The RLE processes the input data and stores
the output in FIFO1 only if an empty location is available.
Otherwise, RLE automatically holds its operation.
The Architecture of the Run Length Encoder is shown in
Fig. 2. The RLE is reset at the time of power on condition
by asserting the asynchronous, active low signal “reset_n”.
RLE operation can be activated by asserting “enable”
signal. “sys_clk” serves as the system clock. The number
of slices in the input frame is specified by the input
“slice_count [5:0]”. Similarly the “mb_count [5:0]”
specifies the number of macroblocks in one slice for the
input frame. The signal “wfull_fifo_rle” indicates whether
the FIFO1 is full or not. The “alternate_scan” specifies the
type of zigzag scan as per the standard. The signal
“chroma_format [1:0]” selects one of the macroblock
formats 4:4:4, 4:2:2 or 4:2:0.
The DCTQ output is input at the pins marked “zigzag_in
[8:0]”. The color component (Y, Cb or Cr) that is to be
processed is specified in “chroma_format [1:0]”. The RLE
output is issued at the output pins “rl_out [14:0]”. The
“rl_out [14:9]” contains the run length while the “rl_out
[8:0]” contains the level. The differential DC is also output
at the same pins “rl_out [11:0]” with “rl_out [14:12]”
forced to ‘000’. The signal “re_addr [5:0]” serves as the
read address of the Dual RAM in which DCTQ
coefficients are stored earlier. The signal “winc_fifo_rle”
serves as the write enable for the FIFO1, in which RLE
writes its outputs. The signal marked “frame_done”
indicates that the encoder has finished processing a video
frame. Immediately after one block of DCTQ coefficients
is processed, the RLE starts processing the next block
stored in the Dual RAM.

3.2 Variable Length Coding

In this section, the implementation details of Variable
Length Coder, Header Generator and Serializer are
presented. Like previous modules, these modules were
also implemented in Verilog HDL. The Run Level
Encoder (RLE) writes its output in the FIFO1. In a FIFO,
data are written sequentially using one clock domain,
while the data are read sequentially from the same FIFO
using another clock domain; the two clock domains being
asynchronous to each other. The FIFO is a dual-port RAM
addressed by Gray counters. The FIFO full or empty status
is generated by asynchronous comparison of the read and
write pointers and is set asynchronously. This FIFO design
of Xilinx is adopted in the present work.
The full/empty status of the FIFO decides whether the
write/read to the FIFO should hold its operation or not.
Thus, the use of FIFO eliminates the handshaking between
the read and the write operations.
FIFO helps in transferring data between different clock
domains. Thus the VLC clock, the Serializer clock and the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

181

output clock can be set to the desired value without any
need for inter-clock domain synchronization. FIFO1 is of
depth 8 and width 15 bits (RLE output), FIFO2 is of depth
4 and width 29 bits (VLC output) and FIFO3 is of depth
128 K x 1-bit (width of output of Serializer).

3.3 Encoding DC Differential

DC differential (for each DC coefficient) of a block in
intra macroblocks is encoded as a variable length code. If
it is equal to zero, then it is followed by a fixed length
code.

Figure 2 Architecture of Run Length Encoder

Otherwise, it is assigned variable codes as defined in D.12
Table of MPEG-2 standard. At the decoder end, a
differential value is first recovered from the coded data,
which is added to the predictor in order to recover the DC
coefficient. For example:
DC coefficient = 130 (Luminance) and Predictor = 128
DC differential = DC coefficient – Predictor = 2
From Table D.12 of the standard, the code is “01” for the
luminance, followed by its binary value of “10” Thus, the
VLC code for this DC coefficient is 01 10.

3.4 Encoding Run Level

The list of values produced by zigzag scanning (RLE) is
entropy coded using a variable length code (VLC). Each
VLC code word denotes a run of zeros followed by a non-
zero AC coefficient. VLC coding recognizes that short

runs of zeros are more likely than long ones and small
coefficients are more likely than large ones.

