
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

185

Manuscript received July 5, 2009
Manuscript revised July 20, 2009

A Methodology for Modeling Software Safety in Safety-Critical
Computing Systems

S. Phani Kumar1, Dr.P.Seetha Ramaiah2, Dr.V.Khanaa3
1. Department of CSE, Bharath University, Chennai, India.

2. Department of CS&SE, Andhra University college of Engineering, Visakhapatnam, India
3. Department of IT, Bharath University, Chennai, India.

Abstract
The safety aspects of computer-based systems as increasingly
important as the use of software escalates because of its
convenience and flexibility. Incorrect requirements have been
identified as a major cause of software accidents and it appears
that current software safety standards do not place a
proportionate emphasis upon this causal factor. This paper
reviews existing software safety standards, guidelines and other
software safety documents and also examines the limitations,
practical problems and issues associated with the use of current
software safety standards. In this paper, a Methodology is
proposed for modeling software safety based on the current
software safety standards, their merits and limitations. The tasks
in this proposed methodology pertains to System and software
hazard analyses, Identification of software safety-critical
requirements, safety-constraints based design, software safety
implementation and software safety critical testing. This
methodology was applied to a laboratory prototype safety-
critical Railroad Crossing Control System (RCCS). The results
showed that all safety critical operations are safe and risk free
and capable of handling the contingency situations.
Key words:
Index Terms: Software Safety – Safety Critical Systems
– Safer Software Development – Railroad Crossing Control
System(RCCS)

1. Introduction

Safety-critical systems are those systems whose failure
could result in loss of life, significant property damage, or
damage to the environment [1]. There are many well
known examples in application areas such as medical
devices, aircraft flight control, weapons, and nuclear
systems.
A safety critical system is a system where human safety is
dependent upon the correct operation of the system. The
emphasis of this paper is on the software element of
safety critical systems, which for convenience is often
referred to as safety critical software. However, safety
must always be considered with respect to the whole
system, including software, computer hardware, other
electronic and electrical hardware, mechanical hardware,
and operators or users, not just the software element.
Safety critical software has been traditionally associated
with embedded control systems. Many safety-critical

systems rely on software to achieve their purposes. The
number of such systems increases as additional
capabilities are realized in software. Miniaturization and
processing improvements have enabled the spread of
safety critical systems from nuclear and defense
applications to domains as diverse as implantable medical
devices, traffic control, smart vehicles, and interactive
virtual environments. Future technological advances and
consumer markets can be expected to produce more
safety-critical applications. With the recent increase in
computer controlled critical systems, a clear
understanding of the software development process is
essential to produce quality software that eliminates
software errors that can potentially result in death, injury,
loss of equipment or property, or environmental harm.

1.1 Terminology

To begin, for the purposes of this paper, we define the
terms safe, and safety according to definitions found in
the literature. The Institute of Electrical and Electronics
Engineers (IEEE) defines safe as:
Definition 1: Safe is having acceptable risk of the
occurrence of a hazard [12]
Definition 2: Risk is the combination of the probability of
an abnormal event or failure, and the consequence(s) of
that event or failure to a system’s components, operators,
users, or environment [12]
Definition 3: Hazard is (a) an intrinsic property or
condition that has the potential to cause harm or damage,
or (b) an existing or potential condition that can result in a
mishap [12].
Definition 4: Mishap is an unplanned event or series of
events resulting in death, injury, occupational illness, or
damage to or loss equipment or property, or damage
to the environment [12].
Definition 5: Safety is the freedom from those conditions
that can cause death, injury, occupational illness, or
damage to or loss of equipment or property [4].

1.2 Software Induced Failures in Real-life

Computers are increasingly being introduced into safety
critical systems and, as a consequence, have been

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

186

involved in accidents. Some well known incidents are the
Therac-25 accidents [13], the Ariane 5 explosion. Some
of the most widely cited software-related accidents in
safety critical systems involved a computerized radiation
therapy machine called the Therac-25. Between June
1985 and January 1987, six known accidents involved
massive overdoses by the Therac-25 – with resultant
deaths and serious injuries. They have been described as
the worst series of radiation accidents in the 35-year
history of medical accelerators.

