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Summary 
Contour-based descriptors are among the main approaches in 
content based image retrieval. Most of these descriptors are 
based on Fourier transform and use various shape signatures and 
retrieval methods. There retrieval rates are good, and they 
perform generally in speeded ways. This paper presents a new 
approach which looks able to upgrade these results. Prior to 
feature extraction, the shape undergoes moment-based 
preprocessing in order to ensure affine transformations 
robustness. A double signature is computed from shape radius 
and specific angles. Then, we compute the coefficients of Fourier 
descriptors, and with a specific similarity measure we get an 
efficient shape retrieval performance. Our approach is compared 
to a classical Fourier descriptor and to another variant using PCA. 
We also design a comparison with other shape contour-based 
descriptors. 
Key words: 
Closed curve, Fourier Descriptor, similarity measure, affine 
transformation 

1. Introduction 

Recent years show a tremendous increase in the using of 
digital images, due to the high development of 
technologies and Internet. Because it is easier to capture 
and store an image, we now possess huge databases 
accumulated in various fields. So, content based image 
retrieval (CBIR) can be used as a powerful tool intended 
for good exploitation of these data. The retrieval process 
tends to be more complex and critical. In most of cases, 
images in database are retrieved based on their content's 
information, like color, texture and shape. In this work, we 
focus our attention on methods related to the shape. In this 
context, we distinguish two main categories: region-based 
and contour-based. 
Region-based descriptors take into account all the pixels 
inside the shape. These descriptors require some statistical 
methods and support grayscale images. The known 
approaches usually cited in the literature are: the “shape 
matrix” [1], the moments (Zernike, pseudo-Zernike or 
Legendre) [2]-[4], the histograms [5] and the generic 
Fourier descriptor [6].  
In the contour-based approach, we notice some natural and 
elementary methods like polygonal approximation, chain 

code and smoothed curvatures [7]-[9]. We can also 
mention some advanced approaches based on spectral 
descriptors such as the Hough transformation and the CSS 
(curvature scale space) descriptor. Introduced by 
Mokhtarian [10], the CSS consists in building a map 
containing inflexion points of the contour after several 
smoothing steps performed by a Gaussian function. This 
descriptor seems reliable against similarities and noised 
contours. This CSS method is commonly used for the 
indexation [11] and it has been adopted like the MPEG-7 
descriptor. The Hough transform, originally used only for 
detecting lines, was adapted under the denomination of the 
Generalized Hough Transformation (GHT) [12] to allow 
detection of any form and was used like a descriptor. 
Other spectral descriptors have been developed such as the 
Fourier descriptors (FD) [13], declinations as Fourier-
Mellin [14] and the wavelet descriptors [15]. All these 
global descriptors, except wavelets, are invariant to 
similarities. The Fourier Descriptor (FD) is more 
promising, computationally efficient and easier to 
implement. It supports a variety of shape signatures 
(curvatures, tangents' angles, complex coordinates, 
centroid distance, etc.) and can be used for the multi-scale 
approach. The main information on contour is present in 
the low frequencies (first harmonics) and it is particularly 
robust to the noise. 
In this article, we suggest a new approach in using the 
Fourier Descriptor to contour-based shape matching. We 
propose to use moments to get the canonical shape before 
applying the FD. This step allows removing all affine 
transformations. A new angle signature and the centroid 
distance are combined to have a strong shape fingerprint. 
The normalization of both FDs is expected before the 
similarity measure step. Then, with the measure of 
similarity defined and adapted for this double feature 
vector, we obtain a powerful and robust descriptor. This 
descriptor gives us efficient performance retrieval assessed 
by several tests and analysis. A tool that extracts the 
proposed shape features from images, compares these 
features with query image features and retrieves the 
images based on similarity between these two descriptor 
sets was implemented. The tests were performed on the 
database containing affine transformations of contours [1]. 
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The paper is organized in four parts. The section 2 
presents the Fourier descriptor. In the section 3, the 
description of our shape signature and the normalization 
scheme of the FD are exposed. The section 4 explains the 
use of moments to get an affine invariant shape. The 
section 5 analyses the experimental results and the 
conclusion closes this paper. 

