
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

225

Manuscript received July 5, 2009
Manuscript revised July 20, 2009

Optimal Recovery Schemes in Distributed COMPUTING

R. Delhi Babu1 and P. Sakthivel2

1Department of Computer Science and Engineering,
Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110, India

2Department of Electronics and Communication Engineering,
Anna University Chennai, Chennai 600025, India

Abstract
Clusters and distributed systems offer fault tolerance and high
performance through load sharing, and are thus attractive in
real-time applications. When all computers are up and running,
we would like the load to be evenly distributed among the
computers. When one or more computers fail this must be
redistributed. The redistribution is determined by the recovery
scheme. The recovery scheme should keep the load as evenly
distributed as possible even when the most unfavorable
combinations of computers break down, i.e. we want to
optimize the worst-case behavior. In this paper we compared
all schemes (Modulo ruler, Golomb ruler, Greedy Sequence,
Sloane Sequence, Log Sequence) with worst-case behavior.
Finally we conclude our scheme (Sloane schemes) performs
better than all the other schemes.
Key Words:
Fault tolerance, High performance computing, Cluster
technique, Recovery schemes, Sloane sequence.

1. Introduction

One way of obtaining high availability and fault
tolerance is to execute an application on a cluster or
distributed system. There is a primary computer that
executes the application under normal conditions and a
secondary computer that takes over when the primary
computer breaks down. There may also be a third
computer that takes over when the primary and
secondary computers are both down, and so on. Another
advantage of using distributed system or cluster, besides
fault tolerance, is load sharing between the computers.
When all computers are up and running, We would like
the load to be evenly distributed. The load on some
computer will, however, increase when one or more
computers are down, but under these condition we
would like to distribute the load as evenly as possible
on the remaining computers. The
distributed of the load when a computer goes
down is decided by the recovery list of the processes
running on the fault computer.

The set of all recovery lists is referred to as the recovery
schemes. Load balancing and availability or specially
important in fault tolerant distributed system, where it is
difficult to predict on which computer the process

should be executed. This problem NP-complete for
the large number of computers. Most cluster vendors
support this kind of error recovery, e.g. the node list
in Sun Cluster [13] the priority list in MC/Service
Guard (HP) [4] the placement policy in TruCluster
(DEC) [5], Cascading resource groups in HACMP
(IBM) [4], and node preference list in Windows
Server 2003 cluster (Microsoft, earlier called MSCS)
[10].

We consider that the computers are connected in a
ring in this work. A recovery scheme specifies where
to transfer a process when the
computer in which it is running goes down. We call a
transfer of a process from one computer to another as
a jump. A jump is specified by a number that gives
which computer to resume the process. The jump is
the number of computers to pass by in the ring. Hence,
the jumps are the same wherever in the ring we start.
The jump is only dependent on the number of
previous jumps of the process: i.e. on the number of
transfers for the process. If a process is transferred
from computer A to computer B, and also computer B
is down, the next jump in the recovery scheme is used,
counting from computer B. We use the term
"Wrap-around" when the total sum of jumps for a
process exceeds the number of computers. We would
like to do an optimal recovery process. Here optimal
means that the maximal number of processes on the
same computer after k crashes is BV (k) (Bound
Vector). The function BV (k) provides a lower bound
for any recovery scheme [9].

`Greedy', `Golomb' and `Modulo' schemes [6][7] are
optimal for a larger number of computers than `Log'.
The `Modulo' rule gives better optimal result for a
larger number of computers down than the Golomb
schemes and Greedy scheme. Both (Golomb and
Greedy) recovery schemes consider the formulation
where wrap-around is not taken into account whereas
in this paper we use it as in `Modulo' scheme. In this
paper we use a sharper mathematical formulation of
the computer science problem, and give a new
recovery schemes called Sloane scheme. These are

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

226

optimal for a larger number of computers down in the
original computer science problem. i.e. these results
represent state-of-the-art in the field. The paper is
organized as follows. In Section [3] we formulate and
explain the problem. We briefly review the existing all
work and general results in Section [4]. The General
Theorem is defined in Section [5] and its performance
in Section [6]. In Section [7] we conclude the paper..