On June 4, 1996 an unmanned Ariane 5 rocket launched
by the European Space Agency exploded just forty
seconds after its lift-off from Kourou, French Guiana.
The rocket was on its first voyage, after a decade of
development costing $7 billion. The destroyed rocket and
its cargo were valued at $500 million. A board of enquiry
which investigated the causes of explosion found out that
the cause of the failure was a software error in the inertial
reference system. Specifically a 64 bit floating point
number relating to the horizontal velocity of the rocket
with respect to the platform was converted to a 16 bit
signed integer. The number was larger than 32,767, the
largest integer storable in a 16 bit signed integer, and thus
the conversion failed.

The rest of this paper is organized as follows.
Section 2 describes safety aspects of computer based
systems.
Section 3 presents Existing software safety documents
and Standards.
Section 4 presents Proposed Methodology for modeling
software safety in safety-critical computing systems.
Section 5 describes safety issues of Railroad Crossing
Control System (RCCS) prototype and the results
observed after application of the methodology proposed
and
the final section concludes the discussion, and explores
directions for future research work.

2. The Computer based Systems and Mishaps

Typically, virtually any computer system – whether it’s a
fly-by-wire aircraft controller, an industrial robot, a
radiation therapy machine, or an automotive antiskid
system—contains five primary components [15] :
– Application
 Physical entity the system controls/monitors, e.g. plant,
process
– Sensor
 Converts application’s measured properties to
appropriate computer input signals, e.g.
accelerometer, transducer
– Effector

 Converts electrical signal from computer’s output to a
corresponding physical action that
controls function, e.g. motor, valve, break, and pump.
– Operator
 Human(s) who monitor monitor and activate the
computer system in real-time, e.g. pilot,
plant operator, medical technician
– Computer
 Hardware and software that use sensors and effectors to
control the application in real-time,
e.g. single board controller, programmable logic
controller, flight computers, systems on a chip.

Any of the above five components may fail and cause a
mishap as shown in Fig. 1
The main concentration in this work is on Computer
Software that too on Safety-Critical Software

2.1 Safety Critical Software

“Any software item identified as a potential hazard cause,
contributor, control, or mitigation, whether controlled by
hardware, software or human operator, is designated as
safety-critical, and subjected to rigorous software quality
assurance, analysis, and testing. Safety-critical software is
also traced through the software safety analysis process
until the final
verification. Thus, safety critical requirements need to be
identified as such to insure future changes, as well as
verification processes, take them into appropriate
consideration.”

Software is safety-critical if it resides in a safety critical
system and at least one of the following applies:
• Causes or contributes to a hazard.
• Provides control or mitigation for hazards.
• Controls safety-critical functions.
• Processes safety-critical commands or data.
• Detects and reports, or takes corrective action, if the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

187

system reaches a specific hazardous state.
• Mitigates damage if a hazard occurs.
• Resides on the same system (processor) as safety-
critical software

2.2 Software Safety Involves:

1. Integrating safety into the software life cycle
2.Analyzing the software, system, and interfaces from
beginning to end
3. Documenting safety plans, decisions, processes, and
results
4.Tracing software safety requirements through all
software phases
5. Reporting and resolving problems and discrepancies
6. Controlling software configuration
7. Evaluating off-the-shelf software
Software Safety Continues during Operations
1. Software safety applies to a system until it is retired
2. Software upgrades, updates, fixes, and other changes
3.User manuals must describe safety-related commands
and data.

3. Existing software safety documents and
Standards

A number of software safety standards and guidelines
documents and methods from various organizations for
various disciplines exist today. This section provides a
brief overview of these standards, guidelines and
methods.

National Aeronautics and Space Administration
(NASA) : NASA-STD-8719.13A provides the
requirements to implement a systematic approach to
software safety as an integral part of the overall system
safety program[2]. This standard can be applied to
software whose failure may cause an hazard and to the
software which detects and corrects if the system reaches
a specific hazardous state. Safety critical software is
identified at system and subsystem levels by analyzing
for safety at these levels. The level of system safety
effort is determined by its system category and hazard
severity level. The NASA Guidebook, NASA –GB-
1740.13-96, provides more details of applying this
standard [3].