2. The Fourier Descriptor 

For a given shape defined by a closed curve C, let s(t) with 
t=0,1,…,T, be a signal or shape signature such as (radius, 
abscissa, curvature…) extracted from the curve C. if s(t) is 
periodic of T period, it can be decomposed into Fourier 
series in the following way: 

( ) ( )∑
∞

∞−

= Tntjats n /2exp π  (1) 

The Fourier coefficients an are given by the Fourier 
transform of s(t): 
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The discrete Fourier transform of s(t) is given by: 
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Since s(t) is a 1D function representing the shape, it is 
crucial for it to have an effective capability of description. 
All coefficients an, n=0,1,…,N-1, are belonged to a feature 
vector called Fourier descriptor (FD). Coefficients an are 
usually noted FDn, n=0,1,…,N-1. The value N represents 
the order of descriptor FD. This Fourier descriptor 
represents the shape in spectral domain and the 
coefficients an are the frequency components. The lower 
frequencies, the coefficients of lower index, contain 
information about general features of the shape. And the 
higher frequencies, the coefficients of high index, contain 
information about finer details. Thus the larger the 
number of coefficients is, the more the curve is well 
described. But, the great interest of the Fourier descriptor 
is to describe a shape by only few values. 
The regular sampling of the data signal is important for the 
signal reconstruction. Thus, the non-uniformity of the data 
signal leads to distortions in the rebuild, and results in 
slower convergence to the original signal and even a 
possible divergence of the reconstruction. Uniformity in 
sampling is a key property in the signal modeling Fourier 
transform-based process. 

 
Fig. 1  Reconstruction of a shape with the 2D Fourier descriptor (X and 
Y) with a regular sampling. The order of the descriptor is set respectively 

from left to right and from top to bottom 2, 3, 7 and 15. 
 
In this paper, the centroid signature is adopted and 
considered like the classic FD signature since recent work 
has proven that it outperforms other signatures in shape 
retrieval [16]. Zhang shows in [17] that Manhattan 
distance (city-block) applied to the FD provides the best 
performance compared to the others distances. Zhang has 
also underlined the fact that just the first 15 harmonics of 
FD are sufficient to get efficient results, and beyond this 
limit, no significant increase of the retrieval rate is gained. 

3. Shape signatures and the Fourier 
descriptor normalization 

3.1 Shape signatures 

As stated in the previous section, FD needs a shape 
signature to be modeled. To ensure efficient shape 
retrieval, we must choose a signature able to keep a 
significant description of the original shape. Thus, our 
interest has been oriented on a dual signature which 
combines both radius and angles. Existing works had 
already exploited both signatures. However, in our case 
we pick out a very special signature. It is significant and 
makes it possible to reconstruct the shape faithfully. 
Distance between the center of gravity and each points of 
the contour provides us the radius signature.  
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where N denotes the number of boundary points. 
The second signature is constructed by the measure of the 
angle between successive points. The angle is positive in 
the counterclockwise and negative in clockwise. 
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( )cabaci 2)(cos 2221 −+= −θ  (5)
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iθ changes its sign following the position of point i+1 and 
the reference point i.  
In the section intended for experimental results, we will 
compare the results of our angle signature and the classic 
angle signature below: 

( )cicii xxyy −−= −1tanδ  (6) 

3.2 Normalization of Fourier Descriptor 

In sub-section A., we extract signature which runs our 
retrieval process. The normalization of the Fourier 
coefficients within [0 1] is required to get efficient 
retrieval and it is done following the expression: 
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Where n is the number of the FD harmonic and FDi is the 
ith harmonic. 
 
With the signature (radius and angle) defined in this 
section, we have invariance to the translation. The rotation 
of the shape and the starting point, involve only a rotation 
of the periodic signatures, and has no influence on the FD 
since it is a global descriptor. So, our approach is now 
invariant to translation, rotation and starting point and 
reflection. And what about the rest of affine 
transformations? Normalization contours provide a 
solution to this problem. However, it is performed before 
the extraction of the signature. 

4. Curve normalization 

Curve Normalization is designed to get a canonical curve 
pose and to eliminate the effect of any possible rotation. 
The Moment and the Principal Component Analysis 
(PCA) are the main techniques used for this purpose. The 
steps of these two methods are described in this section. 
We present firstly curve normalization by the moments. 
Then, in the second part, the curve normalization by PCA 
is carried out. 