Table 2 Variable Length Code Assigned
Run

Length
Level VLC Code

1 3 0010 0101 0
0 2 0100 0
6 -4 0000 0100 0110 1111 1100

12 10 0000 0100 1100 0000 1010
EOB 10

The VLC allocates code words, which have different
lengths depending upon the probability with which they
are expected to occur. To enable the decoder to distinguish
where one code ends and the next begins; the VLC has the
property that no complete code is a prefix of any other.
The list of run lengths and levels is coded using Table B-
14 given in the Ref. [1]. Run is a 6-bit fixed length code
and Signed_level is a 12-bit fixed length code. For
example, the VLC codes for the run level presented in
Table 1 are shown in Table 2.

3.5 Architecture of VLC

VLC reads the DC differential and run-level from a FIFO
(FIFO1 in Fig. 1) in which the RLE module writes its
output. Thereafter VLC processes (as explained in Section
2.2) and writes the computed variable lengths for the DC
differential as well as the AC coefficients into another
FIFO marked FIFO2 in Fig. 1. The VLC takes an input
from FIFO1 only if it is not empty, processes it and writes
the output in FIFO2 if any empty location is available in
FIFO2. Otherwise, VLC automatically holds the operation.
As in the RLE, the VLC processor is reset at the time of
power on condition by asserting the asynchronous, active
low signal “reset_n”. Similarly, the VLC operation can be
activated by asserting “enable” signal. “sys_clk” serves as
the system clock. The input signal “slice_count [5:0]”
specifies the no. of slices in the input frame. The number
of macroblocks to be processed in one slice is specified in
“mb_count [5:0]”. The input “wfull_fifo_vlc” indicates
whether the FIFO2 in which the VLC has to write its
output is full or not. The input “rempty_fifo_rle” specifies
whether the FIFO1 from which VLC has to read its input
is empty or not. “chroma_format [1:0]” specifies the
macroblock structure as one of 4:4:4, 4:2:2 and 4:2:0.
Inputs “rl_in [14:9]” contains the run and “rl_in [8:0]” the
level computed by the RLE processor. The input
“quantiser_scale_code [4:0]” is required as a part of the
slice header. The output “vl_size_code [28:0]” contains
the desired VLC code for a particular run-level or DC
differential. The code size is available in bits [28:24] and
the actual VLC code in bits [23:0]. “rinc_fifo_rle” is the
read enable output for the FIFO1 from which VLC reads
its input. The output signal “winc_fifo_vlc” is the write

 rl_out [14:0]

 re_addr [5:0]

 winc_fifo_rle

 frame_done

zigzag_in [8:0]
chroma_format [1:0]

mb_count [5:0]
slice_count [5:0]
wfull_fifo_rle
alternate_scan

sys_clk
enable

reset_n

Run
Length

Encoder
(RLE)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

182

enable for the FIFO2 in which VLC writes its output. The
output “frame_done” signals when the VLC has finished
processing a frame.
Apart from variable length code generation for differential
DC and run-level, VLC module also outputs a part of
header (slice header, macroblock address increment and
macroblock modes). At the beginning of each frame, the
Header Generator embedded inside the VLC module
outputs the Sequence Header, Sequence Extension Header,
Picture Header and Picture Coding Extension Header. It
outputs the headers in chunks of 24-bits. The Header and
VLC output are multiplexed (by the MUX shown in Fig.
1) and the master controller issues the appropriate select
signals as shown.

Figure 3 Architecture of Variable Length Coder

When the frame processing starts, the Header Generator
outputs the header information. Once the “header_done”
signal goes high, the VLC output is selected till the end of
processing of that frame. Similarly the FIFO2 full/empty
status is either sent to Header Generator or the VLC.

4. Results and Discussions

In the present work, the entire Variable Length Coder
presented in Fig. 1 has been coded in Verilog conforming
to RTL coding guidelines. Modelsim of Mentor Graphics
has been used to verify the functionality of the VLC
design. The simulation results for the RLE and VLC
processors are as follows.