U.S. Department of Defense: MIL-STD-882C is
primarily intended for System Safety , so a detailed
software safety process is not addressed[4]. However It
provides a software hazard risk assessment process and
considers the potential hazard severity and degree of
control that software exercises over hardware. It does not
provide guidance or recommendations on the tasks and

levels of analysis to perform for the determined software
criticality.

DO-178B – Development of Safety – Related Software
in Airborne industries
The purpose of DO-178B is to provide guidelines for the
production of software for airborne systems and
equipment that performs its intended function with a level
of confidence in safety that complies with airworthiness
requirements [5]. This standard provides a good
description of software development tasks and links the
system safety assessment process with the software
development process. No specific safety tasks are
detailed.

Joint Software System Safety Committee (JSSC): The
JSSC Software System Safety Handbook, A Technical
and Managerial team approach, provides management
and engineering guidelines to achieve a reasonable level
of assurance that software will execute within the system
context with an acceptable level of safety risk [6]. It gives
a software safety process that includes identifying generic
and system safety- critical software requirements,
performing software safety analysis during each stage of
the software lifecycle, verifying that whether software is
developed conforming to the standards and developing a
software safety assessment. No specific guidance is
provided on determining the level of software safety
effort required.

International Electrotechnical Commission (IEC)
IEC61508 - Development of Safety-Related Systems
On Ground : IEC 61508 [7] is intended to enable the
development of programmable electronic safety related
systems where application sector international standards
may not exist, and to facilitate the development of
application sector international standards. IEC 61508
defines requirements for the activities to be performed
throughout the lifecycle in a similar way as DO178B does.
In addition, for each life cycle phase it gives a set of
techniques and measures that can be applied depending
on the safety integrity level(SIL).

Motor Industry Software Reliability Association
(MISRA): MISRA compiles eight detailed reports
containing information on specific issues relating to
automotive software. The reports are summarized in a
single document: Development Guidelines for Vehicle
Based Software [8]. It gives software life cycle but does
not provide an explicit process for software safety that
could be directly implemented.

APT Research, Inc.: APT’s 15 Step Process for
Definition and Verification of Critical Safety
Functions in Software was presented at the 2001

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

188

International System Safety Conference [9]. The steps
include identifying the system hazards, identifying
software safety functional requirements, and tailoring the
safety effort to criticality. The method shows the
integration of the 15 step process for software system
safety into the system safety process and the software
lifecycle.

4. Proposed Methodology for modeling
software safety in safety-critical computing
systems

The Ten tasks are:

1. Software safety Planning
2. Safety-Critical Computer System Function

Identification and Description
3. Hazard Analysis
4. Software Safety Requirements Analysis,
5. Software Safety Architecture Design analysis
6. Software Safety Detailed Design Analysis
7. Software Safety Code Analysis
8. Software Safety Test Analysis
9. Software Safety Evaluation, and
10. Software Safety Process Review and

Documentation.

1. Software safety planning

The purpose of software safety planning is to define the
approach that will aid in producing software that will
satisfy system safety requirements. Planning helps ensure
that safety is designed and
incorporated in from the beginning of the life cycle. Early
hazard identification and risk reduction will
typically provide the most effective and lowest cost
approach to addressing safety concerns. Software safety
plans include a System Safety Program Plan, which
describes the software and hardware safety tasks and
activities, and the Software Development Plan. A
Software Development Plan includes management
elements of safe software development (organization and
responsibilities, policies and procedures, schedule and
tasks, etc.) and engineering elements (hazard analyses,
verification approaches, configuration management,
quality assurance, etc.). Additional information about
software safety planning can be found in [10].

2. Safety-critical computer system function
identification

When software is integrated as part of a system to
command, control, or monitor safety-critical functions,

special measures are required to understand and mitigate
safety risks. Therefore, it is
important first to identify those functions that are
essential to safe performance or operation.
Identifying these functions helps prioritize the safety
effort to focus the resources and activities on the most
important safety concerns. Safety critical computer
system functions are essentially those software features
that are used to monitor, control, or provide data for the
safety-critical functions.
At this stage top-level, or generic, requirements should be
defined. These requirements are in general not tied to a
specific hazard but rather are derived from knowledge of
the safety-critical functions, design standards, safety
standards, mishap reports, experience on similar software,
and lessons learned from other programs.

