
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

255

Manuscript received July 5, 2009
Manuscript revised July 20, 2009

Minimizing the complexity involved in Software Architecture
recovery by using Bipartite graph

Shaheda Akthar

Assoc.Professor
Srimittapalli College of Engineering

JNTU,Kakinada

Dr.P.Thrimurthy

Professor
Dept of Computer Science&Engineering

Acharya Nagarjuna University

Abstract:
In pattern matching problem, Software Architecture Recovery
is of immense importance, it uses A* Algorithm which runs in
exponential time. In this article we proposed an algorithm
which runs in linear time.
Key words:
Software Architecture recovery, reverse Engineering, Bipartite
graph, Graph Matching Problem,AQL.

1. Introduction

At the present time, Software Architecture recovery
[6][7] is exhibited as pattern matching problem, a
constraint satisfaction problem, a clustering problem, a
composition and visualization problem or a Lattice
partitioning problem. The pattern matching problem is
the best suitable method for Architecture recovery as
observed, by the reverse Engineering Community [8] ,
because it uses Domain knowledge and system
constraints and they can provide an user assisted
environment.

1.1 Definition

First of all we have to get a basic idea of what is a
Bipartite graph in order to get closer into this concept.
We should also get closer to what is software
Architecture recovery? To make this concept familiar to
you, we have to follow these definitions.

1.2 Software Architecture recovery

A set of methods adopted for extraction of Architectural
information from lower levels such as source code is
called software Architecture Recovery.

1.3 Bipartite graph

In a non directed graph G whose set of vertices can be
partitionised into two sets m and n in such a way that
each edge joins a vertex in m to a vertex in n.

In Graph1 vertices set |v|= {a, b, c, d} is divided into two
disjoint sets v1 and v2 as

 v1={a ,c} v2={b, d}

In Graph2 every edge of G joins a vertex of v1 to a
vertex of v2 . So G is a Bipartite graph.

2. Similarities in Software Architecture
Recovery Process and Graph Pattern
Matching Process

A graph pattern matching problem is defined as Software
architecture recovery, because both uses recursive graph
equations that correspond to an iterative graph matching
process.

2.1. Overview of matching process

Software Architecture recovery problem and pattern
matching Problem (Graph Matching Problem)are similar
to each other. But you have to know what a Graph
Matching Problem is? In Graph Matching problem , we
consider two graphs G1 and G2 by means of a function f
that maps the nodes and edges of G1 onto the nodes and
edges of G2 .The process of generating the pattern graph
is exploratory in nature and the pattern graph is not a
final graph in the proposed Software architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

256

recovery[6] [7]. In this way finding the exact matrix
between the pattern graph and a sub graph of a Software
system graph is not predictable. The aim is to identify a
sub graph of the input graph that is similar to a given
pattern graph. The search space for the matching process
is provided by the source graph. This search space is
separated into sub spaces using Data mining techniques
and each sub space provides a sub set of initial search
space. Each node in a source region is labeled with a
similarity value to the main seed of the source region as a
means for the matching process to operate on graphs of
highly associated entities.
The Whole graph matching process [3] is done in |Nq|
iterations, where |Nq| is the number of nodes in the query
graph Gq. At each phase of development i where i takes
values from 1 to |Nq| the result of matching at previous
phase Gm

i-1 is used to build an input-graph GI
i and a

pattern graph Gp
i to be matched and produce a matched

graph Gm
i, which in turn is used to build GI

i+1 and Gp
i+1

for the next matching phase i+1 ,and so on. In this
context,Gm 0 is defined as a Nil graph with zero number
of nodes and edges , and when i = |Nq| then GI

i = GI
 ,

Gp
i=Gp, Gm

i=Gm and matching process terminates.

2.2 Problem involved in A* Algorithm

Previously Software Architecture is recovered using A*
(Approximation Graph Matching Algorithm). But this
algorithm suffers from Exponential time complexity
because it uses Breadth first search method [4] for the
temporary storage
 This Search Algorithm generates a search tree that
corresponds to the recovery of each module Mi in AQL
(Architectural Query Language)
It Consists of a

i) root node for matching the main seed of the
Source region with the first place holder ni,1
in the pattern region Gi

pr.

ii) A number of non-leaf tree-nodes at
different levels of the search-tree that
correspond to different alternative matching
of the place holders in the Pattern region
with nodes in the source region

iii) Leaf tree-nodes that correspond to solution
paths where the placeholders have been
matched and constraints have been met.

Each phase sets a place holder for the process of
matching by the search tree which will be divided into
number of phases. This act of composing property allows
managing the complexity of the matching process of a
large Source graph as shown in the figure below.
In this way, the whole matching process is divided into K
incremental phases so that the recovery process performs

a Multiphase matching. Each Partial Matching at phase i
where i takes values from 1,2,3,……k generating a
search tree which is a part of Multiphase Search space as
shown in the above fig.