2. Problem definition

We consider a cluster with n identical computers with
one process on each computer. The work is evenly split
between these n processes. There is a recovery list
associated with each process. This list determines where
the process should be restarted if the current computer
breaks down. The set of all recovery lists is referred to
as the recovery scheme. Figure [1] shows such a system
for n = 4. We assume that processes are moved back as
soon as a computer comes back up again. In most
cluster systems this can be configured by the user
[3][13][14], i.e. in some cases one may not want
automatic relocation of processes when a faulty
computer comes back up again. The left side of the
figure shows the system under normal conditions. In
this case, there is one process on each computer. The
recovery lists are also shown; one list for each process.
The set of all recovery lists is referred to as the recovery
scheme.

The right side of Figure [1] shows the scenario when
computer zero breaks down. The recovery list for
process zero shows that it should be restarted on
computer one when computer zero breaks down. If
computer one also breaks down, process zero will be
restarted on computer two, which is the second
computer in the recovery list. The first

computer in the recovery list for process one is
computer zero. However, since computer zero is down,
process one will be restarted on computer three.
Consequently, if computers zero and one are down,
there are two processes on computer two (processes
zero and two) and two processes on computer three
(processes one and three). If computers zero and one
break down the maximum load on each of the
remaining computers is twice the normal load. This is a
good result, since the load is as evenly distributed as
possible. However, if computers zero and two break
down, there are three processes on computer one
(processes zero, one and two), i.e. the maximum load on
the most heavily loaded computer is three times the
normal load. Consequently, for the recovery scheme in
Figure [1], the combination of computers zero and two

being down is more unfavorable than the combination
of computers zero and one being down. We are
interested in the worst-case behavior.

Our results are also valid when there are n external
systems feeding data into the cluster, e.g. one
telecommunication switching center feeding data into
each computer in the cluster.
If a computer breaks down, the switching center must
send its data to some other computer in the cluster, i.e.
there has to be a
“recovery list" associated with each switching center.
The fail-over order can alternatively be handled by
recovery lists at the communication protocol level, e.g.
IP takeover [11]. In that
case, redirecting the communication to another
computer is transparent to the switching center. We
assume that the work performed by each of the n
computers must be moved as one atomic
unit. Examples are systems where all the work
performed by a computer is generated from one
external system or when all the work is performed by
one process, or systems where the external
communication is handled by IP takeover.

3. Optimal Recovery Schemes

Here we review previous works in which
algorithms that give recovery schemes for a
number of crashed computers. In [8] the
problem of finding a recovery scheme that
can guarantee optimal worst-case load
distribution when at most x computers are
down is presented for the first time. The
schemes algorithm generates the recovery
schemes that should have as large k as possible.
The Log any static recovery scheme. BV is by
definition increasing and contains exactly k entries
that equals x for all x≤ 2. The j-th entry in the vector
BV (k) equals ⎣ ⎦2/1)1(2 ++j . Hence, BV (k) = < 2,
2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, . . .>.

The paper [6] presents two other algorithms, the
Greedy algorithm and the Golomb scheme. These
algorithms generate the recovery schemes that give
better optimality than the Log algorithm [8], (i.e.
better load balancing). The Greedy algorithm is based
on the mathematical problem of finding the sequence
of positive integers such that all sums of subsequences
are unique and minimal. It is easy to calculate the
Greedy algorithm even for large n. The Golomb
scheme is a special case of the Greedy algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

227

Figure 1 An application execution on a cluster with four computers.

However, finding (and proving) optimal Golomb
schemes becomes exponentially more difficult as the
number of computers (n) increases. Therefore, for large
n one can easily calculate a sequence with distinct
partial sums with the Greedy algorithm [14][16].