3. Software and computing system hazard analyses

Once the safety-critical computer system functions have
been identified, perform analyses to identify the hazards,
assess the risks, and identify risk mitigation approaches
associated with those functions.
In software-intensive systems, mishaps often occur
because of a combination of factors, including component
failure and faults, human error, environmental conditions,
procedural deficiencies, design inadequacies, and
software and computing system errors. In such systems
software often cannot be divorced from the system where
it resides. First perform a preliminary analysis that
considers software hazards on a system or subsystem
level as part of a larger system safety effort. perform
these system-level hazard analysis and risk assessments in
a manner similar to that used for systems consisting only
of hardware. Typical approaches include Preliminary
Hazard Analyses and Failure Modes, Effects, and
Criticality Analysis. The analysis will result in mitigation
measures to reduce risk and system-level requirements to
implement those mitigation measures. In addition to the
system or subsystem hazard analysis, perform software-
specific hazard analyses. Software-specific hazard
analyses identify what can go wrong, what are the
potential effects, and what mitigation measures can be
used to reduce the risk. Note however that because of the
difficulties in assigning probabilities to newly developed
software, the software-specific hazard analysis does not
usually include an assessment of the likelihood of a
software fault. Typical software-specific hazard analysis
techniques include Software Failure Modes and Effects
Analysis and Software Fault Tree Analysis. Software-
specific hazard analyses should consider multiple error
conditions. Some of the error conditions to consider are
as follows:

Calculation or computation errors (incorrect　　
algorithms, calculation overflow, etc.)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

189

Data errors (out of range data, incorrect inputs,　　
large data rates, etc.)

Logic errors (improper or unexpected 　　
commands,

failure to issue a command, etc.)
Interfac　　 e errors (incorrect messaging, poor

interface layout and design, etc.)
Environment　　 -related errors (improper use of

tools,
changes in operating system, etc.)

Hardware　　 -related errors (unexpected computer
shutdown, memory overwriting, etc.)

The software-specific analysis should provide specific
mitigation approaches for each potential hazard identified.
The recommended order of precedence for eliminating or
reducing risk in the use of software and computing
systems is the same as that for hardware, as follows:

1. Design for minimum risk
2. Incorporate safety devices
3. Provide warning devices
4. Develop and implement procedures and training

Mitigation measures can include, but are not limited to,
approaches such as the following

Software fault detection (for example, built　　 -in
tests,

incremental auditing, etc.)
Software fault isolation (for example, isolating　　

safety-critical functions from non-safety-critical
functions, etc.)

Software fault tolerance (for example, recovery　　
blocks that use multiple software versions of
progressively more reliable construction should
faults occur, etc.)

Hardware and software fault recovery (for　　
example, incremental reboots, exception handling,
etc.)

4.Software Safety Requirements Analysis:

A Software Safety Requirements Analysis (SSRA) shall
be performed and documented. The system-level PHA
and the system conceptual design shall be used as input to
the SSRA. The SSRA shall examine system level
software requirements, interface control documents, and
the ongoing software requirements specification
development to:
a. Identify software requirements that are safety critical.
b. Ensure the correctness and completeness of the
decomposition of the high level safety requirements.
c. Provide safety-related recommendations for the design
and testing process. [11]
Analysis of all software requirements [16] shall be
performed in order to identify additional hazards that the

system analysis did not include and to identify areas
where system or interface requirements were not correctly
assigned to the software. Identified hazards shall then be
addressed by adding or changing the interfaces, system
requirements, and/or software requirements. The SSRA
shall consider such specific requirements as specific limit
ranges; out-of-sequence event protection requirements
(e.g., "if-then" statements); timers; relationship logic for.
interdependent limits; voting logic; hazardous command
processing requirements; Fault Detection, Isolation, and
Recovery(FDIR); and switch over logic for failure
tolerance.
Output of the SSRA shall be used as input to follow-on
software safety analyses. The SSRA shall be presented at
the Software Requirements Review (SRR)/Software
Specification Review (SSR) and system-level safety
reviews. The results of the SSRA shall be provided to the
ongoing system safety analysis activity.

