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Abstract: 
In pattern matching problem, Software Architecture Recovery 
is of immense importance, it uses A* Algorithm which runs in 
exponential time. In this article we proposed an algorithm 
which runs in linear time. 
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1. Introduction 

At the present time, Software Architecture recovery 
[6][7] is exhibited as pattern matching problem, a 
constraint satisfaction problem, a clustering problem, a 
composition and visualization problem or a Lattice 
partitioning problem. The pattern matching problem is 
the best suitable method for Architecture recovery as 
observed, by the reverse Engineering Community [8] , 
because it uses Domain knowledge and system 
constraints and they can provide an user assisted 
environment. 

1.1 Definition 

First of all we have to get a basic idea of what is a 
Bipartite graph in order to get closer into this concept. 
We should also get closer to what is software 
Architecture recovery? To make this concept familiar to 
you, we have to follow these definitions. 

1.2 Software Architecture recovery 

A set of methods adopted for extraction of Architectural 
information from lower levels such as source code is 
called software Architecture Recovery. 

1.3 Bipartite graph 

In a non directed graph G whose set of vertices can be 
partitionised into two sets m and n in such a way that 
each edge joins a vertex in m to a vertex in n. 

In Graph1 vertices set |v|= {a, b, c, d} is divided into two 
disjoint sets v1 and v2 as 
 

 v1={a ,c} v2={b, d} 
 

In Graph2 every edge of G joins a vertex of  v1 to a 
vertex of v2 . So G is a Bipartite graph. 

 

2. Similarities in Software Architecture   
Recovery Process and Graph Pattern 
Matching Process 

A graph pattern matching problem is defined as Software 
architecture recovery, because both uses recursive graph 
equations that correspond to an iterative graph matching 
process. 

2.1. Overview of matching process 

Software Architecture recovery problem and pattern 
matching Problem (Graph Matching Problem)are similar 
to each other. But you have to know what a Graph 
Matching Problem is? In Graph Matching problem , we 
consider two graphs G1 and G2 by  means of a function f 
that maps the nodes and edges of G1 onto the nodes and 
edges of G2 .The process of generating the pattern graph 
is exploratory in nature and the pattern graph is not a 
final graph in the proposed Software architecture 
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recovery[6] [7]. In this way finding the exact matrix 
between the pattern graph and a sub graph of a Software 
system graph is not predictable. The aim is to identify a 
sub graph of the input graph that is similar to a given 
pattern graph. The search space for the matching process 
is provided by the source graph. This search space is 
separated into sub spaces using Data mining techniques 
and each sub space provides a sub set of initial search 
space. Each node in a source region is labeled with a 
similarity value to the main seed of the source region as a 
means for the matching process to operate on graphs of 
highly associated entities. 
The Whole graph matching process [3] is done in  |Nq| 
iterations, where |Nq| is the number of nodes in the query 
graph Gq. At each phase of development i where  i takes 
values from 1 to |Nq|  the result of matching at previous 
phase Gm

i-1  is used to build an input-graph  GI
i  and a 

pattern graph Gp
i  to be matched and produce a matched 

graph Gm
i, which in turn is used to build GI

i+1 and Gp
i+1 

for the next matching phase i+1 ,and so on. In this 
context,Gm 0 is defined as a Nil graph with zero number 
of  nodes and edges , and when i = |Nq| then GI

i = GI
 , 

Gp
i=Gp, Gm

i=Gm  and matching process terminates. 

2.2 Problem involved in A* Algorithm 

Previously Software Architecture is recovered using A* 
(Approximation Graph Matching Algorithm). But this 
algorithm suffers from Exponential time complexity 
because it uses Breadth first search method [4] for the 
temporary storage     
          This Search Algorithm generates a search tree that 
corresponds to the recovery of each module Mi in AQL 
(Architectural Query Language) 
It Consists of a  
 

i) root node for matching the main seed of the    
Source region with the first place holder ni,1 
in the pattern region Gi

pr.  

ii) A number of non-leaf tree-nodes at 
different levels of the search-tree that 
correspond to different alternative matching 
of the place holders in the Pattern region 
with nodes in the source region  

iii) Leaf tree-nodes that correspond to solution 
paths where the placeholders have been 
matched and constraints have been met.    

 
Each phase sets a place holder for the process of 
matching by the search tree which will be divided into 
number of phases. This act of composing property allows 
managing the complexity of the matching process of a 
large Source graph as shown in the figure below. 
In this way, the whole matching process is divided into K 
incremental phases so that the recovery process performs 

a Multiphase matching. Each Partial Matching at phase i  
where i takes values from 1,2,3,……k  generating a 
search tree which is a part of Multiphase Search space as 
shown in the above fig. 
 