Note: In this algorithm, the result of each phase is stored
in a queue by discarding the previous result that was
stored.
If the Current phase i of the matching process fails to
identify a matched graph Gm

i then this algorithm should
backtrack by

i) Discarding the result that was stored queue
in its previous phase Gm

i-1
ii) Restoring the search tree for previous phase

i-1
iii) Expanding the search tree to find another

solution Gm1
i-1

iv) Advancing to the current phase i and
generating a new search tree from Gm1

i-1

In our pattern matches in the nth phase, we are
backtracking to the root n times in this algorithm.
So in this way we can conclude time complexity
increases by an exponential order.
In the very first phase, if the pattern matches, then this
algorithm is best suited for software architecture
recovery.
We are proposing a new algorithm to reduce the
complexity involved in this algorithm for recovering
Software Architecture. We are dividing the source graph
into two sub graphs in this algorithm by using graph
Bipartition method [1]. As analysed above divide the
graph into two subgraphs by selecting vertices [2]. The
major problem is the selection of vertices. It is clear that
there will be a problem while dividing.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

257

3. Bi Partition Problem

The bipartition problem is described in this way:
Input:

(1) an undirected graph G=(V,E) with n=|V| vertices;

(2) two distinct vertices s1,s2 € V,s1≠s2;

(3) two natural numbers n1 and n2 such that n1+n2
 =

n.

Output:

A partition (V1,V2) of vertex set V such that

(1) s1 € V1 and s2 € V2;

(2) |V1|=n1 and |V2|=n2;and

(3) Each of V1 and V2 induces a connected sub

graph of G.

The following figure shows an instance of the problem
and a solution. In this algorithm for the general result for
the k-partition problem, in which one wishes to partition a
given graph into k disjoint connected sub graphs each of
which contains a specified vertex and has a specified
number of vertices.
We present a simple linear algorithm in this paper which
solves the bipartition problem for bi connected graphs. To
recover Software architecture, this solution will be useful.
This algorithm is based on characteristics of a depth first
search tree in a bi connected graph.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

258

FIGURE:

Preliminaries

Let G=(V,E) be an undirected connected graph with
vertex set V and edge set E. The vertex set of a graph G is
often denoted by V(G), G-X is the graph obtained from G
by removing all the vertices in X and all the edges
incident with vertices in X .
Let T be a depth first search tree of G. For each vertex v €
V the set of descendants of v including v itself is denoted
by DES (v). In this paper, ancestors and descendants of v
€ V include v itself. It is clear from the following lemma.

Lemma

Let G =(V,E) be an undirected graph, and let T be a depth
first search tree of G. Then G is biconnected if and only if
the root r of T has exactly one child c and, for each vertex
v € V –{r,c} there is an edge which joins an ancestor of v’
s grandparent and a descendent of v.

Algorithm

We present a linear algorithm in this section for solving
the bipartition problem for a biconnected graph G which
is similar to the problem involved in Software
Architecture recovery. G does not always contain edge
(s1,s2) joining the two specified vertices s1 and s2.In what
ever way a solution for the graph obtained by adding
edge (s1,s2) to G is always a solution for G. In this way in
the algorithm below, we may suppose that G has edge
(s1,s2) . Let T be a depth first search tree with s1 as the
root and s2 as the s1’s child. The algorithm will be noted
below.

Function PART2 (G, T, s1, s2, n1, n2);

Begin

(1) If n1=1 then return ({s1},V(G)-{s1})

 else if n2=1 then return (V(G)- {s2},{s2});

(2) let a be an arbitrary child of s2;

 If s2 has two or more children then {see fig 2.note that

lemma1 implies that, for every child v of s2, s1 is adjacent

to a vertex in DES (v)}

(2.1) if DES (a) U {s2} ≤ then

 Begin {include DES (a) inV2}

 V2:= DES (a);

G21:=G-V2 ;{ G21 is biconnected, and is obtained from G

by identifying all descendants of a with s2}

T21: T-V2 ;{ T21 is a depth first search tree of G21}

(V1
1, V2):=PART2 (G21, T21, s1, s2, n1,|V(G21)-n1);

Return (V1, V2UV21)

End

(2.2) else {|DES (a) U {s2}|>n2, that is,

| (DES (s2)-DES (a)-{s2}) U {s1}|<n1}

Begin {include DES (s2)-DES (a)-{s2} in V1}

V1:=Des (s2)-DES (a) {s2};

G22:=G-V1 ;{ G22 is biconnected}

T22:=T-V1;

(V1
1, V2):=PART2 (G22, T22, s1, s2, |V (G22)|-n2, n2);

Return (V1UV1
1, V2)

End

(3) else {a is the only child of s2}

 Begin

 Let b an arbitrary child of a;

(3.1) If s1 is adjacent to a vertex in DES (b) then {see

fig.3}

(3.1.1) if |DES (b) U {s1} ≤n1 then

 Begin {include DES (b) in V1}

V1:=DES (b);

Let G311 be the graph obtained from G by identifying all

vertices in V1 with s1;

T311:=T-V1;

(V1
1,V2):=PART2(G311,T311,s1,s2,|V(G311)|-n2,n2);

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

259

Return (V1UV1
1, V2)