5. Software safety Architecture Design Analysis:

This begins in the System and Software Architecture
Design phase.
Inputs into this task may include the system architecture
design, the system hazard analysis outputs like PHA ,
safety concept etc., the safety-related design and testing
recommendations from the software safety requirement
analysis task, the software architecture design, the
software safety requirements, and software criticality and
tailoring guidelines.

Software components and functions are identified in the
software architecture design phase. The software
components and functions that implement the software
safety requirements or that affect the output of the
software safety requirements are identified as safety-
critical. The correctness and completeness of the software
architecture design as it is related to the software safety
requirements and the safety-related design
recommendations is analyzed to help ensure that the
design satisfies the software safety requirements.

Safety-related recommendations for the detailed design
and test procedures are provided, and test coverage of
software safety requirements is verified.

6. Software safety detailed design analysis :

This begins in the software detailed design analysis phase.
Inputs into this task include the system hazard analyses,
the system and software detailed designs, the software
safety requirements, software architecture design analysis
output, safety-related detailed design recommendations.
The identified safety critical components and functions
that implement the software safety requirements are
refined to the unit level software components and

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

190

functions. The system and software detailed designs are
analyzed to ensure that the software detailed design
satisfies the software safety requirements. Subsystem
interfaces may be analyzed to detect the interface
problems which may lead to hazards.
Test coverage of software safety requirements is verified,
and safety-related recommendations for the software
implementation are provided. The software safety
detailed design analysis continues during a portion of
implementation and unit testing also.
The outputs from this task may include the identified
safety-critical unit level software components and
functions, the identified subsystem interfacing hazards,
and safety-related software implementation and test
coverage recommendations.

7. Software Safety Code Analysis:

This task begins in the software implementation and unit
testing phase.
Inputs into this task may include the system hazard
analyses outputs, software safety requirements, software
detailed design, software safety detailed design analysis
output, safety related software implementation
recommendations, software implementation and tailoring
recommendations.
The Software safety code analysis shall examine the
software requirements specification, test procedures, and
the ongoing code development to:

a. Ensure the correctness and completeness of the code as
related to the software safety requirements, detailed
design, and safety-related coding recommendations[18].

b. Identify potentially unsafe states caused by
input/output timing, multiple events, out-of-sequence
events, failure of events, adverse environments,
deadlocking, wrong events, inappropriate magnitude,
improper polarity, and hardware failure sensitivities, etc.

c. Ensure test coverage of software safety requirements

d. Update safety-related information for inclusion in the
User’s Guide and other appropriate documentation.

e. Ensure proper comments are used in safety critical
component implementation

8. Software Safety Testing and Test Analysis

Software safety Test Planning: This begins in the
software architecture design phase and continues through
the software integration and acceptance testing phase.
During this task, appropriate software safety tests that
address all identified potential hazards related to or

affected by the software are incorporated into the
software safety test plan.

Software safety testing and Test analysis : These tasks
begin in the software implementation and unit testing
phase. Inputs into the software safety testing task include
the system and software safety test plans and procedures.
Inputs into the software safety test analysis task include
the software safety requirements, system safety program
plan, software safety program plan, System and Software
safety test plans and procedures and safety test results.
The test results shall be analyzed to verify that all safety
requirements have been satisfied. The analysis shall also
verify that all identified hazards have been eliminated or
controlled to an acceptable level of risk [17]. The results
of the test safety analysis shall be provided to the ongoing
system safety analysis activity.

9. Software Safety Evaluation

The purpose of the Software Safety Evaluation Phase is to
evaluate all System and software safety analyses and test
results and generate a Safety Certification Letter or Safety
Analysis Report (SAR). The Safety Certification Letter
provides a safety recommendation on whether or not to
certify the computer program and hardware component
undergoing Safety Analysis. A SAR report also provides
a safety recommendation along with a summary of the
findings normally found in the Final Report. Weather a
Certification Letter or SAR report is provided depends on
customer requirements.

10. Software Safety Process Review and
Documentation

This phase allows time for final documentation. This
phase also provides for review of the process and lessons
learned. The lessons learned are used for Software Safety
Process/Technology Improvement.

4.1 Phase Independent Tasks

The following subsections describe those software safety
tasks that are accomplished throughout the life cycle.