 
 
Note: In this algorithm, the result of each phase is stored 
in a queue by discarding the previous result that was 
stored. 
If the Current phase i of the matching process fails to 
identify a matched graph Gm

i then this algorithm should 
backtrack by  
 

i) Discarding the result  that was stored queue 
in its previous phase Gm

i-1 
ii) Restoring the search tree for previous phase 

i-1 
iii) Expanding the search tree to find another 

solution Gm1
i-1 

iv) Advancing  to the current phase i and 
generating a new search tree from Gm1

i-1 
 

In our pattern matches in the nth phase, we are 
backtracking to the root n times in this algorithm. 
So in this way we can  conclude time complexity 
increases by an exponential order.  
In the very first phase, if the pattern matches, then this 
algorithm is best suited for software architecture 
recovery. 
We are proposing a new algorithm to reduce the 
complexity involved in this algorithm for recovering 
Software Architecture. We are dividing the source graph 
into two sub graphs in this algorithm by using graph 
Bipartition method [1]. As analysed above divide the 
graph into two subgraphs by selecting vertices [2]. The 
major problem is the selection of vertices. It is clear that 
there will be a problem while dividing. 
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3. Bi Partition Problem 

The bipartition problem is described in this way: 
Input: 
 

(1) an undirected graph G=(V,E) with n=|V| vertices; 

(2) two distinct vertices s1,s2 € V,s1≠s2; 

(3) two natural numbers n1 and n2 such that n1+n2 
 = 

n. 

Output: 

A partition (V1,V2) of vertex set  V such that 

(1) s1 €  V1 and s2 € V2; 

(2) |V1|=n1 and  |V2|=n2;and 

(3) Each of V1 and V2 induces a connected sub 

graph of G. 

The  following figure shows  an instance of the problem 
and a solution.  In this algorithm for the general result for 
the k-partition problem, in which one wishes to partition a 
given graph into k disjoint  connected sub graphs  each of 
which contains a specified vertex and has a specified 
number of vertices. 
We present a simple linear algorithm in this paper which 
solves the bipartition problem for bi connected graphs. To 
recover Software architecture, this solution will be useful. 
This algorithm is based on characteristics of a depth first 
search tree in a bi connected graph. 
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FIGURE: 

 

Preliminaries 

Let G=(V,E) be an undirected connected graph with 
vertex set V and edge set E. The vertex set of a graph G is 
often denoted by V(G), G-X is the graph obtained from G 
by removing all the vertices in X and all the edges 
incident with vertices in X . 
Let T be a depth first search tree of G. For each vertex v € 
V the set of descendants of v including v itself is denoted 
by DES (v). In this paper, ancestors and descendants of v 
€ V include v itself. It is clear from the following lemma. 

Lemma  

Let G =(V,E) be an undirected graph, and let T be a depth 
first search tree of G. Then G is biconnected if and only if 
the root r of T has exactly one child c and, for each  vertex 
v € V –{r,c} there is an edge which joins an ancestor of v’ 
s grandparent and a descendent of v. 

Algorithm 

We present a linear algorithm in this section for solving 
the bipartition problem for a biconnected graph G which 
is similar to the problem involved in Software 
Architecture recovery. G does not always contain edge 
(s1,s2) joining the two specified vertices s1 and s2.In what 
ever way a solution for the graph  obtained by adding 
edge (s1,s2) to G is always a solution for G. In this way in 
the algorithm below, we may suppose that G has edge 
(s1,s2) . Let T be a depth first search tree with s1 as the 
root and s2 as the s1’s child. The algorithm will be noted 
below. 
  
Function PART2 (G, T, s1, s2, n1, n2);  

Begin 

(1) If n1=1 then return ({s1},V(G)-{s1}) 

     else   if n2=1 then return (V(G)-     {s2},{s2}); 

 

(2) let a be an arbitrary child of s2; 

   If s2 has two or more children then {see fig 2.note that 

lemma1 implies that, for every child v of s2, s1 is adjacent 

to a vertex in DES (v)} 

(2.1) if DES (a) U {s2} ≤ then 

 Begin {include DES (a) inV2} 

 V2:= DES (a); 

G21:=G-V2 ;{ G21 is biconnected, and is obtained from G 

by identifying all descendants of a with s2} 

T21: T-V2 ;{ T21 is a depth first search tree of G21} 

(V1
1, V2):=PART2 (G21, T21, s1, s2, n1,|V(G21)-n1); 

Return (V1, V2UV21) 