4.1 Curve normalization by moments 

To do this kind of normalization, we use moments which 
seem be able to eliminate the main translation, the scaling 
and the skewing. 
For a curve C, the (p,q)-order moments is written as : 
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with N is the number of boundary points. 
The normalization of a curve C implies specific values for 
the moments with order 1 and 2. So, we have: 
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The normalization stages of the curve C in C’ are: 
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In chronological order, the steps for normalization reduce 
the curve in the center of gravity and eliminate the vertical 
and horizontal stretch. After that, we make a rotation of 
45° (π/4) in order to remove again the vertical and 
horizontal stretch. Then, we get a standard shape ready to 
undergo the signature extraction process. 
 

 
Fig. 2  Curves before (top line) and after (bottom line) normalization 

4.2 Curve normalization by PCA 

PCA allows normalization along the principle component 
directions. To apply it, we follow the steps below that are 
better explained by Sener [18]. 
Let [ ]Tiii yxP ,= for i=1,2, …,N, which represents the 

range data of a curve [ ]NPPPC ,,, 21 L=  and Ĉ  his 
normalized form. 
The center μ and the covariance matrix ∑ of C are 
respectively defined by  

∑
=
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N
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P
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i
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def

PP
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−−=Σ
1

1 μμ  (14)

The covariance matrix ∑ is symmetric and positive 
definite. Therefore, it is diagonalizable by an orthogonal 
matrix E composed by the eigenvectors of ∑, so that: 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009 
 

 

243

TT EDEEED =Σ⇒Σ=  (15)
where D is a positive definite and diagonal matrix. D is 
composed of ∑ eigenvalues.  
Now, we consider the normalized data set Ĉ , obtained 
from C via the transformation: 

( )μ−= − CEDC T2/1ˆ  (16)
By this PCA normalization, the curve signature is 
invariant to translation, scale and shear. The PCA is often 
combined with Independent Component Analysis (ICA) 
[19] and high order moments to ensure rotation and 
reflection invariance.  
 

 
Fig. 3  Curves before (top line) and after (bottom line) PCA 

normalization 
 
With this both curve normalization, we get a template 
curve. With the properties of this new curve and those of 
signature, we have a complete invariance to affine 
transformations. The simulation stages led us to pick up 
Moment normalization against PCA. The Moment method 
gives better retrieval rate than PCA method. 

5. Experimental results 

To evaluate the retrieval performance of our approach 
described in section 3 and 4, we apply our tests on 
Multiview Curve Dataset [1]. A suitable similarity 
measure is defined for the descriptor. The performance 
measures use here are described. At the end, comparative 
studies are conducted to show the insight of our approach. 

5.1 Curve database 

The evaluation and tests will be done on Multiview Data 
Curve (MCD). This dataset contains contours extracted 
from shapes found in the MPEG-7 set B database. It 
regroups 40 shape categories from different angles of 
views. These views correspond clearly to different affine 
transformations (perspective distortions, rotation, scaling 
and reflections) of each original shape. There are 14 views 
for each object, which means 560 curves in the whole 

dataset. So, this database is suitable for evaluating affine-
invariant descriptors. 
 

 
Fig. 4  Each shape represents a class of database MCD 

5.2 Similarity measure 

The measure of similarity to our descriptor, noted Sim, 
provides a classification of objects following the curve 
shape criteria. It is a measure based on the Manhattan 
distance. When a request is done, we measure the distance 
between radius vectors and angle vectors separately. Then, 
the merger of both distance values is made to obtain the 
similarity between the request object and each dataset 
shape.  After preliminary tests, in merge process, we give 
more weight to radius than angle. 

( ) ),(*25.0),(, 21tan21tan21 θθ FDFDDFDFDDCCSim manhattrrmanhatt += (17) 

In simulation, we also use Sim measure on Fourier 
descriptor which uses signature radius and classic angle δ.  