1. Safety Requirements Traceability
A system shall be used to trace the flow down of the
software safety requirements to design, implementation,
and test. The tracing system shall also map the
relationships between software safety requirements and
system hazard reports.

2. Discrepancy Reporting and Tracking
A system shall be used for closed-loop tracking of safety-
related discrepancies, problems, and failures in base lined
software products. All discrepancy reports shall be

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

191

reviewed for safety impacts, with the safety activity’s
concurrence on safety-related discrepancy report closures.

3. Software Change Control
All changes, modifications, and patches made to the
safety critical component requirements, design, code,
systems, equipment, test plans, procedures, or criteria
shall be evaluated to determine the effect of the proposed
change on system/subsystem safety.

4. Safety Program Reviews
Safety program reviews shall be conducted to ensure that
implementation of safety controls of hazards are adequate.
The software safety activity shall support the system
safety review process.

5. Application of safety model to Railroad
Crossing Control System (RCCS):

Crossing gates on a full-size railroads are controlled by a
complex control system that causes the gates to be
lowered to prevent access to the crossing shortly before a
train arrives and to be raised to allow access to resume
after the train has departed. This requires the detection of
approaching trains or the manual actuation of the crossing
gates by an operator. RCCS is a prototype safety-critical
railroad crossing control system of limited complexity.
Figure 2 shows the laboratory prototype of RCCS
consisting of several components listed below.

5.1 Components of RCCS

RCCS consists of the following main components: Train,
Railway track, Sensors, Gates, Controller with a digital
I/O card, Signals and a muscle-wire operated track-
change lever.
A brief description of each component is given below.

Train: The train is powered by a power supply relay.
When the power is initially switched on, the train begins
movement along the track when the metallic wheels of
the train receive power. The train comes to a halt at the
position where the power to the tracks is switched off.
When a train approaches the gate crossing region, the
train is detected by the sensor positioned near the gate
crossing area. The sensor sends this information to the
controller component. When a train completely passes the
crossing section, it is detected by the sensor which is
positioned after the gate crossing area. This information is
sent to the controller.

Sensors: These are used to detect the location of the train
on the tracks. Altogether RCCS employs nine sensors.
Two pair of sensors detect the train position before and

after the gates. A set of three sensors relate to track
change where the track splits into two directions. A pair
of sensors give the train position with reference to the
platform, which is the starting point of the train
movement. Information from each of the sensors is
passed to controller.

Fig. 2: Prototype of RCCS

Controller: The controller synchronizes the train
activities with the gate. When the controller receives a
message from sensor1, it sends a command to lower the
gates. When it receives a message from sensor2, it sends
a command to raise the gates. An IBM compatible PC is
used as a controller for RCCS. RCCS software that
controls the overall operation of the system is stored in
the memory of the controller PC. A user interface is
provided to operate the selections of the controller PC. A
48-line digital I/O (DIO) add-on card is plugged into an
available slot in the controller PC for monitoring and
controlling sensors and gate actuators. The DIO card
receives the inputs from each of the nine sensors of
RCCS. The eight output signals sent from DIO card
control the following: the power supply to the train track,
power supply to the two gate assemblies, power supply to
muscle-wire based mechanism to change the track lever
and four signal lights.

Gates: RCCS has two sets of gates on either side of the
track layout. The gate receives signals from the
controller component. When it receives lower, it moves
down. When the gate receives raise, it moves up. The
gates are operated by means of a muscle wire based
mechanism. Muscle wire (Nitinol) is a nickel titanium
alloy which contracts when current flows through it, for
achieving motorless motion for gate movement and track
change.

Signals: Railroad signals are provided to indicate to train
operators whether the track is clear or occupied, or if
certain precautionary measures should be taken while

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

192

using the track, such as maintaining a reduced speed.
RCCS contains three train signals, erected beside the
track. One signal is at the platform to signal a halt at the
platform. The other two signals are placed just before the
point of convergence of the inner track and outer track,
which lead to the platform. A signal head consists of one
or more signal faces that can include solid red and green
lights.