End

(3.1.2) else {|DES (b) U {s1}|>n1, that is, | (DES (a)-DES

(b)) U {s2}|<n2}

begin

{include DES(a)-DES(b) in V2}

V2:=DES (a)-DES (b);

Let G312 be the graph obtained from G by identifying all

vertices in V2 with s2;

Let T312 be the tree obtained from T by identifying all

vertices in V2 with s2;

(V1, V21):=PART2 (G312, T312, s1, s2, n1,|V(G312)|-n1);

Return (V1, V2UV21)

End

(3.2.) else {s1 is not adjacent to any vertex in DES (b), and

hence s2 is adjacent to a vertex in DES (b). see in fig4.}

(3.2.1) if |Des (b) U {s2}≤n2 then

Begin {include DES (b) in V2}

V2:= DES (b);

G321: G-V2;

T321:=T-V2;

(V1, V21):=PART2 (G321,T321,s1, s2,n1,|V(G321)|-n1);

Return (V1, V2UV21)

End

(3.2.2) else {|DES (b) U {s2}|>n2, that is, |(DES(a)-

DES(b))U{s1}|<n1}

begin

{include DES(a)-DES(b) in V1}

V1:=DES (a)-DES (b);

Let G322 be the graph obtained from G by identifying all

vertices in V1 with s1;

Let T322 be the tree obtained from

T-(V1-{a}) by identifying s1 with

 a ;{select s2 as the root of T322}

(V2,V1
1):=PART2(G322,T322,s2,s1,n2,|V(G322)|-n2);

Return (V1UV11,V2)

End

 End

End

Figures:

Lemma:

All graphs G21,G22,G311,G312,G321and G322 in PART2 are
biconnected , T21,T22,T311,T312,and T321 are depth first
search trees with s1 as the root in G21,G22,G311,G312 and
G321, [5]respectively, and T322 is a depth first search tree
[4] with s2 as the root in G322.
One can prove the correctness of the algorithm by using
Lemma.
In order to make the algorithm run in O(m) time, we
compute and maintain low(v) and id(v); for each vertex v
€ V, low(v) is defined to be the vertex which is adjacent
to a vertex in DES(v) and whose depth first number is
minimum; and
Id (v) = {0, if v € V1UV2U {s1, s2},

 1, if v€ V1U {s1},
 2, if v€ V2U {s2}}

In this way, one can decide whether S1is adjacent to a
vertex in DES (b) ((in 3.1)) by checking whether
id(low(b))=1. We initially set id(s1)=1, id(s2)=2 and
id(v)=0 for each v€V-{s1,s2}, and update id according to
proceeding of the algorithm . But yet it is not necessary to
update low (v).
After an execution of (3.2.2), id(low(v)) may become
incorrect for some vertices v in DES(a)-DES(b), but such
vertices have been included in V1 and hence will not be
selected as b. Thus, it suffices to compute low (v) for all
v€V only once at the beginning of the algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

260

A depth first search tree [4] of a graph and low (v) for all
vertices v€V can be found in O (m) time. All the other
tasks can be done in O (n) time. Thus the bipartition
problem for biconnected graphs can be solved in
O (m) time.
In this algorithm the source graph should not be divided
into multiple phases. So there is no need for backtracking.
So, the performance increases

Conclusion

This algorithm runs in linear time which improves the
performance in terms of iterations when compared to A*
algorithm.

 References
[1] M.E.Dyer and A.M.Frieze , on the complexity of

partitioning graph into connected sub graphs, Discrete
applmath.10(1985)139-153.

[2] E.Gyori, On division of connected subgraphs, in
Combinatorics(1978)

[3] M.Imase and Y.Manabe , Fault tolerant routings in a
connected network,Tech. Rept. Inst. Elect. Commun.
Eng.Japan. COMP86-70,1987,95-105.

[4] Lovasz. A homology theory for spanning trees of a
graph,Acta math.Acad.Sci. unger.30(1977)241

[5] H.Suzuki, N.Takahashi, T.Nishizeki,H.Miyano and S.Ueno,
An algorithm for tripartitioning 3-connected
graphs,Tech.Rept. Inf. Proc. Soc. Japan,AL5-11,1989.

[6] Garlan D., Perry D.E., Introduction to the Special Issue on
Software Architecture IEEE Transactions on Software
Engineering, Vol. 21,No. 4, April 1995

[7] Gall H., Jazayeri M., Klösch R., LugmayrW., Trausmuth
G., Architecture Recovery in ARES, Proceedings of the
Second International Software Architecture Workshop
(ISAW-2) , November 1996.

[8] Harris D.R., Reubenstein H.B., Yeh A.S.,Reverse
Engineering to the Architectural Level,in Proceeding of
ICSE-17, IEEE ComputerSociety Press, pp. 186-195,April
1995.

Shaheda Akthar received bachelor of Computer Science from
Acharya Nagarjuna University, M.Tech Computer Science from
BITS Pilani and persuing Ph.D from Acharya Nagarjuna
University. Presently working as Assoc.Professor in Dept of
Computer Science in Mittapalli College of Engineering affiliated
to JNTU Kakinada.