5.3 Performance measures 

We present briefly the performance tools used to evaluate 
our approach. These tools are particularly useful for 
studying the quality of ranked matches on descriptors 
having specific properties. a complete description of these 
quantitative statistics should be found in [18]. To complete 
this list of performance tools, we built the performance per 
classes (PP) and mean average precision (MAP).  
Precision-recall: is a chart describing the relationship 
between precision and recall in a ranked list of matches. 
Recall and precision are easy to compare across queries 
and engines. Precision is a measure of the usefulness or 
exactness of top ranked matches. Precision also measures 
the how well the engine performs in not returning non-
relevant documents. Recall is a measure of completeness. 
Also, it measures the engine performs in finding relevant 
documents. 
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Nearest neighbor: the percentage of the closest matches 
that belong to the same class as the query. This statistic 
provides an indication of how well a nearest neighbor 
classifier would perform. Obviously, an ideal score is 
100%, and higher scores represent better results. 
First-tier and Second-tier: the percentage of models in 
the query’s class that appear within the top K matches, 
where K depends on the size of the query’s class. 
Specifically, for a class with |C| members, K = |C| − 1 for 
the first tier, and K = 2*(|C| − 1) for the second tier. The 
first tier statistic indicates the recall for the smallest K that 
could possibly include 100% of the models in the query 
class, while the second tier is a little less stringent. Always, 
an ideal matching result gives a score of 100%, and higher 
values indicate better matches. 
E-Measure: a composite measure of the precision and 
recall for a fixed number of retrieved results [21]. The 
intuition is that a user of a search engine is more interested 
in the first page of query results than in later pages. So, 
this measure considers only the first 32 retrieved models 
for every query and calculates the precision and recall 
over those results. The maximum score of e-measure is 1.0, 
and higher values indicate better results. The E-Measure is 
defined as [21], [22]: 
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Discounted Cumulative Gain (DCG): is a statistic that 
weights correct results near the front of the list more than 
correct results later in the ranked list under the assumption 
that a user is less likely to consider elements near the end 
of the list. Specifically, the ranked list R is converted to a 
list G, where element Gi has value 1 if element Ri is in the 
correct class and value 0 otherwise. Discounted 
cumulative gain is then defined as follows [23]: 
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This result is then divided by the maximum possible DCG 
(i.e., that would be achieved if the first C elements were in 
the correct class, where C is the size of the class) to give 
the final score: 
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(21)

where k is the number of models in the database. 

The performance per classes (PP): is the mean retrieval 
rate of all items belong to the same class. In this case, we 

check top 28 matches to determine the most similar shapes 
for every query shape. The retrieval rate for a method is 
equal to the mean of all performances collected per classes. 
Mean average precision (MAP): is the average of 
Average Precision (AP) values over several topics. It is 
also an overall summary measure quality of retrieval 
engines. AP is average of precision value obtained for set 
of top k documents existing after each relevant document 
is retrieved. The measure AP that combines precision, 
relevance ranking, and overall recall is defined as follows:   

( ) ( )( )

documentsrelevantofnumber

rrelrP
AP

k

r
∑
== 1

*
 (22) 

where r is the rank, k the number retrieved, rel a binary 
function on the relevance of a given rank, and P precision 
at a given cut-off rank. 

5.4 Evaluation of normalization and signature 

This section is intended for evaluating the effect of the 
normalization technique used, and the shape signature 
chosen for the Fourier Descriptor. 
To reveal the strength of normalization chosen, we 
compare the Fourier descriptor in three different contexts: 
- the classic centroid distance FD (FDs); - the FD after a 
normalization by Moments (FDn); - the FD after a 
normalization by PCA (FDpca). 

Table 1: Global performance per classes (PP) and MAP on MCD 
database 

             
Descriptor 
Discrimination 

FDs FDpca FDn 

Nearest Neighbor 100% 100% 100% 
First Tier 31.8% 75.0% 79.5% 
Second Tier 41.0% 86.5% 88.88% 
E-Measure 25.5% 51.2% 53.0% 
DCG 65.9% 93.0% 94.6% 
PP 48.5% 89.7% 92.52% 
MAP 44.1% 85.46% 88.51% 
s = no normalized curve, pca = pca normalized curve 

and n = moment normalized curve 
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Fig. 5  Precision and recall for FD on classic form and both 

normalizations, by Moment and PCA. 
Fig. 5 and Table 1 gather good views of performance 
produced by the normalization on Fourier descriptors. The 
retrieval accuracy carried out by descriptor FDn is higher 
than the others. 
Now, it is time to evaluate the descriptor signature. For 
this goal, we measure the performance of our signature 
and two other ones. The experiments are done with and 
without moment normalization. We investigate the impact 
produced while combining a good signature with an 
efficient normalization technique. 