4.1 Simulation Results

RLE reads from the Dual RAM and writes its output into
FIFO1 as presented in the RLE processor simulated

waveform in Fig. 4. The signal “zigzag_in” is the input to
the RLE module. Whenever RLE writes its output into the
FIFO1, it generates a pulse “winc” (write_enable for the
FIFO) if the “wfull” (Full status signal of FIFO) is not
high. It may be noted that in this snapshot; once when the
“wfull” is high, the RLE module stays in its state 6 till the
time “wfull” goes low.
The simulated waveform for the VLC processor is shown
in Fig. 5. VLC reads its input (rl_in) from FIFO1 and
write its output (vl_size_code) in FIFO2. It may be noticed
that after every “rinc” pulse, VLC gets a new input and
after the code is generated, the VLC module generates a
“winc” pulse in order to write the output (if the “wfull” is
not high). The signal “ba_bits” represents the number of
bits required for byte alignment. In the present work, the
number of clock cycles required to process a block
(assuming “rempty” and “wfull” to be low) are 1 clock
cycle to read DC differential plus 3 clock cycles to
compute the DC differential code plus 1 clock cycle to
write the DC differential code plus 3 x (the number of run-
level entries for a block) plus 1 clock cycle to read EOB
plus 1 clock cycle to write EOB plus 3 clock cycles to
update blocks processed. That is, total time required for
processing Macroblocks and Slices may be expressed as
10+3n, where 3 includes reading, computing VLC code
and writing the code and, n is the number of run-level
entries for the block. The simulation results presented in
Fig. 6 for a sample picture shows good quality of
reconstructed picture (33 dB) and compression achieved
being 38. Similar results were obtained for many video
sequences that were experimented with.

4.2 Synthesis and Place & Route Results

The various modules of the VLC Processor were
synthesized using Synplify Pro 7.7.1 and place and routed
using Xilinx Project Naviator. The target device chosen
was Xilinx Virtex-II Pro XUPVP30 -7 FF896 FPGA since
the board available in our laboratory is based on this
FPGA. The VLC Processor design presented in this paper
utilizes 689,108 gates with 12 numbers of block RAMs.
The maximum frequency of operation reported by ISE tool
for this design is 124 MHz. The VLC processes a picture
of size 640x480 pixels such as Apple at about 220 frames
per second for a FIFO3 depth of 128 Kb. Extrapolating
this result for higher frame size, the present FPGA
implementation is capable of processing a picture of size
1600x1200 pixels at a frame rate of around 35 fps, thus
meeting MPEG-2 standard.

5. Conclusions

A novel FPGA implementation of the core processor of a
video encoder, namely, the Fast Variable Length Coder

Variable
Length
Coder

 vl_size_code

 [28:0]

winc_fifo_vlc

rinc_fifo_rle

frame_done

rl_in [14:0]

chroma_format [1:0]

quantiser_scale_code [4:0]

mb_count [5:0]

slice_count [5:0]

rempty_fifo_rle

wfull_fifo_vlc

bit_stuffing

sys_clk

enable

reset_n

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

183

has been presented. The simulation, synthesis, place and
route results show that the designed Variable Length
Coder is capable of processing very high resolution
motion pictures of size 1600x1200 pixels at a frame rate of
30 per second meeting MPEG-2 standards. The
reconstructed quality of the picture is quite good (33 dB)
and, achieving a compression of 38. Presently, the

integration of DCTQ and the VLC Processors targeted on
a single FPGA is under progress. The proposed complete
Video Encoder is being designed incorporating Rate
Control in order to maintain a compressed, constant 100
Mbps serial throughput.