In [7] the problem is optimized by taking into account
the wrap-around scenario: process being sent
backwards or passing by the initial
guarantee optimality when at most ⎣ ⎦n2log computers
go down. Here optimal means that the maximal number
of processes on the same

computer after k crashes is BV (k), where the function
BV (k) provides a lower bound for
computer. This corresponds to the new mathematical
problem of finding the longest sequence of positive
integers for which the sum of all subsequences are
unique modulo n. This mathematical formulation of the
computer science problem gives new more powerful
recovery schemes, called modulo schemes.

Our scheme [1] for the number of cluster computers
n=140. "In worst case scenario our scheme gives
better results".

In [8] the problem of finding recovery schemes for
any number of crashed computers by an exhaustive
search, where brute force testing is
avoided by a mathematical reformulation of the
problem and a branch-and-bound algorithm. The
search nevertheless has a high complexity. Optimal
sequences and thus a corresponding optimal bound
are presented for a maximum of twenty one
computers in the distributed system or cluster.

4. General Proof

Theorem 1. VL(i) ≤ ⎡ ⎤)/(inn − VL(i) is entry
number i in VL [9].

Proof: If i computers are down, there are i processes
which must be allocated to the remaining n-i
computers. The best one can hope for is obviously to
obtain a load of

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

228

⎡ ⎤)/(inn − processes on the most heavily loaded
computer.

Theorem 2. BL is consecutively smaller then than VL
[9].

Proof: Because of Theorem 1 we know that BV (n-1) <
n ≤ VL (n-1).

Based on theorems 1 and 2, we define
B(i) = max (BV (i), ⎡ ⎤)/(inn −). Next we prove that our
proposed scheme is optimal.

Theorem 3: The Sloane recovery scheme is optimal as
long as x computes or less have crashed, where x =
max(i), such that R0(i)< n) be the heaviest loaded
computer when x computers have crashed, where x =
max(i), such that R0(i) < n.[1]

Proof: When x computer have crashed, process z(0 ≤ z
< n) will in the ith step end on computer
(∑ =

+
i

j
jrz

1
)() mod n(1 ≤ i ≤ x). This means that a

process ends up on computer y after i steps was
originally allocated to computer ∑ =

+−
i

j
njry

1
)('

mod n:

1. (∑ =
+−

1

1
)('

i
niry) mod n.

2. (∑=
+−

2

1
)('

i
niry) mod n,

 (∑ =
+−

2

2
)('

i
niry) mod n.

3. (∑=
+−

3

1
)('

i
niry) mod n,

 (∑ =
+−

3

2
)('

i
niry) mod n.

 (∑ =
+−

3

3
)('

i
niry) mod n.

and so on. In general for x th

x: (∑=
+−

x

i
niry

1
)(')mod n,

 (∑=
+−

x

i
niry

2
)(') mod n,…,

 (∑=
+−

x

xi
niry)(') mod n.

5. Performance with All Schemes

In figure (2) compare Sloane schemes with all
schemes. For example, in the case of n=100
computers in a cluster, modulo-m sequences
guarantee optimal behavior in the case of 11 crashes,
while Golomb rulers only guarantee optimality for 10
crashes, greedy scheme for 9
crashes and sloane scheme for 6 crashes. The
advantage with the sloane and greedy algorithm
compared to other schemes is that we can easily
calculate a sequence with distinct partial sum.

Apart from this our scheme has the following
advantages:

• Overall our scheme produced best results
even under worst case scenario.

• When n>45 our scheme performs better than

all the other schemes (see Figure (2) for
n=100).

6. Conclusion

In many cluster and distributed systems, the designer
must provide a recovery scheme. Such schemes define
how the workload should be redistributed when one or
more computers break down. The goal is to keep the
load as evenly distributed as possible, even when the
most unfavorable combinations of computers break
down, i.e. we want to optimize the worst-case
behavior which is particularly important in real-time
systems. We consider n identical computers, which
under normal conditions execute one process each.
All processes perform the same amount of work.
Recovery schemes that guarantee optimal worst-case
load distribution, when x computers have crashed are
referred to as optimal recovery schemes for the values
n and x.