Table 2: Statistics on MCD database for descriptors 
             
Descriptor 
Discrimination 

FDs FDn FDs 
(R+δ) 

Nearest Neighbor 100% 100% 100% 
First Tier 31.8% 79.5% 27.6% 
Second Tier 41.0% 88.8% 35.8% 
E-Measure 25.5% 53.0% 22.6% 
DCG 65.9% 94.6% 62.2% 
PP 48.5% 92.5% 43.87% 
MAP 44.1% 88.5% 40.15% 
    

              
Descriptor 
Discrimination 

FDn 
(R+δ) 

FDs 
(R+θ) 

FDn 
(R+θ) 

Nearest Neighbor 93.0% 100% 100% 
First Tier 56.5% 37.3% 89.0% 
Second Tier 69.3% 45.5% 94.8% 
E-Measure 42.3% 28.2% 55.2% 
DCG 83.0% 70.2% 97.5% 
PP 75.0% 52.7% 96.4% 
MAP 68.33% 49.0% 94.43% 
s = no normalized curve and n = moment normalized curve 

 
Fig. 6  Precision and recall for three descriptors before and after 
normalizations of MCD curves. 

5.5 Comparative study with some affine invariants 

In this section, we compare the descriptor with some 
affine invariant methods. We choose three methods based 
on Fourier descriptors: - the affine invariant Fourier 
descriptor (AIFD) presented by Chaker in [24, 25]; - the 
affine curvature using a B-spline [24] which is an upgrade 
of previous work proposed by Weiss [26]; - and the affine 
invariant Fourier descriptors defined by Arbter [27]. 
In this evaluation, each shape from the MCD was used as 
a query. And the number of similar shapes was counted in 
the top 16 matches. In Table 3, we show the retrieval rates 
for the same 10 random query shapes presented by Chaker 
in [24]. Our invariant affine descriptor significantly 
outperforms the other three descriptors. 

Table 3: Retrieval rates for 10 random query shapes on MCD database 

Shape AIFD Arbter’ 
Invariant 

Affine 
Curvature 

FDn 
(R+θ) 

Bat 100% 28% 14% 100% 
Bell 86% 57% 0% 92 
Butterfly 86% 43% 14% 91% 
Insect 86% 43% 14% 82% 
Bone 72% 72% 28% 88% 
Camel 72% 43% 28% 100% 
Bird 72% 14% 28% 66% 
Apple 72% 72% 14% 64% 
Bottle 57% 28% 14% 90% 
Brick 57% 14% 14% 97% 
Mean 76% 41.4% 16.8% 84.2% 

5.6 Comparative study with other well known 
methods 

In this new analysis, we have confronted our approach to 
three well known descriptors in the research field. These 
methods, although contour-based, used other approaches. 
Thus, we gather the recall-precision chart of our descriptor 
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and the CSS descriptor one [10]. The inverse generalized 
Hough transform descriptor (IGHTD) of Bourgeois [28], 
and the Helmholtz curve descriptor (HCD) of Zuliani [29] 
complete this comparison. We underline the fact that these 
descriptors are also affine transformations invariant. 
 

 
Fig. 7  Precision and recall for four descriptors on MCD database. 
 
We dare to declare after the analysis of the various 
performance measures, the best quality of our approach. 
The outperformance of our descriptor is clear on other 
approaches independently of their origins: -similar to our 
approach, -invariant to affine transformations or -having 
various sources approaches.  

6. Conclusion 

This paper presents a new image retrieval approach based 
on Fourier descriptor. This approach has two points which 
make its strength:  the double signature based on the 
radius and specific computed angles, and the curve 
normalization made by a combination of moments. These 
two requirements allow our descriptor to be invariant 
according to many affine transformations. With an adapted 
similarity measure, our descriptor gives noteworthy 
performance in shape retrieval. Experiments and tests are 
made on 560 shapes database. Performance comparisons 
are made between our descriptor and many others 
descriptors, and it displays the best results always. The 
good retrieval rate and others good statistics show clearly 
that our descriptor is very robust under distortions and 
affine variations. 
In a near future work, we will apply evaluation of 
descriptor on a bigger database and will compare it with 
other descriptors. 
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