End 

(2.2) else {|DES (a) U {s2}|>n2, that is, 

| (DES (s2)-DES (a)-{s2}) U {s1}|<n1} 

Begin {include DES (s2)-DES (a)-{s2} in V1} 

V1:=Des (s2)-DES (a) {s2}; 

G22:=G-V1 ;{ G22 is biconnected} 

T22:=T-V1; 

(V1
1, V2):=PART2 (G22, T22, s1, s2, |V (G22)|-n2, n2); 

Return (V1UV1
1, V2) 

End 

(3) else {a is the only child of s2} 

     Begin 

     Let b an arbitrary child of a; 

(3.1) If s1 is adjacent to a vertex in DES (b) then {see 

fig.3} 

(3.1.1) if |DES (b) U {s1} ≤n1 then  

       Begin {include DES (b) in V1} 

V1:=DES (b); 

Let G311 be the graph obtained from G by identifying all 

vertices in V1 with s1; 

T311:=T-V1; 

(V1
1,V2):=PART2(G311,T311,s1,s2,|V(G311)|-n2,n2); 
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Return (V1UV1
1, V2) 

End 

(3.1.2) else {|DES (b) U {s1}|>n1, that is, | (DES (a)-DES 

(b)) U {s2}|<n2} 

begin 

{include DES(a)-DES(b) in V2} 

V2:=DES (a)-DES (b); 

Let G312 be the graph obtained from G by identifying all 

vertices in V2 with s2; 

Let T312 be the tree obtained from T by identifying all 

vertices in V2 with s2; 

(V1, V21):=PART2 (G312, T312, s1, s2, n1,|V(G312)|-n1); 

Return (V1, V2UV21) 

End 

(3.2.) else {s1 is not adjacent to any vertex in DES (b), and 

hence s2 is adjacent to a vertex in DES (b). see in fig4.} 

(3.2.1) if |Des (b) U {s2}≤n2 then  

Begin   {include DES (b) in V2} 

V2:= DES (b); 

G321: G-V2; 

T321:=T-V2; 

(V1, V21):=PART2 (G321,T321,s1, s2,n1,|V(G321)|-n1); 

Return (V1, V2UV21) 

End 

(3.2.2)   else {|DES (b) U {s2}|>n2, that is, |(DES(a)-

DES(b))U{s1}|<n1} 

begin 

{include DES(a)-DES(b) in V1} 

V1:=DES (a)-DES (b); 

Let G322 be the graph obtained from G by identifying all 

vertices in V1 with s1; 

Let T322 be the tree obtained from  

T-(V1-{a}) by identifying s1 with 

 a ;{select s2 as the root of T322} 

(V2,V1
1):=PART2(G322,T322,s2,s1,n2,|V(G322)|-n2); 

Return (V1UV11,V2) 

End 

      End 

End 

 
Figures: 
 

 

Lemma: 

All graphs G21,G22,G311,G312,G321and G322 in PART2 are 
biconnected , T21,T22,T311,T312,and T321 are depth first 
search trees with s1 as the root in G21,G22,G311,G312 and 
G321, [5]respectively, and T322  is a depth first search tree 
[4] with s2 as the root in G322. 
One can prove the correctness of the algorithm by using 
Lemma. 
In order to make the algorithm run in O(m) time, we 
compute  and maintain low(v) and id(v); for each vertex v 
€ V, low(v) is defined to be the vertex which is adjacent 
to a vertex in DES(v) and whose depth first number is 
minimum; and 
Id (v) = {0, if v € V1UV2U {s1, s2}, 
 
             1, if v€ V1U {s1}, 
             2, if v€ V2U {s2}} 
 
In this way, one can decide whether S1is adjacent to a 
vertex in DES (b) ((in 3.1)) by checking whether 
id(low(b))=1. We initially set id(s1)=1, id(s2)=2 and 
id(v)=0 for each v€V-{s1,s2}, and update id according to 
proceeding of the algorithm . But yet it is not necessary to 
update low (v). 
After an execution of (3.2.2), id(low(v)) may become 
incorrect for some vertices v in DES(a)-DES(b), but such 
vertices have been included in V1 and hence will not be 
selected as b. Thus, it suffices to compute low (v) for all 
v€V  only once at the beginning of the algorithm. 
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A depth first search tree [4] of a graph and low (v) for all 
vertices v€V  can be found in O (m) time. All the other 
tasks can be done in O (n) time. Thus the bipartition 
problem for biconnected graphs can be solved in  
O (m) time. 
In this algorithm the source graph should not be divided 
into multiple phases. So there is no need for backtracking. 
So, the performance increases  

Conclusion 

This algorithm runs in linear time which improves the 
performance in terms of iterations when compared to A* 
algorithm. 
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