Figure 4 Snapshot of RLE Simulation

Figure 5 Snapshot of VLC Simulation

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

184

a Original Apple Frame b Reconstructed Apple Frame

Figure 6 Sample reconstructed picture - Size: 640x480 Pixels, Compression effected: 38 and PSNR: 33 dB

References

[1] ISO/IEC MPEG-2 Standards for generic coding of moving
pictures: Part 2, Video, 1998.

[2] N.I. Cho, S.U. Lee, “Fast Algorithm and Implementation of
2D-Discrete Cosine Transform”, IEEE transactions on
Circuits and Systems, Vol. CAS 38, pp. 297 - 305, Mar. 95.

[3] H. Park and V.K. Prasanna, “Area efficient VLSI
architectures for Huffman coding”, IEEE Transactions on
circuits and systems, Vol. 40, No. 9, pp. 568-575, Sep.
1993.

[4] H.C. Chang, L.G. Chen, Y.C. Chang, S.C. Huang, “A VLSI
Architecture Design of VLC Encoder for High Data Rate
Video/Image Coding”, IEEE International symposium on
circuits and systems, Orlando, Florida, pp. iv398-401, May-
June 1999.

[5] S. Ramachandran and S. Srinivasan, “A fast, FPGA-based
MPEG-2 video encoder with a novel automatic quality
control scheme,” Elsevier, Journal of Microprocessors and
Microsystems, UK, 25, pp. 449-457, 2002.

[6] S. Ramachandran and S. Srinivasan, “Design and
Implementation of an EPLD-based Variable Length Coder
for Real Time Image Compression Applications”, IEEE
International symposium on circuits and systems (ISCAS),
Geneva, Switzerland, May, 2000.

[7] S. Ramachandran and S. Srinivasan,“FPGA
Implementation of a Novel, Fast Motion Estimation
Algorithm for Real-Time Video Compression”,
ACM/SIGDA Ninth International Symposium on Field
Programmable Gate Arrays, Monterey, California USA,
pp.213-219,2001.

[8] S. Ramachandran and S.Srinivasan, “A Novel Automatic
Quality Control Scheme for Real-Time Image
Transmission”, VLSI Design Vol.14, pp.329-335, 2002.

[9] Jari Nikara, Stamatis Vasilliadis, Jarmo Takala, Petri Liuha,
“Multiple-symbol parallel decoding for Variable Length
Coders”, IEEE Transactions on circuits and systems, Vol.
12, No. 7, pp. 676-685, July 2004.

[10] Jianjun Liu, Guofang Tu, Can Zhang and Yang Yang,
“Joint source and channel decoding for variable length
encoded turbo codes”, EURASIP Journal on Advances in
Signal Processing, Vol. 2008, Issue 1, 2008.

[11] Musy Stephane, “Variable Length Coder for Degraded
Broadcast Channels”, IEEE International Sympsium on
Information theory, NICE, June 2007.

N.Venugopal obtained his ME degree
from Bangalore University, India in
1998. He is pursuing his research work
in Dr MGR University, Chennai. His
research interest includes Video
Processing, DSP applications,
Communication, FPGA, Power
electronics, Control systems and their

applications. He is a member of IEEE and MISTE.

Dr. S. Ramachandran obtained his
M. Tech. and Ph. D. from the Indian
Institute of Technology, Kanpur and
Madras respectively. He has wide
academic as well as industrial
experience of over 30 years, having
worked as Professor in various
engineering colleges as well as design
engineer in industries. Prior to this, he

has been with the Indian Institute of Technology Madras. His
research interests include developing algorithms, architectures
and implementations on FPGAs/ASICs for Video Processing,
DSP applications, reconfigurable computing, open loop control
systems, etc. He has a number of papers in International Journals
and Conferences. He is the recipient of the Best Design Award at
VLSI Design 2000, International Conference held at Calcutta,
India and the Best Paper Award of the Session at WMSCI 2006,
Orlando, Florida, USA. He has also written a book on Digital
VLSI Systems Design, published by Springer Verlag,
Netherlands (www.springer.com). His video lectures are
accessible in You Tube.