A contribution in this paper is that we have shown
that the problem of finding optimal recovery schemes
for a system with n computers corresponds to the
mathematical problem of finding the longest sequence
of positive integers such that the sum and the sums of
all subsequences number are unique. No efficient
algorithm that finds the longest have previously
obtained recovery schemes that are optimal when a
larger number of computers are down and they do or
don't cover load balancing when wrap-around occurs.
In this paper they don't consider. sequence with these
properties is known. We cluster, modulo-m sequences
guarantee.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

229

 Figure 2. Performance with Sloane Schemes

In this paper we present the sloane sequences that
minimize the maximum load. Modulo sequences allow
optimal behavior for a larger number of crashed
computers than Golomb, greedy and sloane sequences.
For example, in the case of n=100 computers in a
optimal behavior in the case of 11 crashes, while
Golomb rulers only guarantee optimality for 10 crashes,
greedy scheme for 9 rashes and sloane scheme for 6
crashes. Golomb rules are known or lengths upto 41912
(with 211 marks). Of these the first 373 (with 23
marks) are known to be optimal while modulo rulers,
are known only for 13 marks. Modulo sequence are
known up to 92 computers in the cluster and the Sloane
schemes are known only up to 140 computers in a
cluster.

Our recovery schemes can be immediately used in
commercial cluster systems, e.g. when defining the list
in Sun Cluster using the scconf command. The results
can also be used when a number of external systems,
e.g. telecommunication switching centers, send data to
different nodes in a distributed system (or a cluster
where the nodes have individual network addresses). In
that case, the recovery lists are either implemented as
alternative destinations in the external systems or at the
communication protocol level.

References
[1] Delhi Babu, R and Karthigeyan, S, Using Sloane

Rulers for optimal recovery schemes in distributed
computing, Journal of Computer Science and
Technology(under review).

[2] Delhi Babu, R and Karthigeyan, S, Optimal
Recovery Schemes in Distributed Computing a
Short Survey"- International Conference on
Mathematics and Computer Science 2009
(ICMCS 2009).Vol 2.PP 458 to 461.

[3] Hewlett-Packard Company, TruCluster Server –
Cluster Highly Available Applications, Hewlett-
Packard Company, September 2002.

[4] Hewlett-Packard, Managing MC / ServiceGuard,
Hewlett- Packard, March 2002.

[5] IBM, HACMP, Concepts and Facilities Guide,
IBM, July 2002.

[6] Klonowska, K Lundberg L and Lennerstad H,
Using Golomb Rulers for Optimal Recovery
Schemes in Fault Tolerant Distributed Computing,
In Proc. of the 17th International Parallel and
Distributed Processing Symposium IPDPS 2003,
Nice, France, April 2003, pp. 213.

[7] Klonowska, K., Lundberg, L., Lennerstad, H.,
Svahnberg, C. Using modulo rulers for optimal
recovery schemes in distributed computing. 10th
International Symposium PRDC 2004, Papeete,
Tahiti, French Polynesia, March 2004,
Proceedings, pp. 133-142

[8] Klonowska, K., Lundberg, L., Lennerstad, H.,
Svahnberg, C.Optimal recovery schemes in fault
tolerant distributed computing. Acta infomatica
41.314-365,May 2005.

[9] Lundberg,L and Svahnberg,C, Optimal Recovery
Schemes for High-Availability Cluster and
Distributed Compute, JPDC, 2001

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

230

[10] Microsoft Corporation, Server Clusters:
Architecture Overview for Windows Server 2003,
Microsoft Corporation, March 2003.

[11] Pfister,G.F, In Search of Clusters, Prentice-Hall,
1998.

[12] Sloane,N.J.A, and Plouffe,S The encyclopaedia of
interger sequence, Academic Press,1995.

[13] Sun Microsystems, Sun Cluster 3.0 Data Services
Installation and Configuration Guide, Sun
Microsystems, 2000.

[14] TruCluster, Systems Administration Guide, Digital
Equipment Corporation,

[15] http://www.distributed.net/ogr/index.html
[16] http://www.research.ibm.com/people/s/shearer/grta

b.html