5.2 Results and Discussion

Normal operation of RCCS: When RCCS is first
switched on, the controller does a preliminary check of
the normal working status of all the subsystems involved-
the driver circuitry, the sensors, the gate assemblies and
the train signals. If all the components are found to be in
normal working condition, it executes the code related to
normal operation. Figure 3 shows the partial block
diagram of RCCS corresponding to the rail-road
intersection. If the train passes Sensor1 positioned prior to
gate, a signal is sent to the controller indicating the
approaching train. The controller then sends a signal to
the gates assembly, causing the gate arms on either side
of the road to close. When the train finally has passed
Sensor2, which is positioned just beyond the gate
crossing section, a corresponding signal is sent to the
controller, which in turn triggers both the gate arms to
open simultaneously. If RCCS detects any abnormal
situation or state during its normal mode of operation,
perhaps due to an unexpected lightning strike or
rainstorm that disrupts the circuitry of the gate assemblies,
it executes the code relating to emergency situation
causing the signal erected near the gates, to flash a red
light continuously. This is an indicator to the public that
the gate assembly is not in working condition and that
they need to take necessary
precaution in crossing the intersection. All the tasks of the
methodology were applied to RCCS. First, the system-
level hazard analysis was done to identify possible
hazardous failure conditions at the system level. The
potential hazards identified are: Failure of Controller,
Failure of Sensors, Failure of Driver Circuitry, Failure of
Gate 1 and Gate 2, Failure of Train Signal, Failure of
muscle-wire operated Track Change Lever in changing
from outer to inner track. Next, the identified hazards
were classified according to their severity. A hazard
belongs to one of four levels-catastrophic, critical,
marginal and negligible.
For example, the failure of the controller may lead to both
gates being permanently open, causing accidents, can be
considered a catastrophic or severe hazard. Failure of the
sensor that detects that the train has passed the gate
crossing section, with the effect of the gates being
permanently closed will not cause an accident but will
violate the utility property of the gates, until the problem

is rectified. Failure of the sensor that detects the
approaching train can cause an accident as the controller
will not close the gates keeping them open, which can
lead to accidents as the road users are unaware of the
approaching train. This is a catastrophic or severe hazard.

Fig. 3: RCCS partial block diagram showing railroad

crossing intersection

Second, completeness of requirements is verified to check
any missing or ambiguous specifications. This was done
by peer review and manual checking rather than applying
any formal methods.

Third, all the safety-critical and non-safety critical
requirements were identified. All requirements that
directly or indirectly lead to incorrect operation of the
gates are considered safety-critical.
Fourth, a design that enforced the safety constraints was
chosen for RCCS. The objective of the design was to
eliminate or mitigate the hazards identified in the
preliminary system-level hazard analysis. Another
objective was to avoid the possibility of single point
failure. This was achieved by using a additional
redundant controller that takes over control of the system
should the main controller fail unexpectedly.
Implementation was done in Cyclone programming
language which is a dialect of C language which includes
several safety features not found in C.

Fifth, run-time performance was monitored for problems
relating to exceptions, deadlocks, memory related issues
like buffer overruns.

Lastly, safety critical testing of RCCS was done by
separating the code into two risk groups. Group one
includes hazards that are catastrophic or critical. Group
two includes hazards that are marginal or negligible.
More testing effort was spent on those code sections
dealing with hazards related to group one. The
preliminary results in applying the safety methodology in
developing the safety-critical RCCS clearly demonstrate
that the system is safe, risk-free and fail-safe when
compared to a development methodology that does not
take hazards and associated risks into consideration.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

193

6. Conclusion

This study discussed different software safety standards,
their merits, limitations and problems relevant to software
safety. A new methodology for software safety is
proposed. A set of tasks that form the basis of software
safety is presented. The proposed model is applied to a
laboratory prototype of a software-based Railroad
Crossing Control System (RCCS) that includes safety-
critical operations and observed satisfactory results.
Using the experimental results of the proposed model
with railroad crossing control system, work can be
extended to address issues of development cost and
development time in implementing this model to achieve
software safety metrics. Rigorous work is needed to meet
the complete requirements of software safety aspects that
leads to standardization of model with safety metrics.

References
[1] John C. Knight, “Safety Critical Systems: Challenges and

Directions”, Proceedings of the 24th International
Conference on Software Engineering Orlando, Florida, 2002,
pp. 547 – 550

[2] NASA. Software Safety: NASA Technical Standard NASA-
STD-8719.13A. September 1987

[3] NASA Guidebook for Safety Critical Software NASA –GB-
1740.13-96

[4] Department of Defense. System Safety Program
Requirements MIL-STD-882C.1984

[5] Software considerations in airborne systems and equipment
certification. DO178B 1992

[6] D. Alberico, J. Bozarth, M. Brown, et. Al. JSSC Software
System Safety Handbook; A Technical and Managerial
Team Approach December 1999.

[7] IEC, International Standard, Functional Safety of Electrical
/ Electronic / Programmable Electronic Safety- Related
Systems – IEC 61508 -3; Part 3 Software Requirements.
1998

[8] MISRA. Development Guidelines for Vehicle Based
Software. November 1994.

[9] H.D. Kuettner, Jr. and P.R. Owen, “Definition and
Verification of Critical Safety Functions in Software”,
Proceedings of the International System Safety Conference
(ISSC) 2001. System Safety Society, Unionville,Virginia
2001, pp.337-346.

[10] IEEE STD 1228-1994, IEEE Standard for Software Safety
Plans, 1994.

[11] P.Seetharamaiah and M.Ben Swarup “Towards a
methodology for building safe software based systems”,
Proceedings of the CONQUEST 2008, 11th International
Conference on Quality Engineering in Software Technology,
Potsdam 2008

[12] IEEE100, “The Authoritative Dictionary of IEEE Standard
Terms”, IEEE Press, 2000.

[13] N.G.Leveson and C.S.Turner.An investigation of the
Therac-25 accidents. IEEE Computer, 26(7):18-41, March
1987

[14]] James Gleick. The New York Times Magazine 1st
December 1996

[15] William R. Dunn, “Practical Design of Safety Critical
Computer Systems”, Reliability Press, 2002.

[16] Firesmith, D.G., 2005. Engineering safety-related
requirements for software-intensive systems.

Proceeding of the 27th International Conference on Software
Engineering, May 15-21, St. Louis, Missouri, USA., pp:
720-721. http://portal.acm.org/citation.cfm?id=1062455.106
2635

[17] Anderson, P., 2008. Detecting bugs in safety critical code.
Dr. Dobbs J., February. http://www.ddj.com/development-
tools/206104422

[18] Holzmann, G.J., 2006 The power of ten: Rules for
developing safety critical code. IEEE Computer, 39: 95-99.
DOI: 10.1109/MC.2006.212

S Phani Kumar
Department of Computer Science &
Engineering, Bharath University, Chennai,
Tamilnadu – INDIA. S. Phani kumar
obtained his Bachelors degree in
Computer Science and Engineering from
Rural Engineering College, Bhalki, which
is affiliated to Visweswaraiah
Technological University, Karnataka –

INDIA in 2002 and his Masters degree in Software Engineering
from Bharath University, Chennai, INDIA in 2006. He has
presented two International Conference papers in addition to
two papers at National Conferences in India He is presently
pursuing the doctoral degree in Computer Science and
Engineering from Bharath university, Chennai – INDIA. His
research interests are Safety Critical Systems, Safety Software,
Software Engineering and Real Time Systems.

Dr. Panchumarthy Seetha Ramaiah
Professor, Dept. of Computer Science and
Systems Engineering, Andhra University
College of Engineering, Visakhapatnam-
530 003, Andhra Pradesh – INDIA. Dr.
Panchumarthy Seetha Ramaiah obtained
his PhD in Computer Science from
Andhra university in 1990. He is presently
working as a professor of Computer

Science in the department of Computer Science and Systems
Engineering, A.U. College of Engineering, Visakhapatnam –
INDIA. He is the Principal Investigator for several Defence
R&D projects and Department of Science and Technology
projects of the Government of India in the areas of Embedded
Systems and robotics. He has published seven journal papers,
and presented Fifteen International Conference papers in
addition to twenty one papers at National Conferences in India

Dr. V.Khanaa
Dean (Information Systems) Bharath
University Chennai – INDIA. Dr.
V.Khanaa is presently working as Dean
– Information Systems in Bharath
University, Chennai – INDIA and his
research interests are Computer
Networks, Digital Image Processing,
Real Time Systems and Safety

Software